

SMITHSONIAN MATHEMATICAL TABLES

HYPERBOLIC FUNCTIONS

PREPARED BY

GEORGE F. BECKER and C. E. VAN ORSTRAND

No 1871

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1909

ASTRONOMY/ LISRARY

ADVERTISEMENT.

Among the early publications of the Smithsonian Institution was a very important volume of meteorological tables by Dr. Arnold Guyot. They were so widely used by geographers and physicists as well as by meteorologists that when the fourth edition was exhausted it was decided to recast the entire work and publish three separate volumes, Meteorological Tables, Geographical Tables, and Physical Tables, each of which has now passed through several editions.

In the application of the data of these volumes to the study of natural phenomena certain mathematical tables beside those included in ordinary tables of logarithms are urgently needed in order to save recurrent computation on the part of observers and investigators. It was therefore decided to publish the present volume of Mathematical Tables, on Hyperbolic Functions.

Hyperbolic Functions are extremely useful in every branch of pure physics and in the applications of physics whether to observational and experimental sciences or to technology. Thus whenever an entity (such as light, velocity, electricity, or radioactivity) is subject to gradual extinction or absorption, the decay is represented by some form of Hyperbolic Functions. Mercator's projection is likewise computed by Hyperbolic Functions. Whenever mechanical strains are regarded as great enough to be measured they are most simply expressed in terms of Hyperbolic Functions. Hence geological deformations invariably lead to such expression, and it is for that reason that Messrs. Becker and Van Orstrand, who are in charge of the physical work of the United States Geological Survey, have been led to prepare this volume.

Charles D.- Walcott, Secretary.

Washington, D. C., April, 1909.

In this first reprint of the Hyperbolic Functions a few misprints of trifling importance have been corrected and four values of the exponential have been changed by a unit in the eighth significant place.
April, igir.
C. D. W.

CONTENTS.

Introduction : page
Definitions and formulas vii
Geometrical illustrations xxviii
Methods of interpolation xxxiv
Description of tables xliii
Historical note xlviii
Table I:
Five place values of $\log \sinh u, \log \cosh u, \log \tanh u$, and \log coth u. ITable II:
Five place values of $\sinh u, \cosh u, \tanh u$, and coth u 87
Table III:
Five place values of $\sin u, \cos u, \log \sin u$, and $\log \cos u, u$ being expressed in radians and their angular equivalents I73
Table IV :
The ascending and descending exponential to seven significant figures with $\log _{10} e^{u}$ to seven places 225
Nine place values of the same with ten place logarithms from $u=\mathrm{I}$ to $u=100$ 259
Auxiliary table of multiples of $\log _{10} e$ for interpolation of $\log _{10} e^{u}$. 261
Table V:
Five place values of natural logarithms 263
Interpolation coefficients for derivative formula 273
Table VI:The gudermannian of u to seven places in radians and to the sameorder of accuracy in degrees, minutes, and seconds275
Table VII:
The anti-gudermannian to hundredths of a minute in terms ofthe gudermannian expressed in degrees and minutes from $0^{\circ} 0^{\prime}$to $89^{\circ} 59^{\prime}$. (This table is otherwise known as a table of me-ridional parts for a spherical globe)309
Table VIII:
Table for conversion of radians into angular measure and vice versa 320
Numerical constants 32 I

DEFINITIONS AND FORMULAS.

The hyperbolic functions are named the hyperbolic sine, cosine, tangent, cotangent, secant, and cosecant from their close analogy to the circular functions, the tangent being the ratio of the hyperbolic sine to the cosine and the other three functions being reciprocals of these, as in circular trigonometry. They are usually denoted by adding h to the symbols of the circular functions, as $\cosh u$ for the hyperbolic cosine of u, $\sinh u$ for the hyperbolic sine of u, etc. ${ }^{1}$

Historically speaking, the hyperbolic functions were evolved from studies of the hyperbola. They might have been developed from the geometry of the ellipse or the catenary or that of other curves. These functions, however, may be considered independently of any geometrical interpretation and can be derived from very fundamental functional theorems.

At least two methods have been devised of defining circular and hyperbolic functions analytically. One of these is due to Mr. Yvon Villarceau, ${ }^{2}$ and is so extremely brief that it can be given here in a somewhat modified form.

It has long been known that

$$
e^{2 m i \pi}=\mathrm{I} ; e^{u+2 m i \pi}=e^{u} ; e^{(u+2 m \pi) i}=e^{i u} .
$$

The second of these equations has a single imaginary period, $2 i \pi$, and the third a single real period, 2π. Hence every exponential e^{u} in which u is real has a single imaginary period, $2 i \pi$, and every exponential with the same base, but with an imaginary exponent, has a real period, 2π. Now, all real purely circular functions may be expressed in terms of constants and exponentials with purely imaginary exponents, and all real hyperbolic functions may be expressed in terms of constants and exponentials with exclusively real exponents.

Hence hyperbolic functions may be defined as the singly periodic exponential functions with real exponents. The circular functions are then the singly periodic exponential functions with imaginary exponents.

It remains to be considered how, from this point of view, the hyperbolic functions of complex variables are to be regarded. The question almost answers itself ; for

$$
e^{x+i y}=e^{x} \cdot e^{i y}
$$

[^0]which is evidently the product of two functions-one circular, the other hyperbolic. Such functions have a real period and an imaginary one, but since they are single-valued they are not elliptic functions.

The circular and hyperbolic functions being defined as above, it is merely as a matter of convenience that a few of the simpler combinations of exponentials receive special names, as sine, cosine, etc.

The other analytical method of generalizing the two classes of functions is due to Edward Lucas, ${ }^{1}$ and is too long to be given here in full, but the method may be indicated. If a and b are the two roots of the equation

$$
x^{2}-P x+Q=0,
$$

where P and Q are positive or negative whole numbers, then two functions may be defined as follows:

$$
U_{n} \equiv \frac{a^{n}-b^{n}}{a-b} ; V_{n} \equiv a^{n}+b^{n},
$$

and these functions are related by the equation

$$
U_{2 n}=U_{n} V_{n} .
$$

Lucas develops and studies these functions, limiting n at first to whole positive numbers. He finds that all the theorems resulting from this study are converted into those of ordinary trigonometry when U is replaced by $2 \sin n$ and V by $2 \cos n$. He infers that between the limits I and minus I, n may be replaced by any real value, and shows that the theorems dealing with U and V when translated into trigonometric formulas on this assumption can be verified. By substituting for n an imaginary argument, the hyperbolic functions also are found to be comprehended in the general functions U and V.

Both the circular and hyperbolic functions may further be regarded as integrals of the equation

$$
\frac{d}{d x} \log \frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \log y, \text { or } \frac{d^{2} y}{d x^{2}}=c y .
$$

If $c=a^{2}$, this gives

$$
\frac{y}{a}=A e^{x}+B e^{-x},
$$

where A and B are arbitrary constants ; so that the integral expression includes $\sinh x, \cosh x$, and the sum or difference of these functions.

If $c=-b^{2}$.

$$
\frac{y}{b}=A_{1} \cos x+B_{1} \sin x
$$

${ }^{1}$ Am. Jour. of Math., vol. I, 1878, p. 184.
and $P C^{\prime}$, may be drawn from a point P to a line $A B$; the sum of the angles of a triangle is less than two right angles, and the angle of parallelism II (p) is dependent upon the perpendicular distance p of the point P from the line $A B$. If now any line passing through A, such as $A E$, is extended until the perpendicular erected at its middle point is parallel to $A B$, the locus of the points E is a boundary curve, and the revolution of this curve about $A B$ or one of its parallels develops a boundary surface. It is upon this surface of constant negative curvature that Lobachevsky imagines a triangle of sides a, b, c and angles A, B, C to be drawn. He establishes as fundamental relations between the sides and angles of this triangle ${ }^{1}$

$$
\begin{aligned}
& \sin A \tan \Pi(a)=\sin B \tan \Pi(b)=\sin C \tan \Pi(c), \\
& \sin \Pi(b) \sin \Pi(c)=\sin \Pi(a)-\cos \Pi(b) \cos \Pi(c) \sin \Pi(a) \cos A, \\
& \sin \Pi(a) \cos A=-\cos B \cos C \sin \Pi(a)+\sin B \sin C
\end{aligned}
$$

and also proves that

$$
\begin{aligned}
& \sin I(u)=(\cos i u)^{-1}=(\cosh u)^{-1} \\
& \tan I(u)=i(\sin i u)^{-1}=(\sinh u)^{-1}, \\
& \cos I I(u)=-i \tan i u=\tanh u .
\end{aligned}
$$

Hence the preceding equations may be written

$$
\begin{aligned}
& \frac{\sin A}{\sinh a}=\frac{\sin B}{\sinh b}=\frac{\sin C}{\sinh c}, \\
& \cosh a=\cosh b \cosh c-\sinh b \sinh c \cos A, \\
& \cos A=-\cos B \cos C+\sin B \sin C \cosh a .
\end{aligned}
$$

These formulas are, in fact, precisely those of spherical trigonometry, in which the real sides a, b, c have been replaced by the imaginaries $i a, i b, i c$. If the triangle on the boundary surface is infinitesimal, the above equations reduce to the well-known relations between the sides and angles of a triangle on the Euclidean plane. The theorems of non-Euclidean geometry may not therefore be inconsistent with experience, for the largest triangle which we can measure is infinitesimal in comparison with a triangle on the boundary surface. Lobachevsky pointed out that a triangle on a boundary surface would correspond to a triangle connecting three stars in distant parts of the universe, and that the postulates of his geometry, involving as they do the question of the curvature of space, would be capable of experimental proof if the parallaxes of distant stars could be measured with sufficient accuracy.

Lastly, there is an important relation between the numerical values of the circular and hyperbolic functions. If the argument u assumes successive values between o and $+\infty$, $\sinh u$ assumes successive values between o and $+\infty$ just as $\tan a$ does when a varies from o to 90°; cosh u assumes values between I and $+\infty$ like sec β, and $\tanh u$ assumes values between o and I

[^1]in the same way as $\sin \gamma$. The variation of the hyperbolic functions throughout the entire plane and their similarity to the circular functions between the limits 0° and 180° is shown

Fig. 3. in the diagram. Since each of the functions is singly periodic, there must be a single value of α, β, γ corresponding to a particular value of u, such that

$$
\begin{aligned}
& \sinh u=\tan \alpha, \\
& \cosh u=\sec \beta \\
& \tanh u=\sin \gamma .
\end{aligned}
$$

It will be found by substituting in the trigonometric formulæ that $\alpha=\beta=\gamma$ $=\phi$, and the required relations are therefore

$$
\begin{aligned}
\cosh u & =\sec \phi, \\
\sinh u & =\tan \phi, \\
\tanh u & =\sin \phi .
\end{aligned}
$$

The angle ϕ which renders it possible to evaluate the hyperbolic functions by means of the circular functions is of great importance in pure and applied mathematics. Some of its properties and applications will be considered in the section on geometrical illustrations. It is called gudermannian u and is written

$$
\phi=g d u .
$$

The following list of formulæ involving the hyperbolic functions might be greatly extended, but it includes the most useful relations. ${ }^{1}$

[^2]A.-Relations between Hyperbolic and Circular Functions.

1. $\sinh u=-i \sin i u=\tan g d u$.
2. $\cosh u=\cos i u=\sec g d u$.
3. $\tanh u=-i \tan i u=\sin g d u$.
4. $\tanh \frac{1}{2} u=\tan \frac{1}{2} g d u$.
5. $e^{u}=(\mathrm{I}+\sin g d u) \div \cos g d u$, $=\left[1-\cos \left(\frac{1}{2} \pi+g d u\right)\right] \div \sin \left(\frac{1}{2} \pi+g d u\right)$, $=\tan \left(\frac{1}{4} \pi+\frac{1}{2} g d u\right)$.
6. $\sinh i u=i \sin u$.
7. $\cosh i u=\cos u$.
8. $\tanh i u=i \tan u$.
9. $\sinh (u \pm i v)= \pm i \sin (v \mp i u)$, $=\sinh u \cos v \pm i \cosh u \sin v$.
เo. $\cosh (u \pm i v)=\cos (v \mp i u)$, $=\cosh u \cos v \pm i \sinh u \sin v$.
II. $\cosh (m i \pi)=\cos m \pi$. (m is an integer.)
10. $\sinh (2 m+1) \frac{1}{2} i \pi=i \sin (2 m+1) \frac{1}{2} \pi$. (m is an integer.)

B.-Relations among the Hyperbolic Functions.

13. $\sinh u=\frac{1}{2}\left(e^{u}-e^{-u}\right)=-\sinh (-u)=(\operatorname{csch} u),^{-1}$

$$
=2 \tanh \frac{1}{2} u \div\left(\mathrm{I}-\tanh ^{2} \frac{1}{2} u\right)=\tanh u \div\left(\mathrm{I}-\tanh ^{2} u\right)^{1 / 2}
$$

14. $\cosh u=\frac{1}{2}\left(e^{u}+e^{-u}\right)=\cosh (-u)=(\operatorname{sech} u)^{-1}$,

$$
=\left(1+\tanh ^{2} \frac{1}{2} u\right) \div\left(\mathrm{I}-\tanh ^{2} \frac{1}{2} u\right)=\mathrm{I} \div\left(\mathrm{I}-\tanh ^{2} u\right)^{1 / 2}
$$

15. $\tanh u=\left(e^{u}-e^{-u}\right) \div\left(e^{u}+e^{-u}\right)=-\tanh (-u)$,

$$
=(\operatorname{coth} u)^{-1}=\sinh u \div \cosh u=\left(\mathrm{r}-\operatorname{sech}^{2} u\right)^{1 / 2}
$$

16. sech $u=\operatorname{sech}(-u)=\left(1-\tanh ^{2} u\right)^{1 / 2}$.
17. $\operatorname{csch} u=-\operatorname{csch}(-u)=\left(\operatorname{coth}^{2} u-1\right)^{1 / 2}$.
18. coth $u=-\operatorname{coth}(-u)=\left(\operatorname{csch}^{2} u+1\right)^{1 / 2}$.
19. $\cosh ^{2} u-\sinh ^{2} u=\mathrm{I}$.
20. $\sinh \frac{1}{2} u=\sqrt{\frac{1}{2}(\cosh u-1)}$.

2I. $\cosh \frac{1}{2} u=\sqrt{\frac{1}{2}(\cosh u+1)}$.
22. $\tanh \frac{1}{2} u=(\cosh u-1) \div \sinh u$,

$$
=\sinh u \div(1+\cosh u) \doteq \sqrt{(\cosh u-1) \div(\cosh u+1)}
$$

$23 \sinh 2 u=2 \sinh u \cosh u=2 \tanh u \div\left(1-\tanh ^{2} u\right)$.
24. $\cosh 2 u=\cosh ^{2} u+\sinh ^{2} u=2 \cosh ^{2} u-\mathrm{I}$,

$$
=\mathrm{I}+2 \sinh ^{2} u=\left(\mathrm{I}+\tanh ^{2} u\right) \div\left(\mathrm{I}-\tanh ^{2} u\right)
$$

25. $\tanh 2 u=2 \tanh u \div\left(1+\tanh ^{2} u\right)$.
26. $\sinh 3 u=3 \sinh u+4 \sinh ^{3} u$.
27. $\cosh 3 u=4 \cosh ^{3} u-3 \cosh u$.
28. $\tanh 3 u=\left(3 \tanh u+\tanh ^{3} u\right) \div\left(1+3 \tanh ^{2} u\right)$.
29. $\sinh n u=$

$$
u \cosh ^{n-1} u \sinh u+\frac{(n)(n-1)(n-2)}{6} \cosh ^{n-3} u \sinh ^{3} u+\ldots
$$

30. $\cosh n u=\cosh ^{n} u+\frac{n(n-1)}{2} \cosh ^{n-2} u \sinh ^{2} u+\ldots$
31. $\sinh u+\sinh v=2 \sinh \frac{1}{2}(u+v) \cosh \frac{1}{2}(u-v)$.
32. $\sinh u-\sinh v=2 \cosh \frac{1}{2}(u+v) \sinh \frac{1}{2}(u-v)$.
33. $\cosh u+\cosh v=2 \cosh \frac{1}{2}(u+v) \cosh \frac{1}{2}(u-v)$.
34. $\cosh u-\cosh v=2 \sinh \frac{1}{2}(u+v) \sinh \frac{1}{2}(u-v)$.
35. $\sinh u+\cosh u=\left(1+\tanh \frac{1}{2} u\right) \div\left(1-\tanh \frac{1}{2} u\right)$.
36. $(\sinh u+\cosh u)^{n}=\cosh n u+\sinh n u$.
37. $\tanh u+\tanh v=\sinh (u+v) \div \cosh u \cosh v$.
38. $\tanh u-\tanh v=\sinh (u-v) \div \cosh u \cosh v$.
39. $\operatorname{coth} u+\operatorname{coth} v=\sinh (u+v) \div \sinh u \sinh v$.
40. coth $u-\operatorname{coth} v=-\sinh (u-v) \div \sinh u \sinh v$.
41. $\sinh (u \pm v)=\sinh u \cosh v \pm \cosh u \sinh v$.
42. $\cosh (u \pm v)=\cosh u \cosh v \pm \sinh u \sinh v$.
43. $\tanh (u \pm v)=(\tanh u \pm \tanh v) \div(1 \pm \tanh u \tanh v)$.
44. $\operatorname{coth}(u \pm v)=(\operatorname{coth} u \operatorname{coth} v \pm 1) \div(\operatorname{coth} v \pm \operatorname{coth} u)$.
45. $\sinh (u+v)+\sinh (u-v)=2 \sinh u \cosh v$.
46. $\sinh (u+v)-\sinh (u-v)=2 \cosh u \sinh v$.
47. $\cosh (u+v)+\cosh (u-v)=2 \cosh u \cosh v$.
48. $\cosh (u+v)-\cosh (u-v)=2 \sinh u \sinh v$.
49. $\tanh \frac{1}{2}(u+v)=(\sinh u+\sinh v) \div(\cosh u+\cosh v)$.
50. $\tanh \frac{1}{2}(u-v)=(\sinh u-\sinh v) \div(\cosh u+\cosh v)$.

5I. $\operatorname{coth} \frac{1}{2}(u+v)=(\sinh u-\sinh v) \div(\cosh u-\cosh v)$.
52. $\operatorname{coth} \frac{1}{2}(u-v)=(\sinh u+\sinh v) \div(\cosh u-\cosh v)$.
53. $\frac{\tanh u+\tanh v}{\tanh u-\tanh v}=\frac{\sinh (u+v)}{\sinh (u-v)}$.
54. $\frac{\operatorname{coth} u+\operatorname{coth} v}{\operatorname{coth} u-\operatorname{coth} v}=-\frac{\sinh (u+v)}{\sinh (u-v)}$.
55. $\sinh (u+v)+\cosh (u+v)=(\cosh u+\sinh u)(\cosh v+\sinh v)$.
56. $\sinh (u+v) \sinh (u-v)=\sinh ^{2} u-\sinh ^{2} v$,

$$
=\cosh ^{2} u-\cosh ^{2} v
$$

57. $\cosh (u+v) \cosh (u-v)=\cosh ^{2} u+\sinh ^{2} v$, $=\sinh ^{2} u+\cosh ^{2} v$.
58. $\sinh (m i \pi)=0 . \quad(m$ is an integer $)$.
59. $\cosh (m i \pi)=(-1)^{m}$.
60. $\tanh (m i \pi)=0$.

6I. $\sinh (u+m i \pi)=(-\mathrm{I})^{m} \sinh u$.
62. $\cosh (u+m i \pi)=(-\mathrm{I})^{m} \cosh u$.
63. $\sinh (2 m+1) \frac{1}{2} i \pi= \pm i$.
64. $\cosh (2 m+1) \frac{1}{2} i \pi=0$.
65. $\sinh \left(\frac{i \pi}{2} \pm u\right)=i \cosh u$.
66. $\cosh \left(\frac{i \pi}{2} \pm u\right)= \pm i \sinh u$.
67. $\tanh (u+i \pi)=\tanh u$.

C. -Inverse Hyperbolic Functions.

68. $\sinh ^{-1} u=\log \left(u+\sqrt{u^{2}+1}\right)=\cosh ^{-1} \sqrt{u^{2}+\mathrm{I}}=\int \frac{d u}{\left(u^{2}+\mathrm{I}\right)^{1 / 2}}$.
69. $\cosh ^{-1} u=\log \left(u+\sqrt{\left.u^{2}-\mathrm{I}\right)}=\sinh { }^{-1} \sqrt{u^{2}-\mathrm{I}}=\int \frac{d u}{\left(u^{2}-\mathrm{I}\right)^{1 / 2}}\right.$.
70. $\left.\tanh ^{-1} u=\frac{1}{2} \log (\mathrm{I}+u)-\frac{1}{2} \log (\mathrm{I}-u)\right)=\int \frac{d u}{\mathrm{I}-u^{2}}$.

7I. $\operatorname{coth}^{-1} u=\frac{1}{2} \log (\mathrm{I}+u)-\frac{1}{2} \log (u-\mathrm{I})=\int \frac{d u}{\mathrm{I}-u^{2}}=\tanh ^{-1} \frac{\mathrm{I}}{u}$.
72. $\operatorname{sech}^{-1} u=\log \left(\frac{\mathrm{I}}{u}+\sqrt{\frac{\mathrm{I}}{u^{2}}-\mathrm{I}}\right)=-\int \frac{d u}{u\left(\mathrm{I}-u^{2}\right)^{3 / 2}}=\cosh ^{-1} \frac{\mathrm{I}}{u}$.
73. $\operatorname{csch}^{-1} u=\log \left(\frac{\mathrm{I}}{u}+\sqrt{\frac{\mathrm{I}}{u^{2}}+\mathrm{I}}\right)=-\int \frac{d u}{u\left(u^{2}+\mathrm{I}\right)^{1 / 2}}=\sinh ^{-1} \frac{\mathrm{I}}{u}$.
74. $\sin ^{-1} u=-i \sinh ^{-1} i u=-i \log \left(i u+1 \overline{\left.1-u^{2}\right)}\right.$.
75. $\cos ^{-1} u=-i \cosh ^{-1} u=-i \log \left(u+i v \overline{\left.\mathrm{I}-u^{2}\right)}\right.$.
76. $\tan ^{-1} u=-i \tanh ^{-1} i u=\frac{\mathrm{I}}{2 i} \log (\mathrm{I}+i u)-\frac{\mathrm{I}}{2 i} \log (\mathrm{I}-i u)$.
77. $\cot ^{-1} u=i \operatorname{coth}^{-1} i u=\frac{\mathrm{I}}{2 i} \log (i u-\mathrm{I})-\frac{\mathrm{I}}{2 i} \log (i u+\mathrm{I})$.
78. $\sin ^{-1} i u=i \sinh ^{-1} u=i \log \left(u+\sqrt{\left.\mathrm{I}+u^{2}\right)}\right.$.
79. $\cos ^{-1} i u=-i \cosh ^{-1} i u=\frac{\pi}{2}-i \log \left(u+1 \overline{\left.1+u^{2}\right)}\right.$.

8o. $\tan ^{-1} i u=i \tanh ^{-1} u=\frac{i}{2} \log (\mathrm{I}+u)-\frac{i}{2} \log (\mathrm{I}-u)$.
$8 \mathrm{I} . \cot ^{-1} i u=-i \operatorname{coth}^{-1} u=-\frac{i}{2} \log (u+\mathrm{I})+\frac{i}{2} \log (u-\mathrm{I})$.
82. $\cosh ^{-1} \frac{1}{2}\left(u+\frac{1}{u}\right)=\sinh ^{-1} \frac{1}{2}\left(u-\frac{1}{u}\right)=\tanh ^{-1} \frac{u^{2}-1}{u^{2}+1}$,

$$
=2 \tanh _{-1}^{-1} \frac{u-1}{u+1}=\log u
$$

83. $\tanh ^{-1} \tan u=\frac{1}{2} g d^{-1} u$.
84. $\tan ^{-1} \tanh u=\frac{1}{2} g d=1^{-1} u$. $=\frac{1}{2}$
85. $\cosh ^{-1} \csc 2 u=-\sinh ^{-1} \cot 2 u=-\tanh ^{-1} \cos 2 u=\log \tan u$.
86. $\tanh ^{-1} \tan ^{2}\left(\frac{1}{4} \pi+\frac{1}{2} u\right)=\frac{1}{2} \log \csc u$.
87. $\tanh ^{-1} \tan ^{2} \frac{1}{2} u=\frac{1}{2} \log \sec u$.
88. $\cosh ^{-1} u \pm \cosh ^{-1} v=\cosh ^{-1}\left[u v \pm V \overline{\left.\left(u^{2}-1\right)\left(v^{2}-1\right)\right]}\right.$.
89. $\sinh ^{-1} u \pm \sinh ^{-1} v=\sinh ^{-1}\left[u V^{\prime} \overline{I+v^{2}} \pm v V^{\prime}+u^{2}\right]$.

> D.-SERIES.
90. $e^{u}=\mathrm{I}+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\frac{u^{4}}{4!}+\ldots$.
91. $\log u=(u-1)-\frac{1}{2}(u-1)^{2}+\frac{1}{3}(u-1)^{3}-\ldots \quad(2>u>0$. $)$
92. $\log u=\frac{u-\mathrm{I}}{u}+\frac{\mathrm{I}}{2}\left(\frac{u-\mathrm{I}}{u}\right)^{2}+\frac{\mathrm{I}}{3}\left(\frac{u-\mathrm{I}}{u}\right)^{3}+\ldots \quad\left(u>-\frac{1}{2}.\right)$
93. $\log u=2\left[\frac{u-\mathrm{I}}{u+\mathrm{I}}+\frac{\mathrm{I}}{3}\left(\frac{u-\mathrm{I}}{u+\mathrm{I}}\right)^{3}+\frac{\mathrm{I}}{5}\left(\frac{u--\mathrm{I}}{u+\mathrm{I}}\right)^{5}+\ldots\right](u>0$.
94. $\log (\mathrm{I}+u)=u-\frac{\mathrm{I}}{2} u^{2}+\frac{\mathrm{I}}{3} u^{3}-\frac{\mathrm{I}}{4} u^{4}+\ldots \quad\left(u^{2}<\mathrm{I}.\right)$
95. $\log \left(\frac{\mathrm{I}+u}{\mathrm{I}-u}\right)=2\left[u+\frac{\mathrm{I}}{3} u^{3}+\frac{\mathrm{I}}{5} u^{5}+\frac{\mathrm{I}}{7} u^{7}+\ldots\right] \quad\left(u^{2}<\mathrm{I}.\right)$
96. $\log \left(\frac{u+1}{u-1}\right)=2\left[\frac{1}{u}+\frac{\mathrm{I}}{3}\left(\frac{\mathrm{I}}{u}\right)^{3}+\frac{\mathrm{I}}{5}\left(\frac{\mathrm{I}}{u}\right)^{5}+\ldots\right] \quad\left(u^{2}>\mathrm{I}\right.$. $)$
97. $\sinh u=u+\frac{u^{8}}{3!}+\frac{u^{5}}{5!}+\frac{u^{7}}{7!}+\ldots \quad \quad\left(u^{2}<\infty\right.$.)

$$
=u\left(\mathrm{I}+\frac{u^{2}}{\pi^{2}}\right)\left(\mathrm{I}+\frac{u^{2}}{2^{2} \pi^{2}}\right)\left(\mathrm{I}+\frac{u^{2}}{3^{2} \pi^{2}}\right) \ldots \quad\left(u^{2}<\infty .\right)
$$

98. $\cosh u=\mathrm{I}+\frac{u^{2}}{2!}+\frac{u^{4}}{4!}+\frac{u^{6}}{6!}+\ldots \quad\left(u u^{2}<\infty.\right)$

$$
=\left(\mathrm{I}+\frac{4 u^{2}}{\pi^{2}}\right)\left(\mathrm{I}+\frac{4 u^{2}}{3^{2} \pi^{2}}\right)\left(\mathrm{I}+\frac{4 u^{2}}{5^{2} \pi^{2}}\right) \cdots \quad\left(u^{2}<\infty .\right)
$$

99. $\tanh u=u-\frac{1}{3} u^{3}+\frac{2}{15} u^{5}-\frac{17}{3 \mathrm{I} 5} u^{7}+\ldots \quad\left(u^{2}<\frac{1}{4} \pi^{2}\right.$.) 100. $u \operatorname{coth} u=\mathrm{I}+\frac{\mathrm{I}}{3} u^{2}-\frac{\mathrm{I}}{45} u^{4}+\frac{2}{945} u^{6}-\ldots \quad\left(u^{2}<\pi^{2}\right.$.) IOI. $\operatorname{sech} u=\mathrm{I}-\frac{\mathrm{I}}{2} u^{2}+\frac{5}{24} u^{4}-\frac{6 \mathrm{I}}{720} u^{6}+\ldots \quad\left(u^{2}<\frac{1}{4} \pi^{2}\right.$.) 102. $u \operatorname{csch} u=\mathrm{I}-\frac{1}{6} u^{2}+\frac{7}{360} u^{4}-\frac{3 \mathrm{I}}{\mathrm{I}_{5120}} u^{6}+\ldots \quad\left(u^{2}<\pi^{2}\right.$. $)$ 103. $g d u=\phi=u-\frac{1}{6} u^{3}+\frac{1}{24} u^{5}-\frac{61}{5040} u^{7}+\ldots \quad$ (u small.)

$$
=\frac{\pi}{2}-\operatorname{sech} u-\frac{1}{2} \frac{\operatorname{sech}^{3} u}{3}-\frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} u}{5}-\ldots \quad(u \text { large. })
$$

104. $u=g d^{-1} \phi=\phi+\frac{\mathrm{I}}{6} \phi^{3}+\frac{\mathrm{I}}{24} \phi^{5}+\frac{6 \mathrm{I}}{5040} \phi^{7}+\ldots \quad\left(\phi<\frac{\pi}{2}.\right)$
105. $\sinh ^{-1} u=u-\frac{\mathrm{I}}{2} \frac{u^{3}}{3}+\frac{\mathrm{I}}{2} \frac{3}{4} \frac{u^{5}}{5}-\frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{u^{7}}{7}+\ldots \quad\left(u^{2}<\right.$ I. $)$

$$
=\log 2 u+\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{2 u^{2}}-\frac{\mathrm{I}}{2} \frac{3}{4} \frac{\mathrm{I}}{4 u^{4}}+\frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{\mathrm{I}}{6 u^{6}}-\ldots\left(u^{2}>\mathrm{I} .\right)
$$

106. $\cosh ^{-1} u=\log 2 u-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{2 u^{2}}-\frac{\mathrm{I}}{2} \frac{3}{4} \frac{\mathrm{I}}{4 u^{4}}-\frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{\mathrm{I}}{6 u^{6}}-\ldots\left(u^{2}>\mathrm{I}\right)$
107. $\tanh ^{-1} u=u+\frac{\mathrm{I}}{3} u^{3}+\frac{\mathrm{I}}{5} u^{5}+\frac{\mathrm{I}}{7} u^{7}+\ldots \quad\left(u^{2}<\mathrm{I}\right.$. $)$
108. $\operatorname{coth}^{-1} u=\tanh ^{-1} \frac{\mathrm{I}}{u}=\frac{\mathrm{I}}{u}+\frac{\mathrm{I}}{3 u^{3}}+\frac{\mathrm{I}}{5 u^{5}}+\frac{\mathrm{I}}{7 u^{7}}+\ldots\left(u^{2}>\mathrm{I}.\right)$

Iog. $\operatorname{sech}^{-1} u=\cosh ^{-1} \frac{\mathrm{I}}{u}=\log \frac{2}{u}-\frac{1}{2} \frac{u^{2}}{2}-\frac{1}{2} \frac{3}{4} \frac{u^{4}}{4}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{6}}{6}-\underset{\left(u^{2}<\text { I. }^{\circ}\right)}{ }$
I 10. $\operatorname{csch}^{-1} u=\sinh ^{-1} \frac{\mathrm{I}}{u}=\frac{\mathrm{I}}{u}-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{3 u^{3}}+\frac{\mathrm{I}}{2} \frac{3}{4} \frac{\mathrm{I}}{5 u^{5}}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{\mathrm{I}}{7 u^{7}}$

$$
+\ldots\left(u^{2}>\mathrm{I} .\right)
$$

$=\log \frac{2}{u}+\frac{1}{2} \frac{u^{2}}{2}-\frac{1}{2} \frac{3}{4} \frac{u^{4}}{4}+\frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{u^{6}}{6}-\ldots\left(u^{2}<\right.$ I. $)$

E.-DERIVATIVES.

III. $\frac{d e^{u}}{d u}=e^{u}$.

II2. $d \frac{\log _{e} u}{d u}=\frac{\mathrm{I}}{u}$.
I I3. $\frac{d a^{v}}{d u}=a^{v} \cdot \frac{d v}{d u} \cdot \log _{e} a$.
II4. $\frac{d u^{u}}{d u}=u^{u}\left(\mathrm{I}+\log _{e} u\right)$.
II5. $\frac{d \sinh u}{d u}=\cosh u$.
I 6 . $\frac{d \cosh u}{d u}=\sinh u$.
II7. $\frac{d \tanh u}{d u}=\operatorname{sech}^{2} u$.
II8. $\frac{d \operatorname{coth} u}{d u}=-\operatorname{csch}^{2} u$.
ing. $\frac{d \operatorname{sech} u}{d u}=-\operatorname{sech} u . \tanh u$.
120. $\frac{d \operatorname{csch} u}{d u}=-\operatorname{csch} u$. $\operatorname{coth} u$.

I2 1. $\frac{d \sinh ^{-1} u}{d u}=\frac{\mathrm{I}}{\sqrt{u^{2}+\mathrm{I}}}$.
122. $\frac{d \cosh ^{-1} u}{d u}=\frac{\mathrm{I}}{\sqrt{/ \sqrt{u^{2}-\mathrm{I}}}}$.
123. $\frac{d \tanh ^{-1} u}{d u}=\frac{\mathrm{I}}{\mathrm{I}-u^{2}}$.
124. $\frac{d \operatorname{coth}^{-1} u}{d u}=\frac{\mathrm{I}}{\mathrm{I}-u^{2}}$.
125. $\frac{d \operatorname{sech}^{-1} u}{d u}=\frac{-\mathrm{I}}{u v^{\prime}}$.
126. $\frac{d \operatorname{csch}^{-1} u}{d u}=\frac{-\mathrm{I}}{u \sqrt{u^{2}+\mathrm{I}}}$.
127. $\frac{d \operatorname{gd} u}{d u}=\operatorname{sech} u$.
128. $\frac{d g^{-1} u}{d u}=\sec u$. $=\frac{d}{d \phi} \log \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)=\frac{1}{\cos \phi}$

F.-Integrals. (Integration constants are omitted.)

129. $\int \sinh u d u=\cosh u$.
130. $\int \cosh u d u=\sinh u$.

I3I. $\int \tanh u d u=\log \cosh u$.
132. $\int \operatorname{coth} u d u=\log \sinh u$.
133. $\int \operatorname{sech} u d u=2 \tan ^{-1} e^{u}=\operatorname{gd} u$.
134. $\int \operatorname{csch} u d u=\log \tanh \frac{u}{2}$.
135. $\int \sinh ^{n} u d u=\frac{\mathrm{I}}{n} \sinh ^{n-1} u$. $\cosh u-\frac{n--\mathrm{I}}{n} \iint \sinh ^{n}-2 u d u$,

$$
=\frac{\mathrm{I}}{n+\mathrm{I}} \sinh ^{n+1} u \cosh u-\frac{n+2}{n+\mathrm{I}} \int \sinh ^{n+2} u d u .
$$

I36. $\int \cosh ^{n} u d u=\frac{\mathrm{I}}{n} \sinh u \cdot \cosh ^{n-1} u+\frac{n-\mathrm{I}}{n} \int \cosh ^{n-2} u d u$, V

$$
=-\frac{1}{n+1} \sinh u \cosh ^{n+1} u+\frac{n+2}{n+1} \int \cosh ^{n+2} u d u .
$$

137. $\int u \sinh u d u=u \cosh u-\sinh u$.
138. $\int u \cosh u d u=u \sinh u-\cosh u$.
139. $\int u^{2} \sinh u d u=\left(u^{2}+2\right) \cosh u-2 u \sinh u$.
140. $\int u^{n} \sinh u d u=u^{n} \cosh u-m u^{n-1} \sinh u$

$$
+n\left(n-\text { I } \int u^{n-2} \sinh u d u\right.
$$

141. $\int \sinh ^{2} u d u=\frac{1}{2}(\sinh u \cosh u-u)$.
142. $\int \sinh u$. $\cosh u d u=\frac{1}{4} \cosh (2 u)$.
143. $\int \cosh ^{2} u d u=\frac{1}{2}(\sinh u \cosh u+u)$.
144. $\int \tanh ^{2} u d u=u-\tanh u$.
145. $\int \operatorname{coth}^{2} u d u=u-\operatorname{coth} u$.
146. $\int \operatorname{sech}^{2} u d u=\tanh u$.
147. $\int \operatorname{sech}^{3} u d u=\frac{1}{2} \operatorname{sech} u \tanh u+\frac{1}{2} \operatorname{gd} u$.
148. $\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u$.
149. $\int \sinh ^{-1} u d u=u \sinh ^{-1} u-\left(\mathrm{I}+\mathrm{u}^{2}\right)^{1 / 2}$.

I 50. $\int \cosh ^{-1} u d u=u \cosh ^{-1} u-\left(u^{2}-1\right)^{1 / 2}$.
151. $\int \tanh ^{-1} u d u=u \tanh ^{-1} u+\frac{1}{2} \log \left(\mathrm{I}-u^{2}\right)$.
152. $\int u \sinh ^{-1} u d u=\frac{1}{4}\left[\left(2 u^{2}+\mathrm{I}\right) \sinh ^{-1} u-u\left(\mathrm{I}+u^{2}\right)^{1 / 2}\right]$.
153. $\int u \cosh ^{-1} u d u=\frac{1}{4}\left[\left(2 u^{2}-\mathrm{I}\right) \cosh ^{-1} u-u\left(u^{2}-\mathrm{I}\right)^{1 / 2}\right]$.
154. $\int(\cosh a+\cosh u)^{-1} d u=2 \operatorname{csch} a \cdot \tanh ^{-1}\left(\tanh \frac{1}{2} u \cdot \tanh \frac{1}{2} \alpha\right)$,
$=\operatorname{csch} a\left[\log \cosh \frac{1}{2}(u+a)-\log \cosh \frac{1}{2}(u-a)\right]$.
155. $\int(\cos a+\cosh u)^{-1} d u=2 \csc a \cdot \tan ^{-1}\left(\tanh \frac{1}{2} u \cdot \tan \frac{1}{2} a\right)$.
156. $\int(1+\cos a \cdot \cosh u)^{-1} d u=2 \csc a \cdot \tanh ^{-1}\left(\tanh \frac{1}{2} u \cdot \tan \frac{1}{2} a\right)$.

I57. $\int \sinh u \cos u d u=\frac{1}{2}(\cosh u \cdot \cos u+\sinh u \cdot \sin u)$.
158. $\int \cosh u \cdot \cos u d u=\frac{1}{2}(\sinh u \cdot \cos u+\cosh u \cdot \sin u)$.
159. $\int \sinh u \cdot \sin u d u=\frac{1}{2}(\cosh u \cdot \sin u-\sinh u \cdot \cos u)$.
160. $\int \cosh u \cdot \sin u d u=\frac{1}{2}(\sinh u \cdot \sin u-\cosh u \cdot \cos u)$.

16I. $\int \sinh (m u) \sinh (n u) d u \int \operatorname{shm} \operatorname{Vm}$

$$
=\frac{1}{m^{2}-n^{2}}[m \sinh (n u) \cosh (m u)-n \cosh (n u) \sinh (m u)]
$$

162. $\int \cosh (m u) \sinh (n u) d u$

$$
=\frac{\mathbf{I}}{m^{2}-n^{2}}[m \sinh (n u) \sinh (m u)-n \cosh (n u) \cosh (m u)] .
$$

163. $\int \cosh (m u) \cosh (n u) d u$

$$
=\frac{1}{m^{2}-n^{2}}[m \sinh (m u) \cosh (n u)-n \sinh (n u) \cosh (m u)]
$$

164. $\int \sinh u \tanh u d u=\sinh u-g d u$.
165. $\int \cosh u \operatorname{coth} u d u=\cosh u+\log \tanh \frac{u}{2}$.
166. $\int \sec u d u=\operatorname{gd}^{-1} u$.
167. $\int \sec ^{3} \phi d \phi=\int\left(\mathrm{I}+\tan ^{2} \phi\right)^{1 / 2} d \tan \phi=\frac{1}{2} \sec \phi \tan \phi+\frac{1}{2} \mathrm{gd}^{-1} \phi$, $=\frac{1}{2} \tan \phi\left(\mathrm{I} \perp \tan ^{2} \phi\right)^{1 / 2}+\frac{1}{2} \sinh ^{-1}(\tan \phi)$. Here $\phi=g d u$.
$168 \int \frac{d u}{\left(u^{2}+a^{2}\right)^{1 / 2}}=\sinh ^{-1} \frac{u}{a} . \quad \int \frac{d u}{\left(a^{2}-u^{2}\right)^{1 / 2}}=\sin ^{-1} \frac{u}{a}$.
168. $\int \frac{d u}{\left(u^{2}-a^{2}\right)^{1 / 2}}=\cosh ^{-1} \frac{u}{a}$.
$\int \frac{-d u}{\left(a^{2}-u^{2}\right)^{1 / 2}}=\cos ^{-1} \frac{u}{a}$.
169. $\int \frac{d u}{\left(a^{2}-u^{2}\right)_{u<a}}=\frac{\mathrm{I}}{a} \tanh ^{-1} \frac{u}{a}$. $\int \frac{d u}{a^{2}+u^{2}}=\frac{\mathrm{I}}{a} \tan ^{-1} \frac{u}{a}$.
170. $\int \frac{-d u}{\left(u^{2}-a^{2}\right)_{u>a}}=\frac{\mathrm{I}}{a} \operatorname{coth}^{-1} \frac{u}{a} . \quad \int \frac{-d u}{a^{2}+u^{2}}=\frac{\mathrm{I}}{a} \cot ^{-1} \frac{u}{a}$.
171. $\int \frac{-d u}{u\left(a^{2}-u^{2}\right)^{1 / 2}}=\frac{\mathrm{I}}{a} \operatorname{sech}^{-1} \frac{u}{a}$. $\quad \int \frac{d u}{u\left(u^{2}-a^{2}\right)^{1 / 2}}=\frac{\mathrm{I}}{a} \sec ^{-1} \frac{u}{a}$.
172. $\int \frac{-d u}{u\left(a^{2}+u^{2}\right)^{1 / 2}}=\frac{\mathrm{I}}{a} \operatorname{csch}^{-1} \frac{u}{a} . \quad \int \frac{-d u}{u\left(u^{2}-a^{2}\right)}=\frac{\mathrm{I}}{a} \csc ^{-1} \frac{u}{a}$.
173. $\int \frac{d u}{\left(a u^{2}+2 b u+c\right)^{3 / 2}}=\frac{1}{V^{\prime}} \frac{1}{a} \sinh { }^{-1} \frac{a u+b}{\left(a c-b^{2}\right)^{1 / 2}} \quad a$ positive, $a c>b^{2}$; $\begin{array}{lr}=\frac{\mathrm{I}}{\sqrt{a}} \cosh ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{1 / 2}}, & a \text { positive, } a c<b^{2} ; \\ =\frac{1}{\sqrt{-a}} \cos ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{3 / 2}}, & a \text { negative. }\end{array}$
174. $\int \frac{d u}{\left(a u^{2}+2 b u+c\right)}=\frac{1}{\left(a c-b^{2}\right)^{1 / 2}} \tan ^{-1} \frac{a u+b}{\left(a c-b^{2}\right)^{1 / 2}}, \quad a c>b^{2}$;

$$
\begin{array}{ll}
=\frac{-\mathrm{I}}{\left(b^{2}-a c\right)^{1 / 2}} \tanh -1 \frac{a u+b}{\left(b^{2}-a c\right)^{1 / 2}}, & a c<b^{2}, \\
& a u+b<\left(b^{2}-a c\right)^{1 / 2} . \\
=\frac{-1}{\left(b^{2}-a c\right)^{3 / 2}} \operatorname{coth}-1 \frac{a u+b}{\left(b^{2}-a c\right)^{1 / 2}}, & a c<b^{2}, \\
& a u+b>\left(b^{2}-a c\right)^{1 / 2} .
\end{array}
$$

176. $\int \frac{d u}{(a-u)(u-b)^{1 / 2}}=\frac{2}{(a-b)^{3 / 2}} \tanh ^{-1} \sqrt{\frac{u-b}{a-b}}$,

$$
\text { or } \frac{-2}{(b-a)^{1 / 2}} \tan ^{-1} \sqrt{\frac{u-b}{b-a}} \text {, }
$$

or $\frac{2}{(a-b)^{1 / 2}} \operatorname{coth}^{-1} \sqrt{\frac{u-b}{a-b}}$. (The real form is to be taken.)
177. $\int \frac{d u}{(a-u)(b-u)^{1 / 2}}=\frac{2}{(b-a)^{1 / 2}} \tanh ^{-1} \sqrt{\frac{b-u}{b-a}}$,

$$
\text { or } \frac{2}{(b-a)^{3 / 2}} \operatorname{coth}^{-1} \sqrt{\frac{b-u}{b-a}},
$$

$$
\text { or } \frac{-2}{(a-b)^{1 / 2}} \tan ^{-1} \sqrt{\frac{\overline{b-u}}{a-b}} \text {. (The real form is to be taken.) }
$$

178. $\int\left(u^{2}-a^{2}\right)^{\frac{1}{2}} d u=\frac{1}{2} u\left(u^{2}-a^{2}\right)^{\frac{1}{2}}-\frac{1}{2} a^{2} \cosh ^{-1} \frac{u}{a}$.
179. $\int\left(a^{2}-u^{2}, x_{2} d u=\frac{1}{2} u\left(a^{2}-u^{2}\right)^{\frac{1}{2}}+\frac{1}{2} a^{2} \sin ^{-1} \frac{u}{a}\right.$.
180. $\int\left(u^{2}+a^{2}\right)^{\frac{1}{2}} d u=\frac{1}{2} u\left(u^{2}+a^{2}\right)^{\frac{1}{2}}+\frac{1}{2} a^{2} \sinh ^{-1} \frac{u}{a}$.
181. $\int e^{a u} d u=\frac{e^{a u}}{a}$.
182. $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a u-1)$.
183. $\int u^{m} e^{a u} d u=\frac{u u^{m} e^{a u}}{a}-\frac{m}{a} \int u u^{m-1} e^{a u} d u$.
184. $\int \frac{e^{a u} d u}{u^{m}}=\frac{1}{m-1}\left[-\frac{e^{a u}}{u^{m-1}}+a \int \frac{e^{a u} d u}{u^{m-1}}\right]$.
185. $\int a^{b u} d u=\frac{a^{b u}}{b \log a}$.
186. $\int u^{n} a^{u} d u=\frac{a^{u} u^{n}}{\log a}-\frac{n a^{u} u^{n-1}}{(\log a)^{2}}+\frac{n(n-1) a^{u} u^{n}-2}{(\log a)^{3}} \cdots$

$$
\pm \frac{n(n-1)(n-2) \ldots 2 \mathrm{I} a^{u}}{(\log a)^{n+1}}
$$

187. $\int \frac{a^{u} d u}{u^{n}}=\frac{a^{u}}{n-1}\left[-\frac{1}{u^{n-1}}-\frac{\log a}{(n-2) u^{n-2}}-\frac{(\log a)^{2}}{(n-2)(n-3) u^{n-3}}\right.$

$$
\left.-\ldots+\frac{(\log a)^{n-1}}{(n-2)(n-3) \cdots 2.1} \int \frac{a^{u} d u}{u}\right]
$$

188. $\int \frac{a^{u} d u}{u}=\log u+u \log a+\frac{(u \log a)^{2}}{2 \cdot 2!}+\frac{\left(u \log a^{3}\right.}{3 \cdot 3!}+\ldots$.
189. $\int \frac{d u}{\mathrm{I}+e^{u}}=\log \frac{e^{u}}{\mathrm{I}+e^{u}}$.
190. $\int \frac{d u}{a+b e^{m u}}=\frac{\mathrm{I}}{a m}\left[m u-\log \left(a+b e^{m u}\right)\right]$.
191. $\int \frac{d u}{a e^{m u}+b e^{-m u}}=\frac{1}{m(a b)^{1 / 2}} \tan ^{-1}\left(e^{m u} \sqrt{\frac{a}{b}}\right)$.
192. $\int \frac{d u}{\left(a+b e^{m u}\right)^{1 / 2}}=\frac{1}{m V^{\prime} \frac{a}{a}}\left[\log \left(\sqrt{a+b e^{m u}}-\sqrt{\bar{a}}\right)\right.$ $\left.-\log \left(\sqrt{a+b e^{m u}}+\sqrt{ } \bar{a}\right)\right]$.
193. $\int \frac{u e^{u} d u}{(\mathrm{I}+u)^{2}}=\frac{e^{u}}{\mathrm{I}+u}$.
194. $\int e^{u u} \log u d u=\frac{e^{a u} \log u}{a}-\frac{1}{a} \int \frac{e^{a u} d u}{u}$.
195. $\int \log u d u=u \log u-u$.
196. $\int u^{m} \log u d u=u^{m+1}\left[\frac{\log u}{m+\mathrm{I}}-\frac{\mathrm{I}}{(m+\mathrm{I})^{2}}\right]$.
197. $\int(\log u)^{n} d u=u(\log u)^{n}-n \int(\log u)^{n-1} d u$.
198. $\int u^{m}(\log u)^{n} d u=\frac{u^{m+1}(\log u)^{n}}{m+\mathrm{I}}-\frac{n}{m+\mathrm{I}} \int u^{m}(\log u)^{n-1} d u$.
199. $\int \frac{(\log u)^{n} d u}{u}=\frac{(\log u)^{n+1}}{n+\mathrm{I}}$.
200. $\int \frac{d u}{\log u}=\log (\log u)+\log u+\frac{(\log u)^{2}}{2.2!}+\frac{(\log u)^{3}}{3 \cdot 3!}+\ldots$
201. $\int \frac{d u}{(\log u)^{n}}=-\frac{u}{(n-\mathrm{I})(\log u)^{n-1}}+\frac{\mathrm{I}}{n-\mathrm{I}} \int \frac{d u}{(\log u)^{n-1}}$.
202. $\int \frac{u^{m} d u}{(\log u)^{n}}=-\frac{u^{m}+1}{(n-\mathrm{I})(\log u)^{n-1}}+\frac{m+\mathrm{I}}{n-\mathrm{I}} \int \frac{u^{m} d u}{(\log u)^{n-1}}$.
203. $\int \frac{u^{m} d u}{\log u}=\int \frac{e^{-y}}{y} d y$, where $y=-(m+1) \log u$.
204. $\int \frac{d u}{u \log u}=\log (\log u)$.
205. $\int \frac{d u}{u(\log u)^{n}}=-\frac{\mathrm{I}}{(n-\mathrm{I})(\log u)^{n-1}}$.
206. $\int(a+b u)^{m} \log u d u=$

$$
\frac{\mathrm{I}}{b(m+\mathrm{I})}\left[(a+b u)^{m+1} \log u-\int \frac{(a+b u)^{m+1} d u}{u}\right]
$$

207. $\int u^{m} \log (a+b u) d u=$

$$
\frac{\mathrm{I}}{m+\mathrm{I}}\left[u^{m+1} \log (a+b u)-b \int \frac{u^{m+1} d u}{a+b u}\right] .
$$

208. $\int \frac{\log (a+b u) d u}{u}=$

$$
\begin{aligned}
& \log a \cdot \log u+\frac{b u}{a}-\frac{\mathrm{I}}{2^{2}}\left(\frac{b u}{a}\right)^{2}+\frac{\mathrm{I}}{3^{2}}\left(\frac{b u}{a}\right)^{3}-\cdots \\
= & \frac{\mathrm{I}}{2}(\log b u)^{2}-\frac{a}{b u}+\frac{\mathrm{I}}{2^{2}}\left(\frac{a}{b u}\right)^{2}-\frac{\mathrm{I}}{3^{2}}\left(\frac{a}{b u}\right)^{3}+\cdots
\end{aligned}
$$

209. $\int \frac{\log u d u}{(a+b u)^{m}}=\frac{\mathrm{I}}{b(m-\mathrm{I})}\left[-\frac{\log u}{(a+b u)^{m-1}}+\int \frac{d u}{u(a+b u)^{m-1}}\right]$.
210. $\int \frac{\log u d u}{a+b u}=\frac{\mathrm{I}}{b} \log u \cdot \log (a+b u)-\frac{1}{b} \int \frac{\log (a+b u)}{u} d u$.

2II. $\int(a+b u) \log u d u=\frac{(a+b u)^{2}}{2 b} \log u-\frac{a^{2} \log u}{2 b}-a u-\frac{1}{4} b u^{2}$.
21 2. $\int \frac{\log u d u}{(a+b u)^{1 / 2}}=$

$$
\begin{gathered}
\frac{2}{b}\left[(\log u-2) \sqrt{(a+b u)}+\sqrt{a} \log \left(\sqrt{a+b u}+v^{\prime} \bar{a}\right)\right. \\
-\sqrt{a} \log (\sqrt{a+b u}-\sqrt{a})], \text { if } a>0, \\
=\frac{2}{b}\left[(\log u-2) \sqrt{(a+b u)}+2 \sqrt{-a} \tan ^{-1} \sqrt{\frac{a+b u}{-a}}\right], \text { if } a<0 .
\end{gathered}
$$

213. $\int_{0}^{\infty} e^{-a^{2} u^{2}} d u=\frac{1 \bar{\pi}}{2 a}=\frac{1}{2 a} \Gamma\left(\frac{1}{2}\right)$.
214. $\int_{0}^{\infty} u^{n} e^{-a u} d u=\Gamma \frac{(n+1)}{a^{n+1}}=\frac{n!}{a^{n+1}}$.
215. $\int_{0}^{\infty} u^{2 n} e^{-a u^{2}} d u=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$.
216. $\int_{0}^{\infty} e^{-u^{2}-\frac{a^{2}}{u^{2}}} d u=\frac{e^{-2 a}}{2} \sqrt{\pi}$.
$a>0$.
217. $\int_{0}^{\infty} e^{-n u} \sqrt{u} d u=\frac{\mathrm{I}}{2 n} \sqrt{\frac{\pi}{n}}$.
218. $\int_{11}^{\infty} \frac{e^{-n u}}{\sqrt{u}} d u=\sqrt{\frac{\pi}{u}}$.
219. $\int_{0}^{\infty} \frac{d u}{\sinh (n u)}=\frac{\pi}{2 n}$.
220. $\int_{0}^{\infty} \frac{u d u}{\sinh (n u)}=\frac{\pi^{2}}{4 n^{2}}$.

22I. $\int_{0}^{i \pi} \sinh (m u) \cdot \sinh (n u) d u=\int_{0}^{i \pi} \cosh (m u) \cdot \cosh (n u) d u$ $=0$, if m is different from n.
222. $\int_{0}^{i \pi} \cosh ^{2}(m u) d u=-\int_{0}^{i \pi} \sinh ^{2}(m u) d u=\frac{i \pi}{2}$.
223. $\int_{-i \pi}^{+i \pi} \sinh (m u) d u=0$.
224. $\int_{0}^{i \pi} \cosh (m u) d u=0$.
225. $\int_{-i \pi}^{i \pi} \sinh (m u) \cosh (n u) d u=0$.
226. $\int_{0}^{i \pi} \sinh (m u) \cosh (m u) d u=0$.
227. $\int_{0}^{1} \frac{\log u}{\mathrm{I}-u} d u=-\frac{\pi^{2}}{6}$.
228. $\int_{0}^{1} \frac{\log u}{1+u} d u=-\frac{\pi^{2}}{12}$.
229. $\int_{0}^{1} \frac{\log u}{\mathrm{I}-u^{2}} d u=-\frac{\pi^{2}}{8}$.
230. $\int_{0}^{1} \log \left(\frac{\mathrm{I}+u}{\mathrm{I}-u}\right) \cdot \frac{d u}{u}=\frac{\pi^{2}}{4}$.

23I. $\int_{0}^{1} \frac{\log u d u}{\left(\mathrm{I}-u^{2}\right)^{1 / 2}}=-\frac{\pi}{2} \log 2$.
232. $\int_{0}^{1} \frac{\left(u^{p}-u^{q}\right) d u}{\log u}=\log \frac{p+\mathrm{I}}{q+\mathrm{I}}$, if $p+\mathrm{I}>0, q+\mathrm{I}>0$.
233. $\int_{0}^{1}(\log u)^{n} d u=(-1)^{n} \cdot u$!.
234. $\int_{0}^{1}\left(\log \frac{1}{u}\right)^{1 / 2} d u=\frac{\sqrt{\pi}}{2}$.
$235 \int_{0}^{1}\left(\log \frac{\mathrm{I}}{u}\right)^{n} d u=n!$.
236. $\int_{0}^{1} \frac{d u}{\left(\log \frac{1}{u}\right)^{1 / 2}}=\sqrt{\pi}$.
237. $\int_{0}^{1} u^{m} \log \left(\frac{\mathrm{I}}{u}\right)^{n} d u=\frac{\Gamma(n+\mathrm{I})}{(m+\mathrm{I})^{n+1}}$, if $m+\mathrm{I}>\mathrm{O}, u+\mathrm{I}>0$.
238. $\int_{0}^{\infty} \log \left(\frac{e^{u}+\mathrm{I}}{e^{u}-\mathrm{I}}\right) d u=\frac{\pi^{2}}{4}$.
G.-Formulas for the Solution of Pseudo-spherical Triangles.

$$
\begin{aligned}
& \text { a.--Right Triangles. } \\
& \sin A=\frac{\cot I(a)}{\cot I(c)}=\frac{\sinh a}{\sinh c} . \\
& \cos A=\frac{\cos I I(b)}{\cos I(c)}=\frac{\tanh b}{\tanh c} . \\
& \cos A=\frac{\sin B}{\sin I(a)}=\sin B \cosh a . \\
& \cot A=\frac{\cot I(b)}{\cos I I(a)}=\frac{\sinh b}{\tanh a} . \\
& \cos B=\frac{\cos I(a)}{\cos I(c)}=\frac{\tanh a}{\tanh c} . \\
& \cos B=\frac{\sin A}{\sin I(b)}=\sin A \cosh b . \\
& \sin B=\frac{\cot I(b)}{\cot I(c)}=\frac{\sinh b}{\sinh c} . \\
& \cot B=\frac{\cot I(a)}{\cos I I(b)}=\frac{\sinh a}{\tanh b .} \\
& \tan A \tan B=\sin \Pi(c)=\sin I(a) \sin I(b) . \\
&=\operatorname{sech} c=\operatorname{sech} a \operatorname{sech} b . \\
& b .- \text { Oblique Triangles. }
\end{aligned}
$$

The general relations are:
$\cosh a=\cosh b \cosh c-\sinh b \sinh c \cos A$.
$\sin A \sinh b=\sin B \sinh a$.
coth $a \sinh b=\cosh b \cos C+\sin C \cot A$.
$\cos A=-\cos B \cos C+\sin B \sin C \cosh a$.
Forti solves the six typical cases in the following manner:
CASE I.-Given a, b, c. Put $2 p=a+b+c$. Then,

$$
\tan \frac{1}{2} A=\sqrt{\frac{\sinh (p-b) \cdot \sinh (p-c)}{\sinh p \sinh (p-a)}} .
$$

The conditions are $a<b+c ; b<a+c$; and $c<a+b$.
Case 2.-Given a, b, A. Draw the geodetic line $C D$ perpendicular to $A B$.
Then $a>C D ; \frac{\sinh b \sin A}{\sinh a}<\mathrm{I} ; \cot \frac{1}{2} C>0 ;$ and $\tanh \frac{1}{2} c>0$.

$$
\begin{aligned}
& \sin B=\frac{\sinh b \sin A}{\sinh a} . \\
& \cos \frac{1}{2} C=\frac{\tan \frac{1}{2}(A-B) \sinh \frac{1}{2}(a+b)}{\sinh \frac{1}{2}(a-b)} . \\
& \tanh \frac{1}{2} c=\frac{\tanh \frac{1}{2}(a-b) \sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)} .
\end{aligned}
$$

Case 3.-Given $a, b, C . \quad 2 \Delta=\pi-(A+B+C)$.

$$
\begin{aligned}
& \tan \frac{1}{2}(A+B)=\cot \frac{1}{2} C \frac{\cosh \frac{1}{2}(a-b)}{\cosh \frac{1}{2}(a+b)} \\
& \tan \frac{1}{2}(A-B)=\cot \frac{1}{2} C \frac{\sinh \frac{1}{2}(a-b)}{\sinh \frac{1}{2}(a+b)} \\
& \tanh \frac{1}{2} c=\sqrt{\frac{\sin \Delta \sin (\Delta+C)}{\sin (\Delta+A) \sin (\Delta+B)}} .
\end{aligned}
$$

Case 4.-Given $A, B, c . \quad A+B<\pi$ and $D B C<D B G$. The angle $D B G$ is the angle between the geodetic $D B$ drawn perpendicular to $A C$ and the geodetic $B G$ drawn parallel to $A C$.

$$
\begin{aligned}
& \tanh \frac{1}{2}(a+b)=\tanh \frac{1}{2} c \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} . \\
& \tanh \frac{1}{2}(a-b)=\tanh \frac{1}{2} c \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} . \\
& \tan \frac{1}{2} C=\sqrt{\frac{\sinh (p-a) \sinh (p-b)}{\sinh p \sinh (p-c)}}
\end{aligned}
$$

Case 5.-Given $A, B, a, \quad a>C D$ and $A+B<\pi$.
Solve the two right triangles formed by the geodetic line $C D$ drawn perpendicular to $A B$.

Case 6.-Given $A, B, C . \quad A+B+C<\pi$.

$$
\tanh \frac{1}{2} a=\sqrt{\frac{\sin \Delta \sin (\Delta+A)}{\sin (\Delta+B) \sin (\Delta+C)}}
$$

H.-Formulas for the Solution of the Cubic ${ }^{1}$.

If a cubic equation is given in the form

$$
z^{3}+a z^{2}+b z+c=0,
$$

it can be reduced by the substitution $z=x-\frac{a}{3}$ to the simpler form

$$
x^{3}+p x+q=0 .
$$

CASE I.-When $x^{3}+p x \pm q=0 ; p$ and q positive. Compute the auxiliary variable u from $\sinh u=\frac{\frac{1}{2} q}{\frac{1}{3} p\left(\frac{1}{3} p\right)^{\frac{1}{2}}}$; then the roots are

$$
\begin{aligned}
& x_{1}=\mp 2 \sqrt{\frac{1}{3} p} \sinh \frac{1}{3} u . \\
& x_{2}= \pm \sqrt{\frac{1}{3} p} \sinh \frac{1}{3} u+i \sqrt{p} \cosh \frac{1}{3} u . \\
& x_{3}= \pm \sqrt{\frac{1}{3} p} \sinh \frac{1}{3} u-i \sqrt{p} \cosh \frac{1}{3} u .
\end{aligned}
$$

CASE 2.-When $x^{3}-p x \pm \dot{q}=\mathrm{o} ; p$ and q positive. $\left(\frac{1}{3} p\right)^{3}<\left(\frac{1}{2} q\right)^{2}$. Compute u from $\cosh u=\frac{\frac{1}{2} q}{\frac{1}{3} p\left(\frac{1}{3} p\right)^{\frac{1}{2}}}$; then the roots are

$$
\begin{aligned}
& x_{1}=\mp 2 \sqrt{\frac{1}{3} p} \cosh \frac{1}{3} u . \\
& x_{2}= \pm \sqrt{\frac{1}{3} p} \cosh \frac{1}{3} u+i \sqrt{p} \sinh \frac{1}{3} u . \\
& x_{3}= \pm \sqrt{\frac{1}{3} p} \cosh \frac{1}{3} u-i \sqrt{p} \sinh \frac{1}{3} u .
\end{aligned}
$$

CASE 3.-When $x^{3}-p x \pm q=0 ; p$ and q positive. $\left(\frac{1}{3} p\right)^{3}>\left(\frac{1}{2} q\right)^{2}$. Compute the angle u from $\cos u=\frac{\frac{1}{2} q}{\frac{1}{3} p\left(\frac{1}{3} p\right)^{1 / 2}}$; then the roots are

$$
\begin{aligned}
& x_{1}=\mp 2 \sqrt{\frac{1}{3} p} \cos \frac{1}{3} u . \\
& x_{2}=\mp 2 \sqrt{\frac{1}{3} p} \cos \left(\frac{1}{3} u+120^{\circ}\right) . \\
& x_{3}=\mp 2 \sqrt{\frac{1}{3} p} \cos \left(\frac{1}{3} u+240^{\circ}\right) .
\end{aligned}
$$

Case 4.-When $x^{3}-p x \pm q=0 ; p$ and q positive. $\left(\frac{1}{3} p\right)^{3}=\left(\frac{1}{2} q\right)^{2}$.

$$
\begin{aligned}
& x_{1}=\mp{ }_{2} \sqrt{\frac{1}{3} p} . \\
& x_{2}=x_{3}= \pm \sqrt{\frac{1}{3} p} .
\end{aligned}
$$

For applications of hyperbolic and circular functions to the solution of the cubic whose coefficients are general (i.e., real or complex), see a brief paper by Mr. W. D. Lambert in American Mathematical Monthly for April, 1906.

GEOMETRICAL ILLUSTRATIONS OF HYPERBOLIC FUNCTIONS..

The algebraic relationship of the hyperbolic functions to the circular functions has been discussed in the section on definitions and formulas. A close relationship also exists between the elliptic functions and the hyperbolic functions. Thus it may be shown that the elliptic integral of the first kind,

$$
u=\int \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}},
$$

in which k is the modulus and ϕ the amplitude, reduces to $u=g d^{-1} \phi$ when $k=\mathrm{r}$. The elliptic functions thus degenerate into the hyperbolic functions when the modulus is equal to unity. A case in point is the elastica, the equation of which takes the form of an elliptic integral, excepting when the modulus is unity. It then reduces to the two equations

$$
\frac{x}{a}=u-2 \tanh u ; \frac{y}{a}=\frac{2}{\cosh u}
$$

which is a syntractrix described by the free end of a rod whose middle point traces out the tractory. ${ }^{1}$

Ligowski gives the following easy geometrical method of demonstrating the relations between the hyperbolic and circular functions. Let the equation of the circle of unit radius be

$$
x_{c}^{2}+y_{c}^{2}=\mathrm{I},
$$

and call u_{c} the arc of this circle from the positive x axis to the point $x_{c} y_{c}$ Then, of course, the circle may be repre-
 sented by the two equations

$$
x_{c}=\cos u_{c} ; y_{c}=\sin u_{c} .
$$

Now, the area of the circular sector, whose chord is $2 y_{c}$, is $\frac{2 . u_{c} \text {. } 1}{2}=u_{c}$, so that x_{c} and y_{c} may be regarded as the cosine and sine of a sector u_{c}. The ellipse may be derived from the unit circle by multiplying the ordinates y_{c} by b. Hence, in the ellipse, the area of the sector subtended by the chord $2 y_{e}$ is, say, u_{e} and $u_{e}=b u_{c}$.
${ }^{1}$ If in these equations m is substituted for 2 they represent any syntractrix. The two equations, with this substitution, can be combined to the following :

$$
\frac{(a u-x)^{2}}{a^{2} m^{2}}+\frac{y^{2}}{a^{2} m^{2}}=\mathrm{I},
$$

showing that the curve is traced by a point on a circle of radius $a m$ whose center is in motion. It is noteworthy that if in this equation the hyperbolic sector u is replaced by a circular sector ϕ, the new equation represents a prolate or a curtate cycloid, or better the syncycloid. Thus the syntractrix may be considered as a syncycloid with an infinite period.

Thus

$$
\begin{gathered}
x_{c}=\cos u_{c}=\cos \frac{u_{e}}{b} \\
y_{c}=\sin u_{c}=\frac{y_{e}}{b}=\sin \frac{u_{e}}{b},
\end{gathered}
$$

so that for the ellipse,

$$
\begin{gathered}
x_{e}^{2}+\frac{y_{e}^{2}}{b^{2}}=\mathrm{I} \\
x_{c}=x_{e}=\cos \frac{u_{e}}{b} ; y_{e}=b \sin \frac{u_{e}}{b}
\end{gathered}
$$

The equation

$$
x^{2}-y^{2}=\mathrm{I}
$$

represents an equilateral hyperbola, and if u is the area of the hyperbolic sector whose chord is $2 y$, then there can be no objection to writing

$$
x=\cosh u ; y=\sinh u
$$

where cosh and sinh are functions whose nature is still to be determined. The most evident relation is

$$
\cosh ^{2} u-\sinh ^{2} u=\mathrm{I}
$$

Now if $i=1-\mathrm{I}$, the hyperbola may be written

$$
x^{2}+\frac{y^{2}}{i^{2}}=\mathrm{I}
$$

which is an ellipse whose major axis is unity and whose minor axis is i. Comparing this with the ellipse discussed above, it appears at once that

$$
\begin{aligned}
& x=\cosh u=\cos \frac{u}{i} \\
& y=\sinh u=i \sin \frac{u}{i}
\end{aligned}
$$

or, in an equivalent form,

$$
\begin{aligned}
& \cosh u=\cos i u ; \sinh u=-i \sin i u \\
& \cosh i u=\cos u: \sinh i u=i \sin u
\end{aligned}
$$

The investigation of $\cosh u$ and $\sinh u$ can be completed in various ways; for example, by writing out the series for $\cos i u$ and $-i \sin i u$ and showing that their sum or difference is $e^{ \pm u}$.

The geometrical properties of the hyperbolic functions themselves are commonly discussed in reference to the equilateral hyperbola. They could also be derived from the geometry of the ellipse without reference to the hyperbola; but a more perspicuous method seems to be to study the relations of these functions to both curves at the same time. ${ }^{1}$

In any ellipse,

$$
\frac{x^{2}}{\beta^{2}}+\frac{y^{2}}{a^{2}}=\mathrm{I}
$$

[^3]the area $a \beta$ may be chosen as the unit area, so that the equation of the curve becomes
$$
\alpha^{2} x^{2}+\frac{y^{2}}{a^{2}}=\mathrm{I}
$$

By varying the value of a in this equation a family of ellipses is obtained each of area π, all with the same center and all with axes lying in the axes of coördinates. The envelope of this system of curves is the hyperbola $x y=\frac{1}{2}$, and this may be conceived as generated by the motion of a single point. The coördinates of the point P_{1}, at which the hyperbola is tangent to the ellipse, are

$$
x_{1}=\frac{1}{\sqrt{\prime 2} \alpha} \quad y_{1}=\frac{\alpha}{V^{\prime}-}
$$

and the coördinates of the point c at which the hyperbola is tangent to the unit circle, are

$$
x=y=\frac{\mathrm{I}}{\mathrm{I}^{\prime}}
$$

Fig. 5.
If the hyperbola is conceived as generated by the point c in moving from its original position to P_{1} (or as a "line of flow"), its radius vector sweeps over an hyperbolic sector $o c P_{1}$. If this area is called $\frac{u}{2}$, then by a wellknown formula,

$$
d u=x d y-y d x
$$

and because $x y=\frac{1}{2}$,

$$
d u=\frac{1}{2}\left(\frac{d y}{y}-\frac{d x}{x}\right) .
$$

Since no integration constant is required,

$$
u=\frac{1}{2} \log \frac{y_{1}}{x_{1}}=\frac{1}{2} \log a^{2} \text { or } a=e^{u} .
$$

The area u is the sector $o P_{1} c P_{2}$, where the coördinates of P_{2} are $x_{2}=y_{1}$, and $y_{2}=x_{1}$. It is noteworthy that two other areas, $A P_{1} c P_{2} B$ and $C D P_{1}$ $c P_{2}$, have this same value, for evidently

$$
\int_{x_{1}}^{x_{2}} y d x=\int_{y_{1}}^{y_{2}} x d y=\log \alpha=u .
$$

The length of the chord $P_{1} P_{2}$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=a-a^{-1},
$$

and half of this, or $P_{1} a$, is the hyperbolic sine which may evidently be put in the form

$$
\sinh u=\frac{e^{u}-e^{-u}}{2}
$$

Since the curve $P_{1} c P_{2}$ is an hyperbola,

$$
\overline{o a^{2}}-\overline{a P_{1}^{2}}=\mathrm{r}
$$

and therefore

$$
o a=\sqrt{1-\sinh ^{2} u}=\frac{e^{u}+e^{-u}}{2}=\cosh u .
$$

The diameters connecting the points of intersection of the unit circle and the ellipse whose axes are a and a^{-1}, may be called the isocyclic diameters of the ellipse, because the circle and the ellipse have the same area. These diameters are not conjugate. If the ellipse is conceived as the section on the greatest and least axes of an ellipsoid of unit volume, the isocyclic diameters are the traces of the circular sections of the ellipsoid. The coördinates of one of the points of intersection, say E, are

$$
x=\frac{\mathrm{I}}{\sqrt{a^{2}+\mathrm{I}}} ; y=\frac{a}{\sqrt{a^{2}+\mathrm{I}}},
$$

and therefore the angle ν, which the vector $o E$ makes with the major axis of the ellipse, is given by the relation
and it follows that

$$
\tan \nu=a^{-1}=e^{-u},
$$

$$
\tan \left(\frac{\pi}{2}-2 v\right)=\frac{1}{2}(\cot v-\tan v)=\sinh u .
$$

This angle $\left(\frac{\pi}{2}-2 v\right)$ is $g d u$, or the gudermannian of u, so that in any
ellipse whatever the angle made by any line parallel to one isocyclic diameter with a perpendicular on the other isocyclis diameter is the gudermannian of the natural logarithm of the semi-major axis, this being expressed in terms of the isocyclic radius, which in the general case is the square root of the product of the semiaxes. ${ }^{1}$ In the diagram the gudermannian $b o b_{1}$ is shown as bisected by the axis of the hyperbola, and it is worth remarking that if the ellipse were to be distorted into a circle by compressing the major axis and elongating the minor axis, the line $o b$ would be brought into coincidence with $o b_{1}$, so that $g d u$ can be defined as the angle through which an isocyclic diameter has swept when the ellipse has been derived from a circle by irrotational plane strain.

The angle $45^{\circ}+\frac{g d u}{2}$ which occurs in the formula for meridional parts is the angle made by either isocyclic diameter of the ellipse with the minor axis, and the tangent of this angle is the semi-major axis α.

The twofold relations of the hyperbolic functions to the hyperbola and the ellipse are illustrated in a somewhat different manner in figure 6.

Here the curve $p_{1} c p_{2}$ is an arc of an hyperbola $y^{2}-x^{2}=\mathrm{I}$. If the area of the sector $o p_{1} c p_{2}$ is called $u, a p_{1}=\sinh u$ and $o a=\cosh u$. Make $b c=p_{1} a$ and draw the associated ellipse shown in the diagram. Then the angle $b o c=g d u ; b o=\cosh u$ and

$$
\begin{aligned}
\tan g d u & =\sinh u \\
\sec g d u & =\cosh u \\
\sin g d u & =\tanh u .
\end{aligned}
$$

The ellipse has corresponding properties. Since the gudermannian is the angle between either isocyclic diameter and a line perpendicular to the other, the line $o b$ may be regarded as coinciding with one isocyclic diameter and the axis of abscissas with the other. The major axis of the ellipse then bisects

[^4]the angle $90^{\circ}-g d u$, its magnitude is $2 e^{u}$, and the equation of the ellipse is
$$
x^{2}+4 x y \tan g d u+y^{2}\left(4 \tan ^{2} g d u+1\right)=\mathrm{I} .
$$

By varying the value of $\tan g d u$ (or $\sinh u$) a system of ellipses is obtained whose envelopes are $y= \pm \mathrm{I}$, so that if any one of the ellipses is supposed to be derived from the circle by distortion, the process is that generally known as "shearing motion or scission."

If the points in the circle are sought which correspond to the points on the

Fig. 6.
major axis of the ellipsoid, it will be found that the angle between the two positions (the angle of rotation) is equal to the gudermannian. ${ }^{1}$

If instead of the horizontal, the vertical line in figure 6 had been taken as coinciding with the isocyclic diameter of the ellipse, the result would have been the discovery of a system of ellipses whose envelopes are $x= \pm \mathrm{I}$, similar in all respects excepting orientation to that discussed.
${ }^{1}$ Love's Treatise on the Theory of Elasticity, vol. I, p. 43.

METHODS OF INTERPOLATION.

It is not easy to describe the use of the tables which follow without some notes on the methods of interpolation with reference to which they are arranged. In all of them the argument advances by equal increments, each equal, say, to ω. It is required to find a value of the function F intermediate between two tabulated values, F_{0} and F_{1}, corresponding to a fractional value of the argument or to $n \omega$, where n is always less than unity, and preferably less than one-half.

Let F_{n} be the value of the function to be determined ; let F_{-1} and F_{-2} be tabulated values of F immediately preceding F_{0}, and let F_{1}, F_{2} be values immediately following F_{0}. Denote $F_{1}-F_{0}$ by a_{1}, other first differences (Δ^{\prime}) being similarly represented. If also $a_{2}-a_{1}=b_{1}, b_{1}-b_{0}=c_{1}$, etc., the whole system of functions and differences is shown in the following schedule : ${ }^{1}$

F	d^{\prime}	$d^{\prime \prime}$	$d^{\prime \prime \prime}$	$d^{i v}$	Δ^{v}	$d^{v i}$
F_{-2}		$b^{\prime \prime}$		$d^{\prime \prime}$		$f^{\prime \prime}$
F_{-1}	$a^{\prime \prime}$	b^{\prime}	$c^{\prime \prime}$	d^{\prime}	$e^{\prime \prime}$	f^{\prime}
F_{0}	a^{\prime}	b_{0}	c^{\prime}	d_{0}	e^{\prime}	f_{0}
F_{1}	a_{1}	b_{1}	c_{1}	d_{1}	e_{1}	f_{1}
F_{2}	a_{2}	b_{2}	c_{2}	d_{2}	e_{2}	f_{2}

The most familiar formula of interpolation is due to Newton, and in the above notation it may be written thus:

$$
\begin{gathered}
F_{n}-F_{0}=n a_{1}+\frac{n(n-1)}{2!} b_{1}+\frac{n(n-1)(n-2)}{3!} c_{2} \\
\quad+\frac{n(n-1)(n-2)(n-3)}{4!} d_{2}+\ldots
\end{gathered}
$$

[^5]The coefficients are those of the binomial theorem. This formula is applicable to the first intervals of a series, which is not the case with any other mode of interpolation. It may also be adapted to the last intervals by substituting - n for n and $a^{\prime}, b^{\prime}, c^{\prime \prime}, d^{\prime \prime}, \ldots$ for $a_{1}, b_{1}, c_{2}, d_{2}, \ldots$ In systematic interpolation, such as is involved in the construction of tables, it is usual to employ the more rapidly converging formulas of Stirling or Bessel; but when a computing machine and a table of products are available it is sometimes less laborious to compute an extra term of Newton's formula than to calculate and apply the mean differences called for by the other methods. Both Stirling's and Bessel's formulas can be derived from Newton's by known relations between the several differences.

In Stirling's formula the mean of the first differences next preceding and following F_{0} is made use of instead of only the latter, as in Newton's formula. The third differences are similarly treated, so that a_{0}, c_{0}, etc., being new quantities, are defined by

$$
\frac{a^{\prime}+a_{1}}{2}=a_{0} ; \frac{c^{\prime}+c_{1}}{2}=c_{0}, \text { etc. }
$$

These mean values are used in conjunction with the even differences on the same horizontal line with F_{0} in the schedule, and Stirling's formula is

$$
\begin{aligned}
F_{n}-F_{0}= & n a_{0}+\frac{n^{2}}{2!} b_{0}+\frac{n\left(n^{2}-1\right)}{3!} c_{0}+\frac{n^{2}\left(n^{2}-1\right)}{4!} d_{0} \\
& +\frac{n\left(n^{2}-1\right)\left(n^{2}-4\right)}{5!} e_{0}+\ldots
\end{aligned}
$$

To interpolate backward it is only needful to substitute $-n$ for n.
In Bessel's formula use is made of mean differences of the even orders, and if $b ; d$, etc., are these means they are defined in terms of the scheduled differences, thus:

$$
\frac{b_{0}+b_{1}}{2}=b ; \frac{d_{0}+d_{1}}{2}=d, \text { etc. }
$$

They are used in conjunction with the simple odd differences a_{1}, c_{1}, etc., and the formula is

$$
\begin{gathered}
F_{n}-F_{0}=n a_{1}+\frac{n(n-1)}{2!} b+\frac{n(n-1)\left(n-\frac{1}{2}\right)}{3!} c_{1}+\frac{(n+1) n(n-1(n-2)}{4!} d \\
\\
+\frac{(n+1) n(n-1)(n-2)\left(n-\frac{1}{2}\right)}{5!} e_{1}+\ldots
\end{gathered}
$$

When $n=\frac{1}{2}$, or for interpolation to the middle of an interval, the coefficient of c_{1} vanishes and $F_{n}-F_{0}$ is independent of third differences, which is clearly a great advantage. In general this method is very advantageous when n approaches one-half, while Stirling's formula is preferred for small values of n.

When Bessel's formula is used for backward interpolation, it may be written
$F_{-n}-F_{0}=-n a^{\prime}+\frac{n(n-1)}{2!}\left(\frac{b_{0}+b^{\prime}}{2}\right)-\frac{n(n-1)\left(n-\frac{1}{2}\right)}{3!} c^{\prime}+\ldots$, n being taken as positive.

A distinct method of interpolation is founded directly upon Taylor's theorem. If $F_{0}^{\prime} F_{0}^{\prime \prime}$, etc., are the successive derivatives of F_{0}, and ω is the constant increment of the argument, this fundamental theorem may be written
$F_{n}-F_{0}=n \omega F_{0}^{\prime}+\frac{n^{2} \omega^{2} F_{0}^{\prime \prime}}{2!}+\frac{n^{3} \omega^{3} F_{0}^{\prime \prime \prime}}{3!}+\frac{n^{4} \omega^{4} F_{0}^{i v}}{4!}+\ldots \ldots(a)$, and this becomes an interpolation formula when the derivatives are expressed in terms of the differences. This is readily accomplished to any degree of exactness whenever the differences become rigorously or sensibly constant at some particular order and the tabular interval is small relatively to the period of the function. To find the numerical values of the derivatives it is not necessary that the analytical expression of the function should be known ; for, rearranging the terms of the formula of Bessel and Stirling according to ascending powers of n and comparing coefficients,

$$
\begin{array}{rlrl}
\quad \text { (Bessel.) } & & \quad \begin{aligned}
\quad \text { (Stirling.) }
\end{aligned} \\
F_{0}^{\prime} & =\frac{1}{\omega}\left(a_{1}-\frac{1}{2} b+\frac{1}{12} c_{1}+\frac{1}{12} d-\frac{1}{120} e_{1}-\ldots\right) & =\frac{1}{\omega}\left(a_{0}-\frac{1}{6} c_{0}+\frac{1}{30} e_{0}-\ldots\right) \\
F_{0}^{\prime \prime} & =\frac{1}{\omega^{2}}\left(b-\frac{1}{2} c_{1}-\frac{1}{12} d+\frac{1}{24} e_{1}+\ldots\right) & & =\frac{1}{\omega^{2}}\left(b_{0}-\frac{1}{12} d_{0}+\ldots\right) \\
F_{0}^{\prime \prime \prime} & =\frac{1}{\omega^{3}}\left(c_{1}-\frac{1}{2} d+0 \ldots\right) & & =\frac{1}{\omega^{3}}\left(c_{0}-\frac{1}{4} e_{0}+\ldots\right) \\
F_{0}^{i v} & =\frac{1}{\omega^{4}}\left(d-\frac{1}{2} e_{1}-\ldots\right) & & =\frac{1}{\omega^{4}}\left(d_{0}-\ldots\right) \\
F_{0}^{v} & =\frac{1}{\omega^{5}}\left(e_{1}-\ldots\right) & & =\frac{1}{\omega^{5}}\left(e_{0}-\ldots\right) .
\end{array}
$$

Hence, to compute the first derivative, say from Stirling's formula, when the 6 th differences and $\frac{1}{30}$ of the mean of the corresponding third differences are negligible, it is only needful to take the mean of the first differences preceding and following the tabular value of the function, subtract from it onesixth ($\frac{1}{6}$) of the mean of the corresponding third differences, and divide the result by ω.

Newton's formula gives for arguments near the beginning of the series of tabular values :

$$
\begin{aligned}
& F_{0}^{\prime}=\frac{1}{\omega}\left(a_{1}-\frac{1}{2} b_{1}+\frac{1}{3} c_{2}-\frac{1}{4} d_{2}+\frac{1}{5} e_{3}-\ldots\right) \\
& F_{0}^{\prime \prime}=\frac{1}{\omega^{2}}\left(b_{1}-c_{2}+\frac{11}{12} d_{2}-\frac{5}{6} c_{3}+\ldots .\right) \\
& F_{0}^{\prime \prime \prime}=\frac{1}{\omega^{3}}\left(c_{2}-\frac{3}{2} d_{2}+\frac{7}{4} e_{3}-\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}^{i v}=\frac{1}{\omega^{4}}\left(d_{2}-2 e_{3}+\ldots\right) \\
& F_{0}^{v}=\frac{1}{\omega^{5}}\left(c_{3}-\ldots .\right)
\end{aligned}
$$

and for arguments near the end of the series of tabular values,

$$
\begin{aligned}
& F_{0}^{\prime}=\frac{1}{\omega}\left(a^{\prime}+\frac{1}{2} b^{\prime}+\frac{1}{3} c^{\prime \prime}+\frac{1}{4} d^{\prime \prime}+\frac{1}{5} e^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{\prime \prime}=\frac{1}{\omega^{2}}\left(b^{\prime}+c^{\prime \prime}+\frac{11}{1} d^{\prime \prime}+\frac{5}{6} e^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{\prime \prime \prime}=\frac{1}{\omega^{3}}\left(c^{\prime \prime}+\frac{3}{2} d^{\prime \prime}+\frac{7}{4} e^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{i v}=\frac{1}{\omega^{4}}\left(d^{\prime \prime}+2 e^{\prime \prime \prime}+\ldots .\right) \\
& F_{0}^{v}=\frac{1}{\omega^{5}}\left(e^{\prime \prime \prime}+\ldots . .\right) .
\end{aligned}
$$

The differences of the derivatives may of course be found and discussed in the same manner as those of any other function, and the higher derivatives, $F_{n}{ }^{\prime \prime}, F_{n}{ }^{\prime \prime}$, can be expressed in terms of the differences of $F_{n}{ }^{\prime}$. To distinguish the differences of F^{\prime} from those of F, they may be denoted by Greek letters, and the notation is exhibited in the following scheme :

Using Stirling's formulæ, page xxxvi, the successive derivatives inclusive of fifth differences are now
$F_{0}^{\prime \prime}=\frac{\mathrm{I}}{\omega}\left(\alpha_{0}-\frac{1}{6} \gamma_{0}\right) ; F_{0}^{\prime \prime \prime}=\frac{\mathrm{I}}{\omega^{2}}\left(\beta_{0}-\frac{1}{12} \delta_{0}\right) ; F_{0}^{i v}=\frac{\mathrm{I}}{\omega^{3}}\left(\gamma_{0}\right) ; F_{0}^{v}=\frac{\mathrm{I}}{\omega^{4}}\left(\delta_{0} ;\right.$
and the interpolation formula may be written
$\left.F_{n}=F_{0}+n \omega F_{0}^{\prime}+\frac{n^{2} \omega}{2!}{ }^{\prime} \alpha_{0}-\frac{1}{6} \gamma_{0}\right)+\frac{n^{3} \omega}{3!}\left(\beta_{0}-{ }_{1} \frac{1}{2} \delta_{0}\right)+\frac{n^{4} \omega}{4!} \gamma_{0}+\frac{n^{5} \omega}{5!} \delta_{0} ;$
or, neglecting fifth differences,

$$
F_{n}=F_{0}+n \omega\left[F_{0}^{\prime}+\frac{n}{2} \alpha_{0}+\frac{n^{2}}{6} \beta_{0}+\frac{n}{12}\left(\frac{n^{2}}{2}-\mathrm{I}\right) \gamma_{0}\right]
$$

and for backward interpolation

$$
F_{-n}=F_{0}-n \omega\left[F_{0}^{\prime}-\frac{n}{2} \alpha_{0}+\frac{n^{2}}{6} \beta_{0}-\frac{n}{12}\left(\frac{n^{2}}{2}-\mathrm{I}\right) \gamma_{0}\right] .
$$

In the tables which follow, the first derivatives multiplied by ω are tabulated in units of the last decimal place of the tabulated function (except Table VII), and the remaining quantities required in the computation can be found by mere inspection. The higher order of differences will be needed only for a very few arguments at the beginning or end of those tabular values whose numerical magnitudes approach o or ∞. For the remaining arguments it will be found that the $\frac{1}{48}$ part of the second difference of ωF_{n}^{\prime} is not great enough to influence the result, and it is therefore sufficient to use

$$
\left.\begin{array}{l}
F_{n}=F_{0}+n \omega\left(F_{o}^{\prime}+\frac{n}{2} a_{o}\right) \tag{b}\\
F_{-n}=F_{0}-n \omega\left(F_{\mathrm{o}}^{\prime}-\frac{n}{2} \alpha_{o}\right)
\end{array}\right\}
$$

$\omega \alpha_{0}$ being the mean first difference of ωF^{\prime} corresponding to F_{0}. This formula is rigorous when third differences are zero. In most cases $\frac{n \omega a_{0}}{2}$ can be found mentally, and since $\omega\left(F_{0}^{\prime}+\frac{n}{2} a_{0}\right)$ is here to be regarded as an interpolated value of ωF_{o}^{\prime}, no confusion can arise as to the sign of the correction. It thus becomes almost as easy to include ωa_{o} in the computation as to omit it. A convenient rule is: Find by linear interpolation the value ωF^{\prime} for one-half the interval $\left(\frac{n}{2}\right)$; multiply this interpolated value by the entire interval (n) and apply the product to the tabular value of the function, either positively or negatively, according as the function is increasing or decreasing. To illustrate the application of this rule, find $\log _{10} \sinh 0.00304$. In this case $n=0.4$ and the table gives

$$
F_{\mathrm{o}}=7.477 \mathrm{I} 2 ; \omega F_{0}^{\prime}=1447,7 ; \omega a_{0}=-48,3
$$

the last two quantities being expressed in units of the fifth decimal place. Interpolating ωF^{\prime} linearly for one-half the interval,

$$
\omega F_{\frac{n}{2}}^{\prime}=\omega\left(F_{0}^{\prime}+\frac{n}{2} a_{0}\right)=1447,7-0.2 \times 48,3=1438,0
$$

multiplying this value by n and adding the result to the tabular value of the function, there results

$$
F_{n}=1438,0 \times 0.4+7.47712=7.48287
$$

The corresponding difference formula (Bessel's) is

$$
F_{n}=F_{0}+n\left[a_{1}-\frac{(\mathrm{I}-n)}{2} b\right]
$$

The derivative formula (b) with two terms has the advantage of being much more convenient than the difference formula, while the accuracy of the two is the same (five-eighths of a unit) when the derivatives are tabulated to the
same order of decimal as the function. In the case of linear interpolation, however, it is in general more accurate to use the differences, the maximum error of the difference formula being one-half of a unit and that of the derivative formula three-fourths of a unit in the next succeeding decimal place. The accuracy of the two formulas is the same when the next succeeding decimal of the derivative is tabulated. The error of the derivative formula is then simply the error of the tabular value, while the error of the difference formula may be $=,>$ or $<$ than that of the tabular value, but is never greater than one-half of a unit.

Interpolation formulas which are applicable only to a single function are rarely advantageous, because as much time is often consumed in looking them up as is saved by employing them ; but some formulas applicable to hyperbolic functions are so simple that when once suggested they can hardly be forgotten. Thus, Taylor's theorem gives at once
$\cosh (u+n \omega)-\cosh u=n \omega \sinh u+\frac{n^{2} \omega^{2}}{2!} \cosh u+\frac{n^{3} \omega^{3}}{3!} \sinh u+\ldots$,
and the form for the sine is of course similar. Again, when, as here, the cosine is tabulated with an argument in terms of radians,

$$
\cos (u+n \omega)-\cos u=-n \omega \sin u-\frac{n^{2} \omega^{2}}{2!} \cos u+\frac{n^{3} \omega^{3}}{3!} \sin u+\ldots
$$

the series for the sine being similar.
So, too,

$$
\begin{aligned}
& \log _{e}(u+n \omega)-\log _{e} u=\log _{e}\left(\mathrm{I}+\frac{n \omega}{u}\right) \\
& \quad=\frac{n \omega}{u}-\frac{1}{2} \frac{n^{2} \omega^{2}}{u^{2}}+\frac{1}{3} \frac{n^{3} \omega^{3}}{u^{3}}-\frac{1}{4} \frac{n^{4} \omega^{4}}{u^{4}}+\ldots \quad\left(\frac{n^{2}}{u^{2}}<\mathrm{I} .\right)
\end{aligned}
$$

Simplest of all is the exponential,

$$
\begin{array}{r}
e^{u+n \omega}-e^{u}=e^{u}\left(e^{n \omega}-\mathrm{I}\right)=e^{u}\left(n \omega+\frac{n^{2} \omega^{2}}{2!}+\frac{n^{3} \omega^{3}}{3!}+\ldots\right) \ldots(c), \\
=e^{u}\left(+0.01 n+0.000,05 n^{2}+0.000,000,167 n^{3}+\ldots\right),(\omega=0.0 \mathrm{I}) \\
=e^{u}\left(+0.001 n+0.000,000,5 n^{2}+\ldots\right) .
\end{array}
$$

The series in $n \omega$ may be replaced by h, and this may have any finite value. Especially when a computing machine is available, this formula is easily applied and is, of course, rigorous.

From time to time inverse interpolation by a method more accurate than first differences is called for ; indeed, whenever interpolation of a function by higher differences is needful, it is equally needful that the argument corresponding to a given function should be ascertained by a like process. The method ordinarily pursued in such cases is to estimate two values of the argument, one a little greater and the other a little less than that of the required argument, interpolate corresponding values of the function, and finally interpolate linearly over the reduced interval for a final value of the argument.

Another method consists in interpolating values of the function and its derivatives for an approximate value of the required interval and then computing a correction to this approximate value by means of a reversed Taylor's series. ${ }^{1}$

If second differences only are to be taken into account, the usual method of procedure is to estimate an approximate value of n, say n^{\prime}, and with this estimated value we interpolate linearly as before and find the value of $\omega F_{\frac{n^{\prime}}{2}}^{\prime}$ corresponding to one-half of the estimated interval $\left(\frac{n^{\prime}}{2}\right)$. Then the required interval (n) is equal to the difference between the given value and the nearest tabular of the function divided by $\omega F_{\frac{n^{\prime}}{2}}^{\prime}$. This method is in fact simply the reverse of the one for direct interpolation. A recomputation is of course necessary if the values of n and n^{\prime} are not practically the same. As an illustration, find u when $\log _{10} \sinh u=7.48287$. We first compute

$$
n^{\prime}=\frac{7.48287-7.47712}{1448,0}=0.4
$$

then the value of $\omega \frac{F_{\frac{n^{\prime}}{2}}^{\prime}}{}$ in terms of the last tabular unit is found as before by linear interpolation to be $1438, \mathrm{o}$. Hence

$$
n=\frac{7.48287-7.47712}{1438,0}=0.40 \text { and } u=0.00304
$$

Since the estimated and computed values of the interval agree, there is no need of a recomputation.

The methods which are based upon an estimated value of the argument are unsystematic and clumsy. It is much better to use a formula which gires the required result by a direct and rigorous method. To find such a formula, divide Taylor's series (eq. a) by ωF_{0}^{\prime}, and put

$$
n_{1}=\frac{F_{n}-F_{0}}{\omega F_{0}^{\prime}} ; f_{2}=\frac{\omega^{2} F_{0}^{\prime \prime}}{2 \omega F_{0}^{\prime \prime}} ; f_{3}=\frac{\omega^{3} F_{0}^{\prime \prime \prime}}{6 \omega F_{0}^{\prime}} ; f_{4}=\frac{\omega^{4} F_{0}^{i \nu}}{24 \omega F_{0}^{i}} ; f_{5}=\frac{\omega^{5} F_{0}^{v}}{120 \omega F_{0}^{\prime}} ;
$$

then the interpolation formula may be written

$$
n_{1}=n+f_{2} n^{2}+f_{3} n^{3}+f_{4} n^{4}+f_{5} n^{5}
$$

Reversing this series in accordance with the relation, ${ }^{2}$

$$
\begin{gathered}
x=\frac{y}{a_{0}}+\frac{y^{2}}{a_{0}^{3}}\left(-a_{1}\right)+\frac{y^{3}}{a_{0}^{5}}\left(-a_{0} a_{2}+2 a_{1}^{2}\right) \\
\quad+\frac{y^{4}}{a_{0}^{7}}\left(-a_{0}^{2} a_{3}+5 a_{0} a_{1} a_{2}-5 a_{1}^{3}\right) \\
+\frac{y^{5}}{a_{0}^{9}}\left(-a_{0}^{3} a_{4}+3 a_{0}^{2}\left(a_{2}^{2}+2 a_{1} a_{3}\right)-2 \mathrm{I} a_{0} a_{1}^{2} a_{2}+14 a_{1}^{4}\right),
\end{gathered}
$$

[^6]which is the reversed series of
$$
y=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+a_{3} x^{4}+a_{4} x^{5}
$$
and rearranging the terms, ${ }^{1}$
\[

$$
\begin{align*}
n=n_{1} & +n_{1}\left[-n_{1} f_{2}+2\left(n_{1} f_{2}\right)^{2}-5\left(n_{1} f_{2}\right)^{3}+14\left(n_{1} f_{2}\right)^{4}+\ldots\right] \\
& +n_{1}^{2}\left[n_{1} f_{3}\left(-1+5\left(n_{1} f_{2}\right)-2 \mathrm{I}\left(n_{1} f_{2}\right)^{2}+. .\right)\right] \\
& +n_{1}^{3}\left[n_{1} f_{4}\left(-\mathrm{I}+6 n_{1} f_{2}\right)+3\left(n_{1} f_{3}\right)^{2}+. . .\right] \\
& +n_{1}^{4}\left[-n_{1} f_{5}+\ldots\right] . . . \tag{d}
\end{align*}
$$
\]

In the actual computation it is convenient to put

$$
r=\frac{n_{1}}{2 \omega F_{0}^{\prime}}
$$

then, when successive values of ωF_{n}^{\prime} are tabulated in units of the last decimal place, and Stirling's coefficients are used,

$$
\begin{array}{ll}
n_{1} f_{2}=r \omega\left(\alpha_{0}-\frac{1}{6} \gamma_{0}\right) & n_{1} f_{3}=\frac{1}{3} r \omega\left(\beta_{0}-\frac{1}{12} \delta_{0}\right) \\
n_{1} f_{4}=\frac{1}{12} r \omega \gamma_{0} & n_{1} f_{5}=\frac{1}{60} r \omega \delta_{0}
\end{array}
$$

The formula is rigorous inclusive of fifth differences, and does not require the computation of an approximate value of n. It is applicable to any function or series of tabulated values whose successive derivatives become evanescent. It is particularly convenient when differences higher than the second are neglected. The formula then becomes

$$
n=n_{1}+n_{1}\left[-r \omega a_{0}+2\left(r \omega a_{0}\right)^{2}-5\left(r \omega a_{0}\right)^{3}+14\left(r \omega a_{0}\right)^{4}\right] .
$$

Since $r \omega \alpha_{0}$ is a very small quantity, the higher powers are seldom needed, and, should they be required, are easily taken into account. As an example, let it be required to find u when $\log _{10} \sinh u=7.48287$. We compute

$$
\begin{aligned}
n_{1} & =\frac{7.48287-7.47712}{1447,7}=0.40 \\
r & =\frac{n_{1}}{2 \omega F_{0}^{\prime}}=\frac{0.40}{2 \times 1447,7}=0.0001
\end{aligned}
$$

and

$$
n_{1} r \omega \alpha_{0}=0.40 \times 0.0001 \times(-48,3)=0.00
$$

Hence $n=n_{1}=0.40$ and $u=0.00304$, the same as obtained by the other method.

When $F_{n}=e^{u}$, it is easily shown, either by means of series (d) or by independent methods, that

$$
\begin{aligned}
& n \omega=\log \left(\mathrm{I}+n_{1} \omega\right) \quad . \quad . \quad . \quad . \quad . \quad . \quad(e) \\
& n=+n_{1}-0.005 n_{1}^{2}+0.000,033 n_{1}^{3}+\ldots \quad(\omega=\mathrm{o.01}) \\
& n=+n_{1}-0.0005 n_{1}^{2}+\ldots \quad(\omega=\mathrm{o.001})
\end{aligned}
$$

These formulæ afford an easy means of finding the natural logarithm of a

[^7]number from the tabular values of $e^{ \pm u}$. Thus, to find the natural logarithm of 0.9642 IO , we compute
$$
n_{1}=\frac{0.9646403-0.9642102}{0.0009646403}=0.44587
$$

Substituting in the last of the above equations

$$
n=0.44587-0.0005 \times(0.45)^{2}=0.44577
$$

hence nat \log of $0.9642102=-0.0364458$.
One of the most important applications of differences is the detection of errors in values tabulated at equal intervals of the argument. It may be shown by substitution in the schedule of differences (page xxxiv) that an error, $+\epsilon$, in F_{0} produces errors in the successive differences of any order which are multiples of ϵ, the law of distribution of the multiples being that of the corresponding coefficients of the binomial theorem, and the signs of the errors being alternately positive and negative. Since some order of differences of every continuous function must vanish, the presence of an error in a tabular value must ultimately result in producing successive differences of a certain order which alternate in sign. A comparison of these differences with the corresponding binomial coefficients enables one to estimate the magnitude of the error. Thus in the series which follows:

X	X^{3}	Δ^{\prime}	$4^{\prime \prime}$	$4^{\prime \prime \prime}$	$\Delta i v$
I 3	2197				
		547			
14	2744	$63 \mathrm{I}$	84	6	
I 5	3375		90		+ 2
		721		8	
16	4096		98		- 8
17	4915	819	98	-	+ 12
		917		12	
18	5832		110		-8
		1027		4	+ 2
19	6859	I I 41	114	6	+ 2
20	8000		120		
2 I	926I	I 261			

the alternation in sign occurs in the fourth-order differences, and the numerical values are twice the coefficients of $(a+b)^{4}$. Hence there is an error of +2 units in the value 4915. The corrections $-2,+8,-12,+8,-2$ ap. plied to the fourth differences causes them to vanish, and the corrections - 2 , $+6,-6,+2$ applied to the third differences reduces them to a constant.

This method is particularly useful in detecting large accidental errors in a series of observed values and in estimating their magnitudes.

DESCRIPTION OF TABLES.

Table I is devoted to 5 -place values of the logarithmic hyperbolic sine, cosine, tangent, and cotangent of u expressed in radians. The argument u advances by ten-thousandths from o to O.I, by thousandths from o. I to 3.0 , and by hundredths from 3.0 to 6.0 In this as in all the tables (except Table VII), instead of the first differences, the first derivatives of the functions multiplied by the tabular interval (ω) are tabulated in units of the last decimal place, under the heading $\omega F_{0}{ }^{\prime}$. As noted above, this agrees with much of the most authoritative modern practice and facilitates interpolation. It did not appear worth while to extend the tabulation of the table beyond six radians, because higher values are seldom needed ; but in Table IV a few very high values of $e^{ \pm u}$ are given, from which in case of need the hyperbolic functions can be found.

In Table II the natural values of the hyperbolic functions are tabulated for the same arguments as in Table I. In some instances the values are given to one or to two places of decimals more than would be obtained by taking the inverse logarithms of the preceding table.

Table III gives $\sin u=-i \sinh i u$ and $\cos u=\cosh i u$ with their logarithms to 5 decimal places, the argument u being expressed in radians. The tabulation extends from $u=0.0000$ to 0.1000 , and from $u=0.100$ to r. 600 , because $90^{\circ}=1.5707963$ radians; so that, this value of $\frac{\pi}{2}$ being borne in mind, the table affords the means of finding the sine or cosine of any arc expressed in radians.

Independently of hyperbolic functions, this table is often convenient. It also facilitates the computation of the principal hyperbolic functions of complex variables. Thus

$$
\begin{aligned}
& \sinh (u \pm i v)=\sinh u \cos v \pm i \cosh u \sin v \\
& \cosh (u \pm i v)=\cosh u \cos v \pm i \sinh u \sin v
\end{aligned}
$$

and to compute either of these functions it is only needful to take out two tabulated logarithms from Table III, two from Table I, make two additions, and look out two antilogarithms. It is of course conceivable that all the four quantities involved shnuld be tabulated once for all; but even if u and v advanced only by hundredths, such a table would occupy 200 pages. To find from it functions corresponding to u and v expressed in thousandths would require three interpolations-a process quite as laborious as the use of the tables here given.

Space which would otherwise be vacant is utilized to give the angular values of the radian arguments, or a table of conversion of radians from xliii
0.0000 to 0.1000 and from 0.100 to I .600 into degrees, minutes, seconds, and hundredths of a second.

Table IV gives the values of $\log _{10} e^{u}, e^{u}$ and e^{-u} to 7 decimal places from $u=0.000$ to 3.000 and from 3.00 to 6.00 . The values of e^{u} and e^{-u} enter into a vast number of equations representing natural phenomena, especially those (as Cournot remarked) which can be classed under the generic denomination of phenomena of absorption or gradual extinction. The ascending and descending exponentials may be regarded at will either as hyperbolic functions or as independent components of hyperbolic functions, since

$$
e^{ \pm u}=\cosh u \pm \sinh u
$$

while, on the other hand,

$$
\begin{aligned}
& \sinh u=\frac{e^{u}-e^{-u}}{2} ; \cosh u=\frac{e^{u}+e^{-u}}{2} ; \\
& \tanh u=\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}} ; \operatorname{gd} u=2 \tan ^{-1} e^{u}-\frac{\pi}{2} .
\end{aligned}
$$

It is further evident that a table of $e^{ \pm u}$ is a table of natural antilogarithms. Formula e on page xli affords an easy means of obtaining the natural logarithm of a number from the tabular values of $e^{ \pm u}$. It is of course unnecessary to give the derivative of e^{u}, since this is e^{u}, while the derivative e^{-u} is $-e^{-u}$. In general the interpolation or extrapolation of the function is very easy. (See formula c, page xxxix). The logarithm of e^{-u} is not given because, being merely the arithmetical complement of the $\log _{10} e^{u}$, it can be read off as fast as it can be written down.

In any table of $\log _{10} e^{u}$ where the interval of u is ω, the difference of successive logarithms is constant and equal to $\omega \log _{10} e$ or 0.43429448ω. If the logarithm of $e^{u+n \omega}$ is required, this will be

$$
(u+n \omega) \log _{10} e=\log _{10} e^{u}+n \omega \log _{10} e .
$$

Hence it is practicable to prepare an extended table of proportional parts or a table of $n \log _{10} e$ which is applicable to any table of $\log _{10} e^{n}$ when the tabulated values are multiplied by ω. Such an auxiliary table is given at the close of Table IV, in which the argument $\frac{n}{\omega}$ varies from 0.000 to 0.500 . If ω is unity, this is merely a 5 -place table of $\log _{10} e^{u}$. If, on the other hand, ω is o.oor, as in the earlier part of Table IV, the auxiliary table gives the increments corresponding to n to 8 places of decimals. Thus, if $\log _{10} e^{0.088245}$ is required, Table IV gives $\log _{10} e^{0.088}=0.0382179$, the auxiliary table gives for $\frac{n}{\omega}=0.245, n \log _{10} e=0.10640$; and since $\omega=0.00 \mathrm{I}, \omega n \log _{10} e=$ 0.00010640, which added to $\log _{10} e^{0.088}$, gives $\log _{10} e^{0.088445}=0.0383243$. In the latter portion of Table IV ω is only o.or; so that, if the $\log _{10} e^{3.00245}$ is wanted, the main table gives $\log e^{3.00}=\mathrm{I} .3028834$, and ω times $n \log e$ is o oorio640; so that the required number is I 3039474 .

When $\log _{10} e^{u}$ is required for $u>6.00$ the auxiliary table is insufficient to give 7 -place values. Then the main table, IV, may be used as an auxiliary table. Thus

$$
\begin{aligned}
\log e^{11.088245} & =\log e^{11}+\log e^{0.088245} \\
& =4.7772393+0.0383243=4.8155636 .
\end{aligned}
$$

In the second part of Table IV values of $e^{ \pm u}$ and the logarithms of e^{u} are given, u varying from I to roo. The logarithms are given to io decimals; the other functions to 9 significant figures. Such high values are seldom needed, but are included here lest these tables might some times fail the computer.

Table V gives the natural logarithms of numbers from I to rooo, with their derivatives to 5 places of decimals. These derivatives are merely the reciprocals of the arguments, and since $\log _{e}\left(\frac{I}{y}\right)=-\log _{e} y$, the logarithms of the derivatives are the tabulated logarithms taken negatively. The table thus gives, in addition to the logarithms of 1000 whole numbers, the logarithms of rooo proper fractions lying between o.oor and unity.

The interpolation of natural logarithms is much less simple than is that of common logarithms, and this is the main reason why the latter are preferred for computation. A few simple rules, however, facilitate the needful calculations. When the natural logarithm of a vulgar fraction is required it is best to look out the logarithm of both numerator and denominator and subtract. If the natural logarithm is required of a fractional number stated decimally and less than 21.000 , no attempt should be made to interpolate it directly, because the third differences of the table cannot be neglected for numbers so near the beginning of the table. If the number lies between 10.000 and 21.000 , as, for example, 12.345 , it should be written $123.45 /$ Io, and the required logarithm will be nat $\log 123.45$ - nat \log io. It is safe to interpolate the first of these between nat $\log 123$ and nat $\log 124$, using the formula for second differences. If the number whose logarithm is to be found lies between I and io, as, for example, 8.2468 , it should be written 824.68 / Ioo, so that the required quantity is nat $\log 824.68$ - nat $\log 100$. The first of these logarithms can be found by using only the mean first differences or the tabulated derivatives between the logarithms of 824 and 825. For values of the argument between 21 and 158 interpolation requires the use of second differences, while above i58 average first differences or the first derivative is sufficiently accurate, inasmuch as the error involved is less than half a unit in the fifth decimal place.

It would be possible to interpolate the negative logarithms of the smaller fractions given by the derivatives-that is, from the reciprocal of 159 on to the end of the table, or for numbers between 0.00628 and $0.00100-b u t$ this would not be expedient, because these reciprocals are themselves rounded values. If the natural logarithm of 0.0068352 is wanted as accurately as
the tables will give it, it is best to find the logarithm of 683.52 and to subtract from it the logarithm of roo,000. (See also formula e, page xli.)

The use of second differences may be avoided altogether if the computer chooses, for any number not lying between 158 and i,000 may be multiplied and divided by another number which will bring the numerator within these limits. Thus, if, as before, nat $\log 12.345$ is required, this number may be written $246.90 / 20$, and the natural logarithm of the numerator found by help of the derivative, less nat $\log 20$, is the required value.

The awkwardness of a table of natural logarithms is inherent and cannot be overcome by any device. It depends on the fact that e and the base of numeration, the number io, are incommensurable quantities. If our numeration were duodecimal, as it might have been had six fingers to a hand been the rule instead of the exception, i2 would also have been the most convenient base for a table of logarithms. A great table of natural logarithms, such as Barlow's 8 -place table of all numbers from i to io,000, is only a little more convenient than that here offered, and with it, too, it is expedient to multiply any small number by a factor such that the product approaches io,000.

Table VI gives the values of the gudermannian of u to 7 places from $u=0.000$ to $u=3.000$ and from $u=3.00$ to $u=6.00$. In this table u is expressed in radians, and $g d u$ both in radians and in angular measure. For theoretical work the gudermannian in radians is usually the more convenient, but for use in finding hyperbolic functions it must be reduced to an angle.

The gudermannian, $g d u$, is connected with the hyperbolic functions by the following well-known relations:

$$
\begin{aligned}
& \sinh u=\tan g d u ; \cosh u=\sec g d u ; \tanh u=\sin g d u \\
& \tanh \frac{u}{2}=\tan \frac{1}{2} g d u ; u=\log _{e} \tan \left(\frac{\pi}{4}+\frac{1}{2} g d u\right) .
\end{aligned}
$$

Thus Table VI, with the help of a 7 -place table of logarithms of the circular functions, gives 7 -place values of the hyperbolic functions.

The derivative of $g d u$ is sech u, and can be used independently of the gudermannian.

Table VII is substantially a reversion of Table VI, and gives the antigudermannian in terms of the gudermannian, both, however, being expressed in minutes and decimals of a minute. If m is the antigudermannian expressed in minutes and u the same function expressed in radians,

$$
m=3437.7468 u=3437.7468 \log _{e} \tan \left(\frac{\pi}{4}+\frac{1}{2} g d u\right)
$$

Table VII is a table of m, and if m is multiplied by 0.0002908882 I the product is u in radians. This table is known to navigators as a table of Meridional Parts for a Spherical Globe. It is frequently of use in the discussion of physical questions and is the very foundation of navigation with Mercator charts. In the more modern works on navigation, however, the
ellipticity of the meridian is allowed for in computing tables of meridional parts, and consequently this table will probably never be reproduced in a navigator. For this reason it is here preserved for computers who are not engaged in navigation.

To test this table, which is borrowed from Inman, 200 of the values, or one in every 27 entries, were compared with Gudermann's 7-decimal place table of the antigudermanaian in radian measure. In nearly all cases Inman's last figure was confirmed, but in a few instances the last figure is incorrect by a unit. Inquiry into these cases showed that the maximum error detected was less than o oo6 of a minute. Thus the last figure is not absolutely trustworthy, but is near enough to enable the computer to interpolate accurately to 5 places. If 7 places of the antigudermannian are required, they can be found by inverse interpolation in Table VI.

The earlier part of Table VII may be interpolated by first differences without considerable error. At about $84^{\circ} 30^{\prime}$ one-eighth of the second difference becomes approximately half a unit in the last tabulated place, and beyond this point second differences should be taken into account.

Table VIII is a table for converting radians into angular measure and vice versa. A few numerical constants are appended.

HISTORICAL NOTE.

The first and most important application of the functions now known as hyperbolic was made by Gerhard Mercator (Kremer) when he issued his map on " Mercator's projection," in $\mathbf{1 5 6 9}^{5}$, or, as some say, in 1550 , while Bowditch gives the date as 1566 . To this day substantially all of the deepsea navigation of the world is carried on by the help of this projection, which has been modified only to the extent of correcting the " meridional parts" for the ellipticity of the meridian. Mercator's problem was to find a projection on which the loxodrome should be a straight line. The solution is unique, and for a spherical globe is $\lambda=g d \frac{m}{a}$ where λ is the latitude, m the "meridional part," or the ordinate on the projection of a point in latitude λ, and a is the radius of the sphere. Of course, this relation gives

$$
\frac{m}{a}=\log _{e} \tan \left(\frac{\pi}{4}+\frac{\lambda}{2}\right)
$$

and this Mercator must have tabulated. He published his map without explanation, however, and it was left to Edward Wright in 1599 to state the formula for m.
"The actual inventor of the hyperbolic trigonometry," says Professor McMahon, "was Vincenzo Riccati, S. J. (Opuscula ad res Phys. et Math. pertinens, Bononiae, 1757). He adopted the notation Sh. ϕ, Ch. ϕ, for the hyperbolic functions and $S c . \phi, C c . \phi$ for the circular ones. He proved the addition theorem geometically, and derived a construction for the solution of a cubic equation. Soon after Daviet de Foncenex showed how to interchange circular and hyperbolic functions by the use of $\sqrt{-1}$, and gave the analogue of de Moivre's theorem, the work resting more on analogy, however, than on clear definition (Reflex. sur les quant. imag., Miscel. Turin Soc., Tom. I). Johann Heinrich Lambert systematized the subject and gave the serial developments and the exponential expressions. He adopted the notation $\sinh u$, etc., and introduced the transcendent angle, now called the gudermannian, using it in computation and in the construction of tables ${ }^{1}$."
C. Gudermann published an important memoir on Potential or Cyclichyperbolic functions in 1830^{2}, followed by extended tables. In recogni-

[^8]tion of his contributions to the subject, Cayley, in $1862,{ }^{1}$ proposed the name gudermannian ${ }^{2}$ for the angle which Lambert called transcendent, and which had been variously designated by others. Among other more recent works on hyperbolic functions are Siegmund Günther's Lehre von den Hyperbelfunctionen, 188ı, and Mr. James McMahon's Hyperbolic Functions, 4th edition, 1906.

The first large table of hyperbolic functions we have met with is Legendre's table of $\log \tan \left(\frac{\pi}{4}+\frac{\lambda}{2}\right)$ to 12 decimals. The argument advances by increments of 30 minutes, but five differences are tabulated to facilitate interpolation. ${ }^{3}$ Gudermann in 183 I published a table of the same function, using centesimal degrees and advancing by hundredths of a degree $\left(0^{\circ} o^{\prime} 32^{\prime \prime} .4\right)$ from o to an entire quadrant, the function being given to seven decimal places. This was later supplemented by a table advancing by hundredths of a degree from 88° to 100°, the function being given to eleven decimal places. Gudermann also gave a 9-place table of $\log \cosh u, \log$ $\sinh u$, and log $\tanh u$, from $u=2.000$ to $u=5.000$, and a ro-place table of the same functions from $u=5.00$ to $u=12.00$.

In 1862 Z. F. W. Gronau ${ }^{4}$ published a 5-place table of hyperbolic functions, the argument being the gudermannian $g d u$ in sexagesimal degrees and minutes. He tabulated to this argument $\log \cosh u, \log \sinh u$, and the Briggs logarithm of $\left(\frac{\pi}{4}+\frac{g d u}{2}\right)$ instead of the natural logarithms of this function, following therein a suggestion of Lambert.

In 1890 W. Ligowski issued his Tafeln der Hyperbelfunctionen und der Kreisfunctionen, which is admirably accurate and much the most useful collection of tables of the hyperbolic functions hitherto printed. He filled the gap left by Gudermann by computing $\log \sinh u, \log \cosh u$, and \log $\tanh u$ from $u=0.000$ to 2.000 . These he gives to only 5 places, but in addition he tabulates $g d u$ in degrees, minutes, seconds, and decimals of a second. These values are in all cases sufficiently accurate to enable the computer to take out from an ordinary table of logarithms 7 -place values of the logarithms of $\cosh u$, $\sinh u$, and tanh u. The argument ranges from 0.000 to 2.000 and from 2.00 to 6.00 for $g d u$, while $\log \cosh u$ and $\log \sinh u$ are carried up to $u=9.00$. Ligowski also gives the natural functions $\cosh u$, $\sinh u, \cos u$, and $\sin u$ to 6 decimals for values of u in radians from 0.00 to 2.00 , the $\cosh u$ and $\sinh u$ being continued to $u=8.00$. The only fault we can find with Ligowski's tables is that the increments of the argument are sometimes inconveniently large.

[^9]In 1883 F . W. Newman published a 12 place table ${ }^{1}$ of the descending exponential from $u=0.000$ to $u=15.349$, and a 14 -place table of the same function advancing by two-thousandths from 15.350 to 17.298 and by five-thousandths from 17.298 to 27.635 . In the same volume appeared Mr. J. W. L. Glaisher's tables of the ascending and descending exponential to nine significant figures, with ro-place logarithms. The argument advances by onethousandth to o.r; by one-hundredth to 2.00 ; by one-tenth to 10 , and by a single unit to 500 .

Mr. A. Forti's Nuove Tavole delle Funzioni Iperboliche were published in 1892. The hyperbolic sines, cosines, and tangents, together with their logarithms, are given to six decimals from 0.0000 to 0.2000 , from 0.200 to 2.000 , and from 2.00 to 8.00 . Frequent errors, however, of one, two, and three units in the last decimal place practically limit these tables to five places. The gudermannian is tabulated in degrees, minutes, seconds, and tenths of a second, and the logarithms of the arguments are given to seven places.

In the volume here presented the first thousand values of $\log \sinh u, \log$ $\cosh u$, and $\log \tanh u$ have been computed; the remaining values have been taken from the tables of Gudermann or Ligowski. The values of the natural hyperbolic sines and cosines for values of the argument <0.1 and of the tangents for arguments >2.0 have been computed; the remaining values have been taken from the tables of Forti and Ligowski. A recomputation of a great number of the borrowed values was made in order to obtain the required accuracy. The values of coth u and $\log \operatorname{coth} u$ have been computed.

In Table III the sines and cosines were obtained by interpolation from the 7 -place values of natural sines and cosines given in Hülsse's Vega, where the argument is expressed in angle. The logarithms of the sines and cosines and the angular equivalents of the arguments have been computed.

In Table IV the values of e^{-u} are all taken from Newman's great table. Those of e^{+u} from 0.000 to 0.100 and from I to 100 are from Glaisher's table. The remainder we computed, checking the results by Glaisher's table or by reciprocating. It should be noted that the 7 place table of e^{u} given in Hülsse's edition of Vega is inaccurate and really amounts to no more than a 5 -place table. The logarithms of e^{u} were computed independently of the values of e^{u}.

Tables V and VIII are borrowed.
The values of $g d u$ in Table VI in terms of angle are taken from Ligowski, excepting the thousand values between $u=2.000$ and 3.000 . These were interpolated from Ligowski's values (2.00 to 3.00) with due checks on his accuracy. In preparing the table of $g d u$ in radians it was necessary for us to make an independent computation of this function from $u=0.300$ to $u=3.000$ in order to secure accuracy in the seventh significant figure. The remaining values were derived from Ligowski by converting angles

[^10]into radians. A considerable number of his values, however, were tested by independent computation.

Table VII is borrowed from the Nautical tables of James Inman, revised by James W. Inman, London, I867, with a few small corrections.

Finally, it may be remarked that the derivatives as given in these tables have been computed for them. They are not derived from the differences of the values as printed, but from more extended values, or are computed independently, and the error of the derivatives as well as of the functions is less than one-half of a unit in the next succeeding decimal place.

These tables were prepared in connection with the geophysical work of the United States Geological Survey, and are published with the permission of the Director.

George F. Becker.
C. E. Van Orstrand.

[^11]TABLE I

LOGARITHMS OF HYPERBOLIC FUNCTIONS

Logarithms of Hyperbolic Functions.

U	lonsinh \%	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	\log coth u
0.0000	- ∞	- ∞	0.00000	0,0	- ∞	$\mp \infty$	∞
. 0001	6.00000	43429,4	. 00000		6.00000	43429,4	4.00000
. 0002	. 30103	21714,7	. 00000		. 30103	21714,7	3.69897
. 0003	. 47712	14476,5	. 00000		. 47712	14476,5	. 52288
. 0004	. 60206	10857,4	. 00000		. 60206	10857,4	. 39794
0.0005	6.69897	8685,9	0.00000	0,0	6.69897	8685,9	$3 \cdot 30103$
. 0006	.778I5	7238,2	. 00000		.77815	7238,2	. 22185
. 0007	. 84510	6204,2	. 00000		. 84510	6204,2	. 15490
. 0008	. 90309	5428,7	. 00000		. 90309	5428,7	. 09691
. 0009	. 95424	4825,5	. 00000		. 95424	4825,5	. 04576
0.0010	7.00000	4342,9	0.00000	0,0	7.00000	4342,9	3.00000
. 0011	.04I39	3948, I	. 00000		.04139	3948, 1	2.95861
. 0012	. 07918	3619,1	. 00000		. 07918	3619, 1	. 92082
.0013	. II394	3340,7	. 00000		. II 394	3340,7	. 88606
.0014	. 14613	3102,1	. 00000		. 14613	3102,1	.85387
0.0015	7.17609	2895,3	0.00000	0,0	7.17609	2895,3	2.82391
. 0016	. 20412	2714,3	. 00000		. 20412	2714,3	. 79588
.0017	. 23045	2554,7	. 00000		. 23045	2554,7	. 76955
.0018	. 25527	2412,7	. 00000		. 25527	2412,7	. 74473
.0019	. 27875	2285,8	. 00000		. 27875	2285,8	. 72125
0.0020	7.30103	2171,5	0.00000	0,0	7.30103	2171,5	2.69897
.002I	. 32222	2068, 1	. 00000		. 32222	2068, I	. 67778
. 0022	. 34242	1974, 1	. 00000		- 34242	1974, I	. 65758
. 0023	-36I73	1888,2	. 00000		. 36173	1888,2	. 63827
. 0024	.3802 I	I809,6	. 00000		.3802I	1809,6	. 61979
0.0025	$7 \cdot 39794$	1737,2	0.00000	0,0	7.39794	1737,2	2.60206
. 0026	. 41497	1670,4	. 00000		. 41497	1670,4	. 58503
. 0027	. 43136	1608,5	. 00000		. 43136	1608,5	. 56864
. 0028	. 44716	I551, I	. 00000		. 44716	1551,0	. 55284
. 0029	. 46240	1497,6	. 00000		. 46240	1497,6	- 53760
0.0030	7.47712	I447,7	0.00000	0,0	7.47712	1447,6	2.52288
.003I	. 49136	I40I, 0	. 00000		. 49136	I400,9	. 50864
. 0032	. 50515	1357,2	. 00000		. 50515	1357,2	. 49485
. 0033	. 5185 I	I 316,0	. 00000		. 51851	1316,0	. 48149
. 0034	. 53148	1277,3	. 00000		. 53148	1277,3	. 46852
0.0035	7.54407	I240,8	0.00000	0,0	7.54407	I240,8	2.45593
. 0036	. 55630	1206,4	. 00000		. 55630	I206,4	. 44370
. 0037	. 56820	II73,8	. 00000		. 56820	1173,8	. 43180
. 0038	. 57978	I I 42,9	. 000000		. 57978	I I 42,9	. 42022
. 0039	. 59107	III3,6	. 00000		. 59106	I I I 3,6	. 40894
0.0040	7.60206	1085,7	0.00000	0,0	7.60206	1085,7	2.39794
. 0041	. 61279	1059,3	. 00000		. 61278	1059,2	- 38722
. 0042	. 62325	1034,0	. 00000		. 62325	1034,0	- 37675
. 0043	. 63347	1010,0	. 00000		. 63347	IOIO,O	- 36653
. 0044	. 64345	987,0	. 00000		. 64345	987,0	- 35655
0.0045	7.65321	965, I	0.00000	0,0	7.65321	965, I	2.34679
. 0046	. 66276	944, I	. 00000		. 66275	944, I	- 33725
. 0047	. 67210	924,0	. 00000		. 67209	924,0	- 32791
. 0048	.68124	904,8	. 00001		. 68124	904,8	- 31876
. 0049	. 69020	886,3	. 0000 I		. 69019	886,3	-3098I
0.0050	7.69897	868,6	0.00001	0,0	7.69897	868,6	$2 \cdot 30103$
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \mathbf{c s c} \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0050	7.69897	868,6	0.00001	0,0	7.69897	868,6	2.30103
.005I	. 70757	851,6	.0000I		. 70757	$85 \mathrm{I}, 5$. 29243
. 0052	. 71601	835,2	.0000I		. 71600	835,2	. 28400
. 0053	. 72428	819,4	. 00001		. 72427	819,4	. 27573
. 0054	.73240	804,3	. 00001		. 73239	804,2	. 26761
0.0055	7.74036	789,6	0.00001	0,0	7.74036	789,6	2.25964
. 0056	.74819	775,5	.0000I		.74818	775,5	. 25182
. 0057	. 75588	761,9	.00001		. 75587	761,9	. 24413
. 0058	. 76343	748,8	. 00001		. 76342	748,8	. 23658
. 0059	. 77085	736,1	.0000I		.77085	736,1	. 22915
0.0060	7.77815	723,8	0.00001	0,0	7.77815	723,8	2.22185
. 0061	. 78533	712,0	.0000I		. 78532	711,9	. 21468
. 0062	. 79239	700,5	.0000I		. 79239	700,5	. 20761
. 0063	. 79934	689,4	.0000I		. 79933	689,3	. 20067
. 0064	. 80618	678,6	. 0000 I		. 80617	678,6	. 19383
0.0065	7.81292	668, I	0.00001	0,0	7.81291	668, 1	2. 18709
. 0066	.81955	658,0	. 00001		.81954	658,0	. 18046
. 0067	. 82608	648,2	. 00001		. 82607	648,2	. 17393
. 0068	. 83251	638,7	.0000I		. 83250	638,6	. 16750
. 0069	. 83885	629,4	. 0000 I		. 83884	629,4	. I6II6
0.0070	7.84510	620,4	0.00001	0,0	7.84509	620,4	2.15491
. 0071	. 85126	6II,7	.0000I		. 85125	611,7	. 14875
. 0072	. 85734	603,2	.00001		. 85732	603,2	. I 4268
. 0073	. 86333	594,9	.0000I		. 86332	594,9	. I3668
. 0074	. 86924	586,9	.0000I		. 86922	586,9	. 13078
0.0075	7.87507	579, I	0.00001	0,0	7.87505	579,0	2.12495
.0076	. 88082	571,4	. 00001		.88081	571,4	. II919
. 0077	. 88649	564,0	. 00001		. 88648	564,0	. II352
. 0078	. 89210	556,8	. 00001		. 89209	556,8	. 10791
. 0079	. 89763	549,7	.0000I		. 89762	549,7	. 10238
0.0080	7.90309	542,9	0.00001	0,0	7.90308	542,8	2.09692
.008I	. 90849	536,2	.0000I		. 90848	536, I	. 09152
. 0082	.91382	529,6	.0000I		.91380	529,6	. 08620
. 0083	.91908	523,2	. 00001		. 91907	523,2	. 08093
. 0084	. 92428	517,0	. 00002		. 92427	517,0	. 07573
0.0085	7.92942	510,9	0.00002	0,0	7.92941	510,9	2.07059
. 0086	. 93450	505,0	. 00002		. 93449	505,0	.0655I
. 0087	. 93952	499,2	. 00002		.9395I	499,2	. 06049
. 0088	. 94449	493,5	. 00002		. 94447	493,5	. 05553
. 0089	. 94940	488,0	. 00002		. 94938	487,9	. 05062
0.0090	7 7.95425	482,6	0.00002	0,0	7.95423	482,5	2.04577
.0091	. 95905	477,3	. 00002		. 95903	477,2	. 04097
. 0092	. 96379	472, I	. 00002		. 96378	472,0	. 03622
. 0093	. 96849	467,0	. 00002		. 96847	467,0	.03153
. 0094	.97313	462,0	. 00002		. 97312	462,0	. 02688
0.0095	7.97773	457,2	0.00002	0,0	7.97771	457,I	2.02229
. 0096	. 98228	452,4	. 00002		. 98226	452,4	. 01774
. 0097	. 98678	447,7	. 00002		. 98676	447,7	. OI324
. 0098	. 99123	443,2	. 00002		. 99121	443, I	. 00879
. 0099	. 99564	438,7	. 00002		. 99562	438,7	. 00438
0.0100	8.00001	434,3	0.00002	0,0	7.99999	434,3	2.00001
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cosh u$	$\omega F_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0100	8.00001	434,3	0.00002	0,0	7.99999	434,3	2.00001
. OIOI	. 00433	430,0	. 00002		8.0043 I	430,0	1.99569
. 0102	.0086I	425,8	. 00002		. 00859	425,7	.99141
. 0103	. 01284	421,7	. 00002		. 01282	42I,6	.98718
. 0104	. 01704	417,6	. 00002		. 01702	417,6	. 98298
0.0105	8.02120	413,6	0.00002	0,0	8.02117	413,6	1.97883
. 0106	.02531	409,7	. 00002		. 02529	409,7	. 97471
. 0107	. 02939	405,9	. 00002		. 02937	405,9	. 97063
. 0108	. 03343	402, I	. 00003		.0334I	402,1	. 96659
. 0109	. 03744	398,5	. 00003		.0374I	398,4	. 96259
0.0110	8.04140	394,8	0.00003	0,0	8.04138	394,8	1. 95862
.OIII	. 04533	391,3	. 00003		.04531	391,2	. 95469
. OII2	. 04923	387,8	. 00003		. 04920	387,7	. 95080
. OII3	. 05309	384,4	. 00003		. 05306	384,3	. 94694
. OII4	.05691	38I,0	. 00003		. 05689	380,9	.943II
0.0115	8.06071	377,7	0.00003	0,0	8.06068	377,6	I. 93932
. OI 16	. 06447	374,4	. 00003	0,I	. 06444	374,4	. 93556
. 0117	. 06820	371,2	. 00003		.06817	371,2	.93183
. 0118	. 07189	368, 1	. 00003		.07186	368,0	.928I4
. 0119	. 07556	365,0	. 00003		. 07553	364,9	. 92447
0.0120	8.07919	361,9	0.00003	O,I	8.07916	361,9	1.92084
. 0121	. 08280	358,9	. 00003		. 08276	358,9	. 91724
. 0122	. 08637	356,0	. 00003		. 08634	355,9	.91366
. 0123	. 08992	353, I	. 00003		. 08988	353,0	.91012
. 0124	. 09343	350,3	. 00003		. 09340	350,2	. 90660
0.0125	8.09692	347,5	0.00003	O,I	8.09689	347,4	1.903II
. 0126	. 10038	344,7	. 00003		. 10035	344,6	. 89965
. 0127	. 10382	342,0	. 00004		. 10378	341,9	. 89622
. 0128	. 10722	339,3	. 00004		. 10719	339,3	. 8928 I
. 0129	. 11060	336,7	. 00004		. 11057	336,6	. 88943
0.0130	8.11396	334, I	0.00004	O,I	8.11392	334,0	I. 88608
.OI3I	. II728	33I,5	. 00004		. II725	331,5	. 88275
.OI32	. 12059	329,0	. 00004		. 12055	329,0	. 87945
. OI33	. 12386	326,6	. 00004		. 12383	326,5	. 87617
. 0134	. 12712	324, I	. 00004		. 12708	324, I	. 87292
0.0135	8. I3035	321,7	0.00004	0,I	8.1303I	331,7	1. 86969
. 0136	. I3355	319,4	. 00004		. I335I	319,3	. 86649
. 0137	. I3673	317,0	. 00004		. I3669	317,0	.8633I
. 0138	. I3989	314,7	. 000004		. I3985	314,7 $3 \mathrm{I} 2,4$. 86015
. 0139	. 14303	312,5	. 00004		. 14299	312,4	.8570I
0.0140	8.14614	310,2	0.00004	O,I	8.14610	310,2	1. 85390
. 0174	. 14923	308,0	. 00004		. 14919	308,0	. 85081
. 0142	. 15230	305,9	.00004		. 15226	305,8	. 84774
. 0143	. 15535	303,7	. 00004		. I553I	303,7	. 84469
. 0144	. 15838	301,6	. 00005		. 15833	301,6	. 84167
0.0145	8.16138	299,5	0.00005	O,I	8. 16134	299,5	1.83866
. 0146	. 16437	297,5	. 00005		. 16432	297,4	. 83568
. 0147	. 16733	295,5	. 00005		. 16729	295,4	. 83271
. 0148	.17028 .17320	293,5	. 000005		.17023 .17315	293,4	. 82977
. 0149	. 17320	291,5	. 00005		. 17315	291,4	. 8268
0.0150	8.176II	289,6	0.00005	0,I	8.17606	289,5	I. 82394
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathbf{u}$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0150	8.176II	280,6	0.00005	O, I	8. 17606	289,5	I. 82394
. 0151	. 17899	287,6	. 00005		. 17894	287,6	.82106
.OI52	. 18186	285,7	. 00005		. 18181	285,7	.8I8I9
. 0153	. 18471	283,9	. 00005		. 18466	283,8	.81534
. 0154	. 18754	282,0	. 00005		. 18749	282,0	.8I25I
0.0155	8.19035	280,2	0.00005	O,I	8. 19030	280, 1	1. 80970
. 0156	. 193I4	278,4	. 00005		. 19309	278,3	. 80691
. 0157	. 19592	276,6	.00005		. 19586	276,6	. 80414
.or58	. 19868	274,9	.00005		. 19862	274,8	. 80138
. 0159	. 20142	273,2	. 00005		. 20136	273, I	. 79864
0.0160	8.20414	271,5	0.00006	O,I	8.20408	271,4	I. 79592
. 0161	. 20684	269,8	. 00006		. 20679	269,7	. 79321
.0162	. 20953	268, I	. 00006		. 20948	268,0	. 79052
. 0163	. 21221	266,5	. 00006		. 21215	266,4	. 78785
. 0164	. 21486	264,8	. 00005		. 21480	264,8	. 78520
0.0165	8.21750	263,2	0.00005	0,1	8.21744	263,2	1. 78256
. .0166	. 22013	261,6	. 00006		. 22007	261,6	. 77993
. 0167	. 22274	260, 1	. 00006		. 22268	260,0	. 77732
. 0168	. 22533	258,5	. 00006		. 22527	258,5	. 77473
. 0169	. 2279I	257,0	. 00006		. 22785	256,9	. 77215
0.0170	8.23047	255,5	0.00006	O,I	8.23041	255,4	1.76959
. O171	. 23302	254,0	. 00006		. 23295	253,9	. 76705
. O172	. 23555	252,5	. 00006		. 23549	252,4	. 76451
. 0173	. 23807	251, I	.00006		. 23800	251,0	. 76200
. 0174	. 24057	249,6	. 00007		. 2405 I	249,5	. 75949
0.0175	8.24306	248,2	0.00007	O,I	8.24299	248, I	1.75701
. $0176{ }^{\text {a }}$. 24554	246,8	. 00007		. 24547	246,7	. 75453
. 0177	. 24800	245,4	. 00007		. 24793	245,3	. 75207
. 0178	. 25044	244,0	. 00007		.25037	243,9	- 74963
. 0179	. 25288	242,6	. 00007		.2528I	242,6	. 74719
0.0180	8.25530	241,3	0.00007	O,I	8.25523	241,2	I. 74477
. 0181	. 25770	240,0	. 00007		. 25763	239,9	. 74237
. 0182	. 26010	238,6	. 00007		. 26002	238,6	. 73998
. 0183	. 26248	237,3	. 00007		. 26240	237,3	. 73760
. 0184	. 26484	236, I	. 00007		. 26477	236,0	. 73523
0.0185	8.26720	234,8	0.00007	O,I	8.26712	234,7	1. 73288
. 0186	. 26954	233,5	. 00008		. 26946	233,4	. 73054
. 0187	. 27187	232,3	. 00008		.27179	232,2	. 72821
. 0188	. 27418	231,0	. 00008		.274II	231,0	. 72589
. 0189	. 27649	229,8	. 00008		.2764I	229,7	. 72359
0.0190	8.27878	228,6	0.00008	O, I	8.27870	228,5	1.72130
. O19I	.28106	227,4	. 00008		. 28098	227,3	. 71902
. 0192	. 28333	226,2	. 00008		. 28325	226, I	. 71675
. 0193	. 28558	225, I	. 00008		. 28550	225,0	. 71450
. 0194	. 28783	223,9	. 00008		. 28775	223,8	.71225
0.0195	8.29006	222,7	0.00008	O, I	8.28998	222,7	1.71002
. 0196	. 29228	221,6	. 00008		. 29220	22I,5	. 70780
. 0197	. 29449	220,5	. 00008		. 29441	220,4	. 70559
. 0198	. 29669	219,4	. 00009		.2966I	219,3	. 70339
. 0199	. 29888	218,3	. 00009		. 29880	218,2	. 70120
0.0200	8.30106	217,2	0.00009	O, I	8.30097	217, 1	1.69903
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }}$ coth u
0.0200	8.30106	217,2	0.00009	O,I	8.30097	217,1	1.69903
.0201	. 30323	216,1	. 00009		-30314	216,0	. 69686
. 0202	. 30538	215,0	. 00009		. 30529	214,9	. 6947 I
. 0203	. 30753	214,0	. 00009		. 30744	213,9	. 69256
. 0204	. 30966	212,9	. 00009		- 30957	212,8	. 69043
0.0205	8.31178	2II,9	0.00009	O,I	8.31169	2II,8	1.68831
. 0206	. 31390	210,9	. 00009		. 3138 I	210,8	. 686I9
. 0207	. 31600	209,8	. 00009		.3159I	209,7	. 68409
. 0208	.31809	208,8	. 00009		. 31800	208,7	. 68200
. 0209	-32018	207,8	. 00009		. 32008	207,7	. 67992
0.0210	8.32225	206,8	0.00010	O,I	8.32216	206,7	1. 67784
.0211	. 3243 I	205,9	.00010		. 32422	205,8	. 67578
. 0212	. 32637	204,9	.00010		. 32627	204,8	. 67373
. 0213	. 3284 I	203,9	. 00010		. 32831	203,8	. 67169
. 0214	. 33045	203,0	. 00010		. 33035	202,9	. 66965
0.0215	8.33247	202,0	0.00010	O,I	8.33237	201,9	r. 66763
. 0216	. 33449	201, I	. 00010		. 33439	201,0	. 66561
. 0217	. 33649	200,2	.00010		. 33639	200, I	. 66361
. 0218	. 33849	199,2	.00010		. 33839	199,2	. 66161
. 0219	- 34048	198,3	.00010		- 34037	198,2	. 65963
0.0220	8.34246	197,4	0.00011	O, I	8.34235	197,3	1. 65765
.022I	. 34443	196,5	.0001 I		. 34432	196,4	. 65568
. 0222	. 34639	195,7	.000I I		. 34628	195,6	. 65372
. 0223	- 34834	194,8	.0001 I		. 34823	194,7	. 65177
. 0224	- 35028	193,9	.000II		. 35018	193,8	. 64982
0.0225	8.35222	193, 1	0.00011	O,I	8.352II	193,0	1. 64789
. 0226	. 35415	192,2	.000I I		. 35403	192, I	. 64597
. 0227	. 35606	191,4	.0001 I		. 35595	191,3	. 64405
. 0228	- 35797	190,5	. 0001 I		. 35786	190,4	. 64214
. 0229	-35987	189,7	.000I I		- 35976	189,6	.64024
0.0230	8.36177	188,9	0.00011	O,I	8.36165	188,8	1.63835
. 0231	. 36365	188,0	.00012		. 36353	187,9	. 63647
. 0232	. 36553	187,2	.00012		. 36541	187, 1	. 63459
. 0233	- 36740	186,4	.00012		. 36728	186,3	. 63272
. 0234	. 36926	185,6	.00012		. 36914	185,5	. 63086
0.0235	8.37 III	184,8	0.00012	O,I	8.37099	184,7	1.62901
. 0236	. 37295	184, 1	.00012		. 37283	184,0	. 62717
. 0237	- 37479	183,3	.00012		. 37467	183,2	. 62533
. 0238	. 37662	182,5	.00012		. 37649	182,4	. 62351
. 0239	- 37844	181,7	.00012		. 37832	181,6	. 62168
0.0240	8.38025	181,0	0.00013	O, I	8.38013	180,9	I. 61987
.024I	. 38206	180,2	. 00013		.38193	180, 1	.61807
. 0242	. 38386	179,5	.00013		. 38373	179,4	. 61627
. 0243	. 38565	178,8	.00013		. 38552	178,7	. 61448
. 0244	. 38743	178,0	.00013		. 38730	177,9	.61270
0.0245	8.3892 I	177,3	0.00013	O,I	8.38908	177,2	1.61092
. 0246	. 39098	176,6	.00013		. 39085	176,5	. 60915
. 0247	. 39274	175,9	.00013		-3926I	175,8	. 60739
. 0248	. 39450	175,2	. 00013		- 39436	175,0	. 60564
. 0249	-39624	174,5	.00013		. 3961 I	174,3	.60389
0.0250	8.39799	173,8	0.00014	O.I	8,39785	173,6	1.60215
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{gd}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0250	8.39799	173,8	0.00014	O,I	8.39785	173,6	1.60215
.025I	-39972	173, I	. 00014		- 39958	173,0	. 60042
. 0252	. 40145	172,4	. 00014		.4013 1	172,3	. 59869
. 0253	. 40317	171,7	.00014		. 40303	171,6	. 59697
. 0254	. 40488	171,0	.000I4		. 40474	170,9	. 59526
0.0255	8.40659	170,3	0.00014	O,I	8.40645	170,2	I. 59355
. 0256	. 40829	169,7	.00014		.408I5	169,6	. 59185
. 0257	. 40998	169,0	.00014		. 40984	168,9	. 59016
. 0258	.41167	168,4	.00014		. 41152	168,3	. 58848
. 0259	. 41335	167,7	. 00015		.41320	167,6	. 58680
0.0260	8.41502	167, I	0.00015	O,I	8.41488	167,0	1. 58512
.0261	. 41669	166,4	. 00015		. 41654	166,3	. 58346
. 0262	. 41835	165,8	. 00015		. 41820	165,7	. 58180
. 0263	. 4200 I	165,2	. 00015		. 41986	165, I	. 58014
. 0264	. 42165	164,5	. 00015		. 42150	164,4	. 57850
0.0265	8.42330	163,9	0.00015	O, I	8.42314	163,8	1. 57686
. 0256	. 42493	163,3	. 00015		. 42478	163,2	. 57522
. 0267	. 42656	162,7	. 00015		. 4264 I	162,6	. 57359
. 0268	. 42819	162, 1	. 00016		. 42803	162,0	. 57197
. 0269	. 42980	16I,5	. 00016		. 42965	161,4	. 57035
0.0270	8.43142	160,9	0.00016	O,I	8.43126	160,8	1.56874
. 0271	. 43302	160,3	. 00016		. 43286	160,2	. 56714
. 0272	. 43462	I 59,7	.00016 ${ }^{\circ}$. 43446	I 59,6	. 56554
. 0273	. 43622	159, I	.00016		. 43605	I 59,0	. 56395
. 0274	. 43780	158,5	.00016		. 43764	158,4	. 56236
0.0275	8.43939	158,o	0.00016	O, I	8.43922	157,8	I. 56078
. 0276	. 44096	157,4	. 00017		. 44080	157,3	. 55920
. 0277	. 44254	156,8	.00017		. 44237	156,7	. 55763
. 0278	. 44410	156,3	.00017		. 44393	156, I	. 55607
. 0279	. 44566	155,7	. 00017		. 44549	I 55,6	. 5545 I
0.0280	8.44721	155, I	0.00017	O,I	8.44704	155,0	1. 55296
.028I	. 44876	154,6	. 00017		. 44859	154,5	. 5514 I
. 0282	. 45031	154,0	.00017		.45013	153,9	. 54987
. 0283	. 45 I84	I 53,5	.00017		. 45167	I 53,4	. 54833
. 0284	. 45338	I 53,0	.00018		. 45320	I 52,8	. 54680
0.0285	8.45490	152,4	0.00018	O,I	8.45473	152,3	I. 54527
. 0286	. 45643	151,9	.00018		. 45625	I 51,8	. 54375
.0287	. 45794	I5I, 4	. 00018		. 45776	151,2	. 54224
. 0288	. 45945	150,8	.00018		. 45927	150,7	. 54073
. 0289	. 46096	1 50,3	.00018		. 46078	150,2	. 53922
0.0290	8.46246	149,8	0.00018	O, I	8.46228	149,7	I. 53772
.0291	. 46395	149,3	.00018		. 46377	149,2	. 53623
. 0292	. 46544	148,8	. 00019		. 46526	I48,6	. 53474
. 0293	. 46693	148,3	. 00019		. 46674	I48, 1	. 53326
. 0294	.4684I	147,8	. 00019		. 46822	147,6	. 53178
0.0295	8.46989	147,3	0.00019	O,I	8.46970	147, I	I. 53030
. 0296	. 47136	146,8	. 00019		. 47116	146,6	. 52884
. 0297	. 47282	146,3	. 00019		. 47263	146, I	. 52737
. 0298	. 47428	145,8	.00019		. 47409	145,7	. 52591
. 0299	. 47574	145,3	. 00019		. 47554	145,2	. 52446
0.0300	8.47719	144,8	0.00020	O,I	8.47699	144,7	1.52301
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0300	8.47719	144,8	0.00020	O,I	8.47699	144,7	I. 52301
.0301	. 47863	144,3	. 00020		. 47844	141,2	. 52156
. 0302	. 48007	-143,8	. 00020		. 47987	143,7	. 52013
. 0303	.48I5I	143,4	. 00020		.4813I	I43,2	. 51869
. 0304	. 48294	142,9	. 00020		. 48274	142,8	. 51726
0.0305	8.48437	I42,4	0.00020	O,I	8.48417	142,3	I. 51583
. 0306	. 48579	142,0	. 00020		. 48559	141,8	. 51441
. 0307	. 48721	I4I,5	. 00020		. 48700	141,4	- 51300
. 0308	. 48862	141,0	.0002I		.48841	140,9	. 51159
. 0309	. 49003	140,6	.0002I		. 48982	140,5	. 51018
0.0310	8.49143	I40, I	0.0002 I	O,I	8.49122	I40,0	I. 50878
.03II	. 49283	139,7	.0002I		. 49262	I 39,6	. 50738
.03I2	. 49423	139,2	. 0002 I		.4940I	I39, I	. 50599
.0313	. 49562	138,8	. 0002 I		. 49540	138,7	- 50460
.0314	. 49700	I38,4	. 0002 I		. 49679	I38,2	. 5032 I
0.0315	8.49838	137,9	0.00022	O,I	8.49817	I 37,8	I. 50183
. 0316	. 49976	137,5	. 00022		. 49954	137,3	. 50046
.03I7	. 50113	137,0	. 00022		. 50091	136,9	. 49909
.0318	. 50250	136,6	. 00022		. 50228	136,5	. 49772
.0319	. 50386	136,2	. 00022		. 50364	I36, 1	. 49636
0.0320	8.50522	135,8	0.00022	O,I	8.50500	I 35,6	I. 49500
.032I	. 50658	135,3	. 00022		. 50636	I 35,2	. 49364
. 0322	. 50793	I 34,9	. 00023		. 50771	134,8	. 49229
. 0323	. 50928	I 34,5	. 00023		. 50905	134,4	- 49095
. 0324	. 51062	I34, I	. 00023		. 51039	I33,9	-48961
0.0325	8.51196	133,7	0.00023	O,I	8.51173	I 33,5	1. 48827
. 0326	. 51329	133,3	. 00023		. 51306	I $33, \mathrm{I}$. 48694
. 0327	. 51463	132,9	. 00023		. 51439	132,7	. 48561
. 0328	.5I595	132,5	. 00023		. 51572	132,3	. 48.428
. 0329	. 51727	I32,I	. 00023		. 51704	131,9	. 48296
0.0330	8.51859	I3I,7	0.00024	O,I	8.51836	I3I,5	I. 48164
. 0331	. 51991	131,3	. 00024		. 51967	I3I, I	. 48033
. 0332	. 52122	130,9	. 00024		. 52098	130,7	. 47902
. 0333	- 52252	130,5	. 00024		. 52228	130,3	. 47772
. 0334	. 52383	I30, I	. 00024		. 52358	129,9	. 47642
0.0335	8.52513	129,7	000024	O,I	8.52488	129,5	1.47512
. 0336	. 52642	129,3	. 00025		. 52618	I29,2	. 47382
. 0337	. 52771	128,9	. 00025		. 52747	128,8	. 47253
. 0338	. 52900	128,5	. 00025		. 52875	128,4	. 47125
. 0339	. 53028	128,2	. 00025		. 53003	128,0	. 46997
0.0340	8.53I56	127,8	0.00025	O,I	8.53131	127,6	1. 46869
. 034 I	. 53284	127,4	. 00025		. 53259	127,3	. 46741
. 0342	-534II	127,0	. 00025		. 53386	126,9	. 46614
. 0343	. 53538	126,7	. 00026		. 53512	126,5	- 46488
. 0344	. 53664	126,3	. 00026		. 53639	126, I	. 46361
0.0345	8.53791	125,9	0.00026	0,I	8. 53765	125,8	I. 46235
. 0346	. 53916	125,6	. 00026	0,2	. 53890	125,4	. 46110
. 0347	. 54042	125,2	. 00026		. 54016	125, I	. 45984
. 0348	. 54167	124,8	. 00026		- 54140	124,7	. 45860
. 0349	. 5429 I	124,5	. 00026		. 54265	124,3	. 45735
0.0350	8.54416	124, I	0.00027	0,2	8.54389	124,0	I.456II
u	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0350	8.54416	124, I	0.00027	0,2	8.54389	124,0	1.456II
.035I	. 54540	123,8	. 00027		. 54513	123,6	. 45487
. 0352	. 54663	123,4	. 00027		. 54636	123,3	. 45364
. 0353	. 54786	123, I	. 00027		. 54759	122,9	. 4524 I
. 0354	. 54909	122,7	. 00027		. 54882	122,6	.45118
0.0355	8.55032	122,4	0.00027	0,2	8.55005	122,2	1. 44995
. 0356	. 55154	122,0	. 00028		. 55127	121,9	. 44873
. 0357	. 55276	121,7	. 00028		. 55248	121,5	. 44752
. 0358	. 55398	I2I,4	. 00028		. 55370	121,2	. 44630
. 0359	. 55519	121,0	. 00028		. 5549 I	120,9	. 44509
0.0360	8.55640	120,7	0.00028	0,2	8.55611	120,5	1. 44389
. 0361	. 55760	120,4	. 00028		. 55732	120,2	. 44268
. 0362	. 55880	120,0	. 00028		. 55852	I 19,9	. 44148
. 0363	. 56000	II9,7	. 00029		. 55972	I 19,5	. 44028
. 0364	. 56120	I 19,4	. 00029		. 5609 I	II9,2	. 43909
0.0365	8.56239	119,0	0.00029	0,2	8.56210	118,9	I. 43790
. 0366	. 56358	118,7	. 00029		. 56329	118,6	. 43671
. 0367	. 56476	I 18,4	. 00029		. 56447	II8,2	. 43553
. 0368	. 56595	118,1	. 00029		. 56565	II7,9	. 43435
. 0369	. 56712	117,7.	. 00030		. 56683	II7,6	. 43317
0.0370	8.56830	117,4	0.00030	0,2	8.56800	II7,3	1. 43200
.0371	. 56947	II7, I	. 00030		. 56917	II7,0	. 43083
. 0372	. 57064	116,8	. 00030		. 57034	116,6	. 42966
. 0373	-5718I	116,5	.00030		. 57151	I 16,3	. 42849
. 0374	. 57297	II6,2	. 00030		. 57267	I 16,0	. 42733
0.0375	8.57413	II5,9	0.00031	0,2	8.57383	I 15,7	1.42617
. 0376	. 57529	115,6	. 0003 I		- 57498	II 5,4	. 42502
. 0377	. 57644	I 15,3	.0003I		. 57614	II 5, I	. 42386
. 0378	. 57760	I 14,9	.0003I		. 57729	II 4,8	. 42271
. 0379	. 57874	114,6	.0003I		. 57843	II4,5.	. 42157
0.0380	8.57989	II4,3	0.0003 I	0,2	8.57957	I 14,2	1.42043
.0381	. 58103	II4,0	. 00032		. 58071	I I 3,9	. 41929
. 0382	. 58217	113,7	. 00032		. 58185	I 13,6.	.418I5
. 0383	. 58330	I 1 3,4	. 00032		. 58299	II 3,3	.41701
. 0384	. 58444	II3,2	. 00032		. 58412	II 3,0	. 41588
0.0385	8.58557	I 12,9	0.00032	0,2	8.58525	I 12,7	I. 41475
. 0386	. 58670	I 12,6	. 00032		. 58637	I 12,4	. 41363
. 0387	. 58782	I 12,3	. 00033		. 58749	II2, 1	.4125I
. 0388	. 58894	I 12,0	. 00033		. 58861	III, 8	. 41139
. 0389	. 59006	I I I,7	. 00033		. 58973	III,5.	.41027
0.0390 :	8.59117	III,4	0.00033	0,2	8.59084	III,2	I. 40916
. 0391	. 59229	III, I	. 00033		. 59196	I II, 0	. 40804
. 0392	. 59340	I IIO,8	. 00033		. 59306	110,7	. 40694
. 0393	. 59450	IIO,6.	. 00034		. 59417	I 10,4	. 40583
. 0394	. 59561	I 10,3.	. 00034		. 59527	IIO, I	. 40473
0.0395	8.59671	110,0	0.00034	0,2	8.59637	109,8	I. 40363
. 0396	. 5978 I	109,7	. 00034		. 59747	109,6	. 40253
. 0397	. 59890	109,5	. 00034		. 59856	109,3	. 40144
. 0398	. 60000	109,2	. 00034		. 59965	109,0	. 40035
. 0399	. 60109	108,9	. 00035		. 60074	108,7	- 39926
0.0400	8.60218	108,6	0.00035	0,2	8.60183	108,5	I. 39817
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{gd}$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0400	8.60218	108,6	0.00035	0,2	8.60183	108,5	1.39817
.0401	. 60326	108,4	. 00035		. 6029I	108,2	. 39709
. 0402	. 60434	108, 1	. 00035		. 60399	107,9	. 39601
. 0403	. 60542	107,8	. 00035		. 60507	107,6	. 39493
. 0404	. 60650	107,6	. 00035		. 60615	107,4	- 39385
0.0405	8.60757	107,3	0.00036	0,2	8.60722	107, I	1. 39278
. 0406	. 60865	107,0	. 00036		. 60829	106,9	. 39171
. 0407	. 60971	106,8	. 00036		. 60935	106,6	. 39065
. 0408	.61078	106,5	. 00036		.61042	106,3	. 38958
. 0409	. 61184	106,2	. 00036		.61148	106, 1	. 38852
0.0410	8.61291	106,0	0.00036	0,2	8.61254	105,8	1. 38746
.04II	. 61396	105,7	. 00037		. 61360	105,5	. 38640
.0412	.6I502	105,5	. 00037		.61465	105,3	. 38535
.0413	. 61607	105,2	. 00037		. 61570	105,0	. 38430
. 0414	.61712	105,0	. 00037		. 61675	104,8	. 38325
0.0415	8.61817	104,7	0.00037	0,2	8.61780	104,5	1. 38220
.0416	. 61922	104,5	. 00038		. 61884	104,3	.38116
.0417	. 62026	104,2	. 00038		. 61988	104,0	. 38012
.0418	. 62130	104,0	. 00038		. 62092	103,8	. 37908
.0419	. 62234	103,7	. 00038		.62196	103,5	. 37804
0.0420	8.62338	103,5	0.00038	0,2	8.62299	103,3	1.37701
. 0421	. 6244 I	103,2	. 00038		. 62403	103,0	. 37597
. 0422	. 62544	103,0	. 00039		. 62505	102,8	. 37495
. 0423	. 62647	102,7	. 00039		. 62608	102,5	. 37392
. 0424	. 62750	102,5	. 00039		. 627 II	102,3	. 37289
0.0425	8.62852	102,2	0.00039	0,2	8.62813	102, I	1.37187
. 0426	. 62954	102,0	. 00039		. 62915	101,8	. 37085
. 0427	. 63056	101,8	. 00040		.63016	101,6	. 36984
. 0428	. 63158	101,5	. 00040		. 63118	101,3	. 36882
. 0429	. 63259	101,3	. 00040		. 63219	IOI, I	. 36781
0.0430	8.63360	IOI, I	0.00040	2,2	8.63320	100,9	1. 36680
.043I	. 63461	100,8	. 00040		. 6342 I	100,6	. 36579
. 0432	. 63562	100,6	. 00041		. 6352 I	100,4	. 36479
. 0433	. 63662	100,4	. 00041		. 63622	100,2	- 36378
. 0434	. 63763	100, 1	. 0004 I		. 63722	99,9	. 36278
0.0435	8.63863	99,9	0.0004 I	0,2	8.63822	99,7	1.36178
. 0436	. 63962	99,7	. 00041		. 63921	99,5	. 36079
. 0437	.64062	99,4	. 0004 I		. 64020	99,3	. 35980
. 0438	.64161	99,2	. 00042		.64120	99,0	. 35880
. 0439	. 64260	99,0	. 00042		.64219	98,8	. 3578 I
0.0440	8.64359	98,8	0.00042	0,2	8.64317	98,6	1. 35683
.044I	. 64458	98,5	. 00042		. 64416	98,4	. 35584
. 0442	. 64556	98,3	. 00042		. 64514	98, 1	. 35486
. 0443	. 64655	98,1	. 00043		.646I2	97,9	. 35388
. 0444	. 64753	97,9	. 00043		. 64710	97,7	. 35290
0.0445	8.64850	97,7	0.00043	0,2	8.64807	97,5	1.35193
. 0446	. 64948	97,4	. 00043		. 64905	97,2	. 35095
. 0447	. 65045	97,2	. 00043		. 65002	97,0	- 34998
. 0448	. 65142	97,0	. 00044		. 65099	96,8	. 34901
. 0449	. 65239	96,8	. 00044		. 65195	96,6	. 34805
0.0450	8.65336	96,6	0.00044	0,2	8.65292	96,4	1. 34708
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0450	8.65336	96,6	0.00044	0,2	8.65292	96,4	1.34708
.0451	. 65432	96,4	. 00044		. 65388	96,2	. 34612
. 0452	. 65529	96,	. 00044		. 65484	96,0	-34516
. 0453	. 65625	95,9	. 00045		. 65580	95,7	- 34420
. 0454	. 6572 I	95,7	. 00045		. 65676	95,5	-34324
0.0455	8.65816	95,5	0.00045	0,2	8.65771	95,3	1. 34229
. 0456	. 65912	95,3	. 00045		. 65866	95, I	. 34134
. 0457	. 66007	95, 1	. 00045		. 65961	94,9	. 34039
. 0458	. 66102	94,9	. 00046		. 66056	94,7	-33944
. 0459	.66I97	94,7	. 00046		. 6615 I	94,5	. 33849
0.0460	8.66291	94,5	0.00046	0,2	8.66245	943	I. 33755
.046I	. 66385	94,3	. 00046		. 66339	94, I	. 33661
. 0462	. 66480	94, I	. 00046		. 66433	93,9	. 33567
. 0463	. 66574	93,9	. 00047		. 66527	93,7	. 33473
. 0464	. 66667	93,7	. 00047		. 6662 I	93,5	- 33379
0.0465	8.66761	93,5	0.00047	0,2	8.66714	93,3	1. 33286
. 0466	. 66854	93,3	.00047		. 66807	93, I	. 33193
. 0467	. 66947	93,I	. 00047		. 66900	92,9	. 33100
. 0468	. 67040	92,9	. 00048		. 66993	92,7	-33007
. 0469	. 67133	92,7	. 00048		. 67085	92,5	. 32915
0.0470	8.67226	92,5	0.00048	0,2	8.67178	92,3	I. 32822
. 0471	. 67318	92,3	. 00048		. 67270	92, 1	. 32730
. 0472	. 67410	92,I	. 00048		. 67362	91,9	. 32638
. 0473	. 67502	91,9	. 00049		. 67454	91,7	. 32546
. 0474	. 67594	91,7	. 00049		. 67545	91,5	- 32455
0.0475	8.67686	9I,5	0.00049	0,2	8.67637	91,3	1.32363
. 0476	. 67777	91,3	. 00049		. 67728	91, I	. 32272
. 0477	. 67868	91,I	. 00049		.67819	90,9	. 32 I 8 I
. 0478	. 67959	90,9	. 00050		. 67910	90,7	- 32090
. 0479	. 68050	90,7	. 00050		. 68000	90,5	. 32000
0.0480	8.6814 I	90,5	0.00050	0,2	8.6809 I	90,3	1.31999
.048I	.6823I	90,4	. 00050		.68181	90,2	. 31819
. 0482	. 68322	90,2	. 00050		.6827I	90,0	. 31729
. 0483	. 68412	90,0	.0005I		.6836I	80,8	. 31639
. 0484	.68501	89,8	.0005I		.6845I	89,6	-31549
0.0485	8.68591	89,6	0.00051	0,2	8.68540	89,4	1.31460
. 0486	.6868I	89,4	.0005I		. 68629	89,2	. 31371
. 0487	. 68770	80,2	.0005I		. 68719	89,0	. 3128I
. 0488	. 68859	89, 1	. 00052		. 68808	88,9	. 31192
. 0489	. 68948	88,9	. 00052		. 68896	88,7	.31104
0.0490	8.69037	88,7	0.00052	0,2	8.68985	88,5	1.31015
.049I	. 69126	88,5	. 00052		. 69073	88,3	. 30927
. 0492	. 69214	88,3	. 00053		. 69161	88, 1	. 30839
. 0493	. 69302	88,2	. 00053		. 69250	87,9	. 30750
. 0494	. 69390	88,0	. 00053		. 69337	87,8	. 30663
0.0495	8.69478	87,8	0.00053	0,2	8.69425	87,6	I. 30575
. 0496	. 69566	87,6	. 00053		. 69513	87,4	. 30487
. 0497	. 69654	87,5	. 00054		. 69600	87,2	- 30400
. 0498	. 69741	87,3	. 00054		. 69687	87, 1	. 30313
. 0499	. 69828	87, 1	. 00054		. 69774	86,9	. 30226
0.0500	8.69915	86,9	0.00054	0,2	8.6986 I	86,7	1.30139
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0500	8.69915	86,9	0.00054	0,2	8.6986 I	86,7	I. 30139
.0501	. 70002	86,8	. 00054		. 69947	86,5	. 30053
. 0502	. 70089	86,6	. 00055		. 70034	86,4	. 29966
. 0503	. 70175	86,4	. 00055		. 70120	86,2	. 29880
. 0504	. 70261	86,2	. 00055		. 70206	86,0	. 29794
0.0505	8.70348	86, r	0.00055	0,2	8.70292	85,9	1.29708
. 0506	. 70434	85,9	. 00056		. 70378	85,7	. 29622
. 0507	. 70519	85,7	. 00056		. 70464	85,5	. 29536
. 0508	. 70605	85,6	. 00056		. 70549	85,3	. 29451
. 0509	. 7069 I	85,4	. 00056		. 70634	85,2	. 29366
0.0510	8.70776	85,2	0.00056	0,2	8.70719	85,0	I.2928I
.05II	. 70861	85, I	. 00057		. 70804	84,8	. 29196
. 0512	. 70946	84,9	. 00057		. 70889	84,7	. 29 III
.0513	. 7103 I	84,7	. 00057		. 70974	84,5	. 29026
.0514	. 71115	84,6	. 00057		. 71058	84,3	. 28942
0.0515	8.71200	84,4	0.00058	0,2	8.71142	84,2	I. 28858
. 0516	. 71284	84,2	. 00058		. 71226	84,0	. 28774
.0517	. 71368	84,1	. 00058		. 71310	83,9	. 28690
.0518	. 71452	83,9	. 00058		. 71394	83,7	. 28606
.0519	. 71536	83,8	. 00058		. 71478	83,5	. 28522
0.0520	8.71620	83,6	0.00059	0,2	8.71561	83,4	I. 28439
.052I	. 71703	83,4	. 00059		. 71644	83,2	. 28356
. 0522	. 71787	83,3	. 00059		. 71728	83,0	. 28272
. 0523	. 71870	83,1	. 00059		.718II	82,9	.28I89
. 0524	. 71953	83,0	. 00060		. 71893	82,7	.28107
0.0525	8.72036	82,8	0.00060	0,2	8.71976	82,6	1. 28024
. 0526	.72119	82,6	. 00060		. 72059	82,4	. 27941
. 0527	. 72201	82,5	. 00060		. 72141	82,3	. 27859
. 0528	. 72284	82,3	. 0006 I		. 72223	82, 1	. 27777
. 0529	. 72366	82,2	.0006I		. 72305	81,9	. 27695
0.0530	8.72448	82,0	0.00061	0,2	8.72387	81,8	1.27613
.0531	. 72530	81,9	.0006I		. 72469	8I,6	. 2753 I
. 0532	. 72612	8I,7	. 00061		. 72550	8I,5	. 27450
. 0533	. 72693	8i,6	. 00062		. 72632	8I,3	. 27368
. 0534	. 72775	8r,4	. 00062		.72713	8I,2	.27287
0.0535	8.72856	81,3	0.00062	0,2	8.72794	81,0	1.27206
. 0536	. 72937	$8 \mathrm{I}, \mathrm{I}$. 00062		. 72875	80,9	. 27125
. 0537	. 73018	81,0	.00063		. 72956	80,7	. 27044
. 0538	. 73099	80,8	.00063		. 73036	80,6	. 26964
. 0539	.73180	80,7	. 00063		.73117	80,4	. 26883
0.0540	8.73260	80,5	0.00063	0,2	8.73197	80,3	1. 26803
.054I	.7334I	80,4	. 00064		. 73277	80,	. 26723
. 0542	. 7342 I	80,2	. 00064		. 73357	80,0	. 26643
. 0543	.73501	80,I	. 00064		. 73436	79,8	. 26564
. 0544	.73581	79,9	. 00064		.73517	79,7	. 26483
0.0545	8.73661	79,8	0.00064	0,2	8.73597	79,5	1. 26403
. 0546	. 73741	79,6	. 00065		. 73676	79,4	. 26324
. 0547	. 73820	79,5	. 00065		. 73755	79,2	. 26245
. 0548	. 73900	79,3	. 00065		. 73835	79, 1	. 26165
. 0549	. 73979	79,2	. 00065		. 73914	78,9	. 26086
0.0550	8.74058	79,0	0.00066	0,2	8.73993	78,8	I. 26007
u	$\log \tan \operatorname{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc gd u

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0550	8.74058	79,0	0.00066	0,2	8.73993	78,8	1. 26007
.055I	.74137	78,9	. 00066		.74071	78,7	. 25929
. 0552	. 74216	78,8	. 00066		.74150	78,5	. 25850
. 0553	. 74295	78,6	. 00066		. 74228	78,4	. 25772
. 0554	. 74373	78,5	. 00067	-	. 74307	78,2	. 25693
0.0555	8.74452	78,3	0.00067	0,2	8.74385	78, 1	1.25615
. 0556	. 74530	78,2	. 00067		. 74463	77,9	. 25537
. 0557	. 74608	78,0	. 00067		.74541	77,8	. 25459
. 0558	. 74686	77,9	. 00068		.746I8	77,7	. 25382
. 0559	. 74764	77,8	. 00068		.74696	77,5	. 25304
0.0560	8.74841	77,6	0.00068	0,2	8.74773	77,4	I. 25227
.0561	. 74919	77,5	. 00068		. 74851	77,3	. 25149
. 0562	. 74996	77,4	. 00069	,	. 74928	77, 1	. 25072
. 0563	. 75074	77,2	. 00069		. 75005	77,0	. 24995
. 0564	.7515I	77,I	. 00069		. 75082	76,8	. 24918
0.0565	8.75228	76,9	0.00069	0,2	8.75159	76,7	I. 2484 I
. 0565	. 75305	76,8	. 00070		. 75235	76,6	. 24765
. 0567	. 75382	76,7	. 00070		. 75312	76,4	. 24688
. 0568	. 75458	76,5	.00070		. 75388	76,3	. 24612
. 0569	. 75535	76,4	. 00070		. 75464	76,2	. 24536
0.0570	8.756 II	76,3	0.00071	0,2	8.75540	76,0	I. 24460
.0571	. 75687	76,1	.0007I		.75616	75,9	. 24384
. 0572	. 75763	76,0	.0007I		. 75692	75,8	. 24308
. 0573	. 75839	75,9	.00071	\square	. 75768	75,6	. 24232
. 0574	. 75915	75,7	. 00072		. 75844	75,5	. 24156
0.0575	8.75991	75,6	0.00072	0,2	8.75919	75,4	1.24081
. 0576	. 76066	75,5	. 00072	0,2	. 75994	75,2	. 24006
. 0577	. 76142	75,4	.00072	0,3	. 76069	75, I	. 23931
. 0578	. 76217	75,2	. 00073		. 76144	75,0	. 23856
. 0579	. 76292	75, I	. 00073		. 76219	74,8	. 2378 I
0.0580	8.76367	75,0	0.00073	0,3	8.76294	74,7	I. 23706
.0581	. 76442	74,8	. 00073		. 76369	74,6	. 23631
. 0582	. 76517	74,7	.00074		. 76443	74,5	. 23557
. 0583	.76591	74,6	. 00074		. 76518	74,3	. 23482
. 0584	. 76666	74,5	.00074		. 76592	74,2	. 23408
0.0585	8.76740	74,3	0.00074	0,3	8.76666	74, I	1.23334
. 0585	.76815	74,2	. 00075		. 76740	73,9	. 23260
. 0587	. 76889	74, 1	. 00075		. 76814	73,8	. 23186
. 0588	. 76963	73,9	. 00075		. 76888	73,7	. 23112
. 0589	. 77037	73,8	. 00075		.76961	73,6	. 23039
0.0590	8.77110	73,7	0.00076	0,3	8.77035	73,4	1. 22965
. 0591	. 77184	73,6	. 00076		. 77108	73,3	. 22892
. 0592	. 77258	73,4	.00076		. 77181	73,2	. 228I9
. 0593	.77331	73,3	. 00076		. 77255	73, 1	. 22745
. 0594	. 77404	73,2	. 00077		. 77328	72,9	. 22672
0.0595	8.77477	73, 1	0.00077	0,3	8.77400	72,8	1.22600
. 0596	. 77550	73,0	. 00077		. 77473	72,7	. 22527
. 0597	. 77623	72,8	. 00077		. 77546	72,6	. 22454
. 0598	. 77696	72,7	.00078		.77618	72,5	. 22382
. 0599	. 77769	72,6	.00078		.77691	72,3	. 22309
0.0600	8.77841	72,5	0.00078	0,3	8.77763	72,2	1.22237
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathbf{F o}^{\prime}{ }^{\prime}$	\log coth u
0.0600	8.77841	72,5	0.00078	0,3	8.77763	72,2	1.22237
.0601	.77914	72,3	. 00078		. 77835	72,I	. 22165
. 0602	. 77986	72,2	. 00079		. 77907	72,0	. 22093
. 0603	. 78058	72, 1	. 00079		. 77979	71,8	. 22021
. 0604	.78130	72,0	. 00079		. 7805 I	71,7	. 21949
0.0605	8.78202	71,9	0.00079	0,3	8.78123	71,6	I. 21877
. 0606	. 78274	71,8	. 000080		.78194	71,5	. 21806
. 0607	. 78346	71,6	. 00080		. 78266	71,4	. 21734
. 0608	. 78417	71,5	. 00080		. 78337	71,3	. 21663
. 0609	. 78489	71,4	.00080		. 78408	71,1	. 21592
0.0610	8.78560	71,3	0.0008 I	0,3	8.78479	71,0	I.2I52I
.06I I	. 78631	71,2	.0008I		. 78550	70,9	.21450
.06I2	. 78702	71,1	.0008I		. 78621	70,8	. 21379
.0613	.78773	70,9	. 00082		. 78692	70,7	. 21308
.06I4	. 78844	70,8	. 00082		. 78762	70,6	. 21238
0.0615	8.78915	70,7	0.00082	0,3	8.78833	70,4	1.21167
.06I6	. 78986	70,6	. 00082		. 78903	70,3	. 21097
.06I7	. 79056	70,5	. 00083		. 78973	70,2	. 21027
.0618	. 79127	70,4	. 00083		. 79044	70, I	. 20956
.06I9	. 79197	70,3	. 00083		.791 14	70,0	. 20886
0.0620	8.79267	70, 1	0.00083	0,3	8.79184	69,9	1. 208 I 6
. 0621	. 79337	70,0	. 00084		. 79253	69,8	. 20747
. 0622	. 79407	69,9	. 00084		. 79323	69,6	. 20677
. 0623	. 79477	69,8	. 00084		. 79393	69,5	. 20607
. 0624	. 79547	69,7	. 00084		. 79462	69,4	. 20538
0.0625	8.79616	69,6	0.00085	0,3	8.79532	69,3	1. 20468
. 0626	. 79686	69,5	. 00085		.79601	69,2	. 20399
. 0627	. 79755	69,4	. 00085		. 79670	69,1	. 20330
. 0628	. 79825	69,2	. 00086		. 79739	69,0	. 2026I
. 0629	. 79894	69,1	. 00086		. 79808	68,9	. 20192
0.0630	8.79963	69,0	0.00085	0,3	8.79877	68,8	1.20123
.063I	. 80032	68,9	. 000086		. 79945	68,6	. 20055
. 0632	. 80101	68,8	. 00087		. 80014	68,5	. 19986
. 0633	. 80169	68,7	.00087		. 80082	68,4	. 19918
. 0634	. 80238	68,6	. 00087		.80151	68,3	. 19849
0.0635	8.80307	68,5	0.00088	0,3	8.80219	68,2	I . 1978I
. 0636	. 80375	68,4	. 00088		. 80287	68,1	. 19713
. 0637	. 80443	68,3	. 00088		. 80355	68,0	. 19645
. 0638	. 80512	68,2	. 00088		. 80423	67,9	. 19577
. 0639	.80580	68, 1	.00089		. 80491	67,8	. 19509
0.0640	8.80648	68,0	0.00089	0,3	8.80559	67,7	I. 19441
.0641	. 80716	67,8	.00089		. 80626	67,6	. 19374
. 0642	. 80783	67,7	. 00008		. 80694	67,5	. 19306
. 0643	. 80851	67,6	. 00090		. 80761	67,4	. 19239
. 0644	. 80919	67,5	. 00090		. 80829	67,3	. 1917 1
0.0645	8.80986	67,4	0.00090	0,3	8.80896	67, 1	1. 19104
. 0646	.81053	67,3	.0009I		. 80963	67,0	. 19037
. 0647	.81121	67,2	. 00091		. 81030	66,9	. 18970
. 0648	.81188	67,1	. 00091		. 81097	66,8	. 18903
. 0649	.81255	67,0	. 00091		.81164	66,7	. 18836
0.0650	8.81322	66,9	0.00092	0,3	8.81230	66,6	1.18770
u	$\log \tan \mathrm{gd} \mathrm{u}^{\text {a }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\underline{\log \sinh } \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log eoth u
0.0650	8.81322	66,9	0.00092	0,3	8.81230	66,6	1. 18770
. 0651	.81389	66,8	. 00092		.81297	66,5	. 18703
. 0652	.81456	66,7	. 00092		. 81363	66,4	. 18637
. 0653	.81522	66,6	. 00093		.81430	66,3	. 18570
. 0654	.8I589	66,5	. 00093		.81496	66,2	. 18504
0.0655	8.81655	66,4	0.00093	0,3	8.81562	66, 1	I. 18438
. 0656	.81722	66,3	. 00093		.81628	66,0	. 18372
. 0657	.81788	66,2	. 00094		.81694	65,9	. 18306
. 0658	.81854	66,1	. 00094		. 81760	65,8	. 18240
. 0659	.81920	66,0	. 00094		. 81826	65,7	. 18174
0.0660	8.81986	65,9	0.00095	0,3	8.8189I	65,6	1.18109
.066I	. 82052	65,8	. 00095		.81957	65,5	. I8043
. 0662	.82118	65,7	. 00095		. 82022	65.4	. 17978
. 0663	. 82183	65,6	.00095		. 82088	65,3	. 17912
. 0664	. 82249	65,5	. 00096		. 82 I53	65,2	. 17847
0.0665	8.82314	65,4	0.00096	0,3	8.82218	65,1	1. 17782
. 0666	. 82380	65,3	.00096		. 82283	65,0	. 17717
. 0667	. 82445	65,2	. 00097		. 82348	64,9	. 17652
. 0668	. 82510	65,1	. 00097		. 82413	64,8	. 17587
. 0669	. 82575	65,0	. 00097		. 82478	64,7	. 17522
0.0670	8.82640	64,9	0.00097	0,3	8.82543	64,6	1. 17457
. 0671	. 82705	64,8	. 00098		. 82607	64,5	. 17393
. 0672	. 82770	64,7	. 00098		. 82672	64,4	. 17328
. 0673	. 82834	64,6	. 00098		. 82736	64,3	. 17264
. 0674	. 82899	64,5	. 00099		. 82800	64,2	. 17200
0.0675	8.82963	64,4	0.00099	0,3	8.82864	64, 1	1.17136
. 0676	. 83028	64,3	. 00099		. 82929	64, 1	. 17071
. 0677	.83092	64,2	. 00099		. 82994	64,0	. 17006
. 0678	. 83156	64,2	. 00100		. 83056	63,9	. 16944
. 0679	. 83220	64,1	.00100		. 83120	63,8	. 16880
0.0680	8.83284	64,0	0.00100	0,3	8.83184	63,7	1. 16816
.0681	. 83348	63,9	.00101		. 83248	63,6	. 16752
. 0682	. 83412	63,8	.00101		.833II	63,5	. 16689
. 0683	. 83476	63,7	.00101		. 83375	63,4	. 16625
. 0684	. 83539	63,6	. 00102		. 83438	63,3	. 16562
0.0685	8.83603	63,5	0.00102	0,3	8.83501	63,2	1. 16499
. 0686	. 83666	63,4	.00102		. 83564	63,1	. 16436
. 0687	. 83730	63,3	. 00102		. 83627	63,0	. 16373
. 0688	. 83793	63,2	.00103		. 83690	62,9	. 16310
. 0689	. 83856	63,1	. 00103		. 83753	62,8	. 16247
0.0690	8.83919	63,0	0.00103	0,3	8.83816	62,7	1. 16184
.0691	. 83982	63,0	.00104		. 83879	62,7	. 16121
. 0692	. 84045	62,9	.00104		. 83941	62,6	. 16059
. 0693	. 84108	62,8	.00104		. 84004	62,5	. 15996
. 0694	.84171	62,7	. 00105		. 84066	62,4	. I'5934
0.0695	8.84233	62,6	0.00105	0,3	8.84129	62,3	1. 15871
. 0696	. 84296	62,5	. 00105		. 84191	62,2	. 15809
. 0697	. 84358	62,4	.00105		. 84253	62,I	. 15747
. 0698	. 84421	62,3	.00106		. 84315	62,0	. 15685
. 0699	.84483	62,2	.00106		. 84377	61,9	. 15623
0.0700	8.84545	62,1	0.00106	0,3	8.84439	6I,8	I. 15561
U	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\text {g }}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{~g} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0700	8.84545	62, I	0.00106	0,3	8.84439	61,8	I. I5561
.0701	. 84607	62,1	. 00107		.84501	61,8	. I5499
. 0702	. 84669	62,0	.00107	-	. 84562	61,7	. I5438
. 0703	.84731	6I,9	.00107		. 84624	6I,6	. 15376
. 0704	. 84793	6I,8	. 00108		. 84686	6I,5	. 15314
0.0705	8.84855	61,7	0.00108	0,3	8.84747	61,4	I. 15253
. 0706	. 84917	61,6	. 00108		. 84808	6I,3	. 15192
. 0707	. 84978	6I,5	. 00108		. 84870	61,2	. 15130
. 0708	. 85040	6I,4	. 00109		. 84931	6I,	. 15069
. 0709	.85101	6I,4	. 00109		. 84992	6I,0	. 15008
0.0710	8.85162	61,3	0.00109	0,3	8.85053	61,0	I. 14947
. 0711	. 85224	61,2	. 00110		. 85114	60,9	. I4886
. 0712	. 85285	6I, 1	. 00110		. 85175	60,8	. 14825
. 0713	. 85346	61,0	. 00110		. 85235	60,7	. 14765
.07I4	. 85407	60,9	. 0011 I		. 85296	60,6	. 14704
0.0715	8.85468	60,8	0.00111	0,3	8.85357	60,5	1. 14643
. 0716	. 85528	60,8	. 001 I I		. 85417	60,4	. 14583
. 0717	. 85589	60,7	.00112		. 85478	60,4	. 14522
.0718	. 85650	60,6	. 00112		. 85538	60,3	. 14462
.0719	. 85710	60,5	. 00112		. 85598	60,2	. I4402
0.0720	8.85771	60,4	0.00112	0,3	8.85658	60,1	I. 14342
. 0721	.8583I	60,3	. 00113		. 85718	60,0	. 14282
. 0722	.85891	60,3	. 00113		. 85778	59,9	. 14222
. 0723	. 85952 .	60,2	. 00113		. 85838	59,9	. 14162
. 0724	. 86012	60,1	. OOII4		. 85898	59,8	. 14102
0.0725	8.86072	60,0	0.00114.	0,3	8.85958	59,7	1.14042
. 0726	. 86132	59,9	.00114		. 86017	59,6	. I3983
. 0727	. 86192	59,8	. 00115		. 86077	59,5	. I 3923
. 0728	. 86251	59,8	. 00115		.86I37	59,5	. 13863
. 0729	.863II	59,7	. 00115		.86196	59,4	. 13804
0.0730	8.86371	59,6	0.00116	0,3	8.86255	59,3	I. 13745
. 0731	. 86430	59,5	. 00116		. 86314	59,2	. I3686
. 0732	. 85490	59,4	. 00116		. 86374	59, 1	. 13626
. 0733	. 86549	59,4	. 00117		. 86433	59,0	. I3567
. 0734	. 86609	59,3	.00117		. 86492	59,0	. I 3508
0.0735	8.86668	59,2	0.00117	0,3	8.86551	58,9	I. 13449
. 0736	. 86727	59, I	. 00118		. 86609	58,8	. I3391
. 0737	. 85786	59,0	. 00118		. 86668	58,7	. 13332
. 0738	. 86845	59,0.	. 00118		. 86727	58,6	. 13273
. 0739	. 86904	58,9	.00118		. 86785	58,6	. 13215
0.0740	8.85963	58,8	0.00119	0,3	8.86844	58,5	I. I3I56
. 0741	. 87022	58,7.	.00119		. 86002	58,4	. 13098
. 0742	. 87080	58,6	. 00119		.8696I	58,3	. I3039
. 0743	. 87139	58,6	. 00120	-	. 87019	58,2	. I2981
. 0744	. 87197	58,5	. 00120		. 87077	58,2	. 12923
0.0745	8.87256	58,4	0.00120	0,3	8.87135	58,1	I. 12865
. 0746	.87314	58,3	. 00121		. 87193	58,0	. 12807
. 0747	. 87372	58,2	. 00121		. 87251	57,9	. 12749
. 0748	. 87431	58,2.	. 00121		. 87309	57,8	. 12691
. 0749	. 87489	58, I	. 00122		. 87367	57,8	. 12633
0.0750	8.87547	58,0	0.00122	0,3	8.87425	57,7	I. 12575
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\boldsymbol{l o g} \sinh \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }}$ coth \mathbf{u}
0.0750	8.87547	58,0	0.00122	0,3	8.87425	57,7	I. 12575
. 0751	. 87605	57,9	.00122		. 87482	57,6	. 12518
. 0752	. 87663	57,9	. 00123		. 87540	57,5	. 12460
. 0753	. 87721	57,8	.00123		. 87598	57,5	. 12402
. 0754	. 87778	57,7	. 00123		. 87555	57,4	. 12345
0.0755	8.87836	57,6	0.00124	0,3	8.87712	57,3	I. 12288
. 0756	. 87894	57,6	. 00124		. 87770	57,2	. 12230
. 0757	. 87951	57,5	.00124		. 87827	57,2	. 12173
. 0758	. 88009	57,4	. 00125		. 87884	57, I	. 12116
. 0759	. 88066	57,3	. 00125		. 87941	57,0	. 12059
0.0760	8.88123	57,3	0.00125	0,3	8.87998	56,9	I. I2002
.0761	.88180	57,2	.00126		. 88055	56,8	. 11945
. 0762	. 88238	57, I	.00126		.88II2	56,8	. II888
. 0763	. 88295	57,0	.00126		.88168	56,7	. 11832
. 0764	. 88352	57,0	. 00127	,	. 88225	56,6	. 11775
0.0765	8.88408	56,9	0.00127	0,3	8.88282	56,5	I. 11718
. 0766	. 88465	56,8	.00127		. 88338	56,5	. 11662
. 0767	. 88522	56,7	.00128		. 88394	56,4	. 11606
. 0768	. 88579	56,7	.00128		. 88451	56,3	. II 549
. 0769	. 88635	56,6	.00128		. 88507	56,3	. II493
0.0770	8.88692	56,5	0.00129	0,3	8.88563	56,2	I. II437
.0771	. 88748	56,4	. 00129		. 88620	56,1	. 11380
. 0772	. 88805	56,4	. 00129		. 88676	56,0	. II324
. 0773	. 88861	56,3	.00130		. 88732	56,0	. I I268
. 0774	. 88917	56,2	.00130		. 88787	55,9	. I'12I3
0.0775	8.88974	56,2	0.00130	0,3	8.88843	55,8	I. III57
. 0776	. 89030	56, I	.0013I		. 88899	55,7	. IIIOI
. 0777	. 89086	56,0	.00131		. 88955	55,7	. 11045
. 0778	. 89142	55,9	.00131		. 89010	55,6	. 10990
. 0779	. 89198	55,9	. 00132		. 89056	55,5	. 10934
0.0780	8.89253	55,8	0.00132	0,3	8.89122	55,5	I. 10878
.0781	. 89309	55,7	.00132		. 89177	55,4	. 10823
. 0782	. 89365	55,6	.00133		. 89232	55,3	. 10768
. 0783	. 8942 I	55,6	.00133		. 89288	55,2	. 10712
. 0784	. 89476	55,5	.00133		. 89343	55,2	. 10657
0.0785	8.89532	55,4	0.00134	0,3	8.89398	55, I	1. 10602
. 0786	. 89587	55,4	.00134	.	. 89453	55,0	. 10547
. 0787	. 89542	55,3	.00134		. 89508	55,0	. 10492
. 0788	. 89698	55,2	.00135		. 89563	54,9	. 10437
. 0789	. 89753	55,2	.00135		.89618	54,8	. 10382
0.0790	8.89808	55, I	0.00135	0,3	8.89672	54,7	I. 10328
.0791	. 89863	55,0	.00136		. 89727	54,7	. 10273
. 0792	. 89918	54,9	.00136		. 89782	54,6	. 10218
. 0793	. 89973	54,9	.00136		. 89836	54,5	. 10164
. 0794	. 90028	54,8	. 00137		. 89891	54,5	. IOIO9
0.0795	8.90082	54,7	0.00137	0,3	8.89945	54,4	I. 10055
. 0796	. 90137	54,7	.00137		. 90000	54,3	. 10000
. 0797	.90192	54,6	.00138		. 90054	54,3	. 09946
. 0798	. 90246	54,5	. 00138		.90108	54,2	. 09892
. 0799	.90301	54,5	.00138		.90162	54, I	. 09838
0.0800	8.90355	54,4	0.00139	0,3	8.90216	54, I	1.09784
u	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0800	8.90355	54,4	0.00139	0,3	8.90216	54, I	1.09784
.0801	. 90410	54,3	. OOI39		. 90271	54,0	. 09729
. 0802	. 90464	54,3	. 00140		. 90324	53,9	. 09676
. 0803	. 90518	54,2	. 00140		. 90380	53,9	. 09620
. 0804	. 90572	54, I	. 00140		. 90432	53,8	. 09568
0.0805	8.90626	54, I	0.00141	0,3	8.90486	53,7	I. 09514
. 0806	.9068I	54,0	. 00141	0,3	. 90540	53,6	. 09460
. 0807	. 90734	53,9	. 00141	0,3	. 90593	- 53,6	. 09407
. 0808	. 90788	53,9	. 00142	0,4	. 90647	53,5	. 09353
. 0809	. 90842	53,8	.00142	0,4	. 90700	53,4	. 09300
0.0810	8.90896	53,7	0.00142	0,4	8.90754	53,4	1.09246
.08II	. 90950	53,7	. 00143		. 90807	53,3	. 09193
. 0812	.91003	53,6	. 00143		. 90860	53,3	.09140
.0813	. 91057	53,5	. 00143		. 90914	53,2	. 09086
.08I4	.91110	53,5	. 00144		. 90967	53, I	. 09033
0.08I5	8.91164	53,4	0.00144	0,4	8.91020	53, I	1.08980
.0816	.91217	53,3	. 00144		. 91073	53,0	. 08927
.08I7	.9127I	53,3	. 00145		.91126	52,9	. 08874
.0818	.91324	53,2	. 00145		.91179	52,9	. 0882 I
.0819	.91377	53,1	. 00145		.91231	52,8	. 08769
0.0820	8.91430	53, I	0.00146	0,4	8.91284	52,7	1.08716
. 0821	. 91483	53,0	.00146		.91337	52,7	. 08663
. 0822	. 91536	53,0	. 00147		. 91390	52,6	.08610
. 0823	.91589	52,9	. 00147		.91442	52,5	. 08558
. 0824	. 91642	52,8	.00147		.91495	52,5	. 08505
0.0825	8.91695	52,8	0.00148	0,4	8.91547	52,4	I. 08453
. 0826	.91747	52,7	. 00148		.91599	52,3	.08401
. 0827	.91800	52,6	. 00148		. 91652	52,3	. 08348
. 0828	.91853	52,6	. 00149		.91704	52,2	. 08296
. 0829	. 91905	52,5	. 00149		. 91756	52, I	. 08244
0.0830	8.91958	52,4	0.00149	0,4	8.91808	52,I	1.08192
. 0831	.92010	52,4	.00150		. 91860	52,0	.08140
. 0832	. 92062	52,3	. 00150		. 91912	52,0	. 08088
. 0833	.92II5	52,3	. 0015 I		. 91964	51,9	.08036
. 0834	.92167	52,2	. 00151		. 92016	51;8	. 07984
0.0835	8.92219	52, I	0.00151	0,4	8.92068	51,8	1.07932
. 0836	. 92271	52, I	. 00152		.92120	51,7	. 07880
. 0837	. 92323	52,0	. 00152		.92171	51,6	. 07829
. 0838	. 92375	51,9	. 00152		. 92223	51,6	. 07777
. 0839	. 92427	51,9	.00153		. 92274	5I,5	. 07726
0.0840	8.92479	51,8	0.00153	0,4	8.92326	5I,5	1.07674
. 0841	.9253I	5I,8	. 00153		. 92377	5I,4	. 07623
. 0842	. 92583	51,7	. 00154		. 92429	5I,3	. 0757 I
. 0843	. 92634	51,6	. 00154		. 92480	5I,3	. 07520
. 0844	. 92686	51,6	. 00154		.9253I	51,2	. 07469
0.0845	8.92737	51,5	0.00155	0,4	8.92582	51,2	1.07418
. 0846	. 92789	51,5	. 00155		. 92634	$5 \mathrm{I}, \mathrm{I}$. 07366
. 0847	. 92840	5I,4	. 00156		. 92685	51,0	. 07315
. 0848	. 92892	5I,3	. 00156		. 92736	51,0	. 07264
. 0849	. 92943	51,3	. 00156		. 92787	50,9	. 07213
0.0850	8.92994	51,2	0.00157	0,4	8.92837	50,8	1.07163
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0850	8.92994	51,2	0.00157	0,4	8.92837	50,8	1.07163
. 0851	. 93045	51,2	.00157		. 92888	50,8	. 07112
. 0852	. 93096	51,1	.00157		. 92939	50,7	.0706I
. 0853	.93148	51,0	.00158		. 92990	50,7	. 07010
. 0854	.93199	51,0	. 00158		. 93040	50,6	. 06960
0.0855	8.93250	50,9	0.00159	0,4	8.93091	50,5	1.06909
. 0856	. 93300	50,9	.00159		.9314I	50,5	. 06859
. 0857	.9335I	50,8	. OOI 59		.93192	50,4	. 06808
. 0858	. 93402	50,7	.00160		. 93242	50,4	. 06758
. 0859	. 93453	50,7	.00160		. 93293	50,3	. 06707
0.0860	8.93503	50,6	0.00160	0,4	8.93343	50,3	1.06657
. 0861	. 93554	50,6	.0016I		. 93393	50,2	. 06607
. 0862	. 93604	50,5	.0016I		. 93443	50, I	. 06557
. 0863	. 93655	50,4	.00162		. 93493	50, I	. 06507
. 0864	. 93705	50,4	.00162		. 93543	50,0	. 06457
0.0865	8.93756	50,3	0.00162	0,4	8.93593	50,0	1.06407
. 0866	.93806	50,3	. 00163		. 93643	49,9	. 06357
. 0867	. 93856	50,2	.00163		. 93693	49,8	. 06307
. 0868	. 93907	50,2	.00163		. 93743	49,8	. 06257
. 0869	. 93957	50,1	.00164		. 93793	49,7	. 06207
0.0870	8.94007	50,0	0.00164	0,4	8.93843	49,7	1.06157
. 0871	. 94057	50,0	.00165		. 93892	49,6	. 06108
. 0872	.94107	49,9	. 00165		. 93942	49,6	. 06058
. 0873	.94157	49,9	.00165		.9399I	49,5	. 06009
. 0874	. 94206	49,8	. 00166		. 9404 I	49,4	. 051959
0.0875	8.94256	49,8	0.00166	0,4	8.94090	49,4	1.05910
. 0876	. 94306	49,7	.00166		. 94140	49,3	. 05860
. 0877	. 94356	49,6	. 00167		.94189	49,3	.058II
. 0878	. 94405	49,6	.00167		. 94238	49,2	. 05762
. 0879	. 94455	49,5	.00168		.94287	49,2	. 05713
0.0880	8.94504	49,5	0.00168	0,4	8.94336	49, I	1.05664
.0881	. 94554	49,4	. 00168		. 94385	49,0	.05615
. 0882	. 94603	49,4	. 00169		. 94434	49,0	. 05566
. 0883	. 94652	49,3	. 00169		. 94483	48,9	. 05517
. 0884	. 94702	493	.00169		. 94532	48,9	. 05468
0.0885	8.94751	49,2	0.00170	0,4	8.9458I	48,8	I. 05419
. 0886	. 94800	49, I	.00170		. 94630	48,8	. 05370
. 0887	. 94849	49, I	.00171		. 94679	48,7	.05321
. 0888	. 94898	49,0	.00171		. 94727	48,7	. 05273
. 0889	. 94947	49,0	.00171		. 94776	48,6	. 05224
0.0890	8.94996	48,9	0.00172	0,4	8.94825	48,5	1.05175
. 0891	. 95045	48,9	. 00172		. 94873	48,5	. 05127
. 0892	. 95094	48,8	.00173		. 94922	48,4	. 05078
. 0893	. 95143	48,8	.00173		. 94970	48,4	. 05030
. 0894	. 95192	48,7	.00173		. 95018	48,3	. 04982
0.0895	8.95240	48,7	0.00174	0,4	8.95067	48,3	1.04933
. 0896	. 95289	48,6	.00174		.95115	48,2	. 04885
. 0897	. 95337	48,5	.00174		.95163	48,2	. 04837
. 0898	. 95386	48,5	.00175		.95211	48, I	. 04789
. 0899	. 95434	48,4	.00175		. 95259	48,0	. 0474 I
0.0900	8.95483	48,4	0.00176	0,4	8.95307	48,0	1.04693
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0900	8.95483	48,4	0.00176	0,4	8.95307	48,0	1.04693
.0901	.9553I	48,3	.00176		. 95355	47,9	. 04645
. 0902	.95580	48,3	.00176		. 95403	47,9	. 04597
. 0903	. 95628	48,2	.00177		.9545I	47,8	. 04549
. 0904	. 95676	48,2	.00177		. 95499	47,8	. 04501
0.0905	8.95724	48,1	0.00178	0,4	8.95547	47,7	1.04453
. 0906	. 95772	48, I	.00178		. 95594	47,7	. 04406
. 0907	. 95820	48,0	.00178		. 95642	47,6	. 04358
. 0908	. 95868	48,0	.00179		. 95689	47,6	.043II
. 0909	.95916	47,9	.00179		. 95737	47,5	. 04263
0.0910	8.95964	47,9	0.00180	0,4	8.95784	47,5	1.04216
. 091 I	. 96012	47,8	.00180		. 95832	47,4	.04168
. 0912	. 96060	47,8	.00180		. 95879	47,4	.04121
.0913	.96107	47,7	.00181		. 95927	47,3	. 04073
.0914	.96155	47,6	.0018I		. 95974	47,3	. 04026
0.0915	8.96203	47,6	0.00182	0,4	8.96021	47,2	1.03979
.0916	. 96250	47,5	. 00182		. 96068	47, 1	. 03932
.0917	. 96298	47,5	.00182		.95115	47, 1	. 03885
.0918	. 96345	47,4	.00183		. 96163	47,0	. 03837
. 0919	. 96393	47,4	.00183		.96210	47,0	. 03790
0.0920	8.96440	47,3	0.00184	0,4	8.96256	46,9	1.03744
.0921	. 96487	47,3	.00184		. 96303	46,9	. 03697
. 0922	. 96535	47,2	.00184		. 96350	46,8	. 03650
. 0923	. 96582	47,2	.00185		.96397	46,8	. 03603
. 0924	. 96629	47, I	.00185		. 96444	46,7	. 03556
0.0925	8.96676	47, 1	0.00186	0,4	8.96491	46,7	1.03509
. 0926	. 96723	47,0	. 00186		. 96537	46,6	. 03463
. 0927	. 96770	47,0	.00186		. 96584	46,6	.03416
. 0928	.96817	46,9	.00187		. 96630	46,5	. 03370
. 0929	.96864	46,9	.00187		. 96677	46,5	. 03323
0.0930	8.96911	46,8	0.00188	0,4	8.96723	46,4	1.03277
. 093 I	. 96958	46,8	.00188		. 96770	46,4	. 03230
. 0932	. 97004	46,7	.00188		. 96816	46,3	. 03184
. 0933	.97051	46,7	.00189		. 96862	46,3	.03I38
. 0934	. 97098	46,6	.00189		. 96909	46,2	. 03091
0.0935	8.97144	46,6	0.00190	0,4	8.96955	46,2	1.03045
. 0936	. 97191	46,5	. 00190	,	. 97001	46, I	. 02999
. 0937	. 97237	46,5	. 00190		. 97047	46, I	. 02953
. 0938	. 97284	46,4	.0019I	-	. 97093	46,0	. 02907
. 0939	. 97330	46,4	.00191		. 97139	46,0	. 0286 I
0.0940	8.97377	46,3	0.00192	0,4	8.97185	45,9	I.028I5
.094I	. 97423	46,3	. 00192		.9723I	45,9	. 02769
. 0942	. 97469	46,2	. 00192		. 97277	45,8	. 02723
. 0943	. 97516	46,2	.00193		. 97323	45,8	. 02677
. 0944	. 97562	46, 1	.00193		. 97368	45,7	. 02632
0.0945	8.97608	46, I	0.00194	0,4	8.97414	45,7	1.02586
. 0946	. 97654	46,0	. 00194		. 97460	45,6	. 02540
. 0947	. 97700	46,0	. 00194		. 97505	45,6	. 02495
. 0948	. 97746	45,9	.00195		.9755I	45,5	. 02449
. 0949	. 97792	45,9	.00195		. 97597	45,5	. 02403
0.0950	8.97838	45,9	0.00196	0,4	8.97642	45,4	1.02358
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0950	8.97838	45,9	0.00196	0,4	8.97642	45,4	1.02358
.0951	. 97883	45,8	. 00196		. 97687	45,4	.02313
. 0952	. 97929	45,8	.00197		. 97733	45,3	. 02267
. 0953	. 97975	45,7	. 00197		. 97778	45,3	. 02222
. 0954	.9802 I	45,7	.00197		. 97823	45,2	. 02177
0.0955	8.98066	45,6	0.00198	0,4	8.97869	45,2	I. 02131
. 0956	.98II2	45,6	. 00198		.97914	45,2	. 02086
. 0957	.98I57	45,5	.00199		. 97959	45, I	.0204I
. 0958	. 98203	45,5	. 00199		. 98004	45, 1	. 01996
. 0959	. 98248	45,4	.00199		. 98049	45,0	. 01951
0.0960	8.98294	45,4	0.00200	0,4	8.98094	45,0	1. 01906
.0961	. 98339	45,3	. 00200		.98139	44,9	.01861
. 0962	. 98384	45,3	.00201		.98I84	44,9	.018i6
. 0963	. 98430	45,2	.0020I		. 98229	44,8	.01771
. 0964	. 98475	45,2	.0020I		. 98273	44,8.	. 01727
0.0965	8.98520	45, I	0.00202	0,4	8.98318	44,7	1.01682
. 0966	. 98565	45, I	. 00202		. 98363	44,7	. 01637
. 0967	.98610	45, I-	.00203		. 98408	44,6	. OI 592
. 0968	. 98655	45,0	.00203		. 98452	44,6	. 01548
. 0969	.98700	45,0	. 00204		. 98497	44,5	. 01503
0.0970	8.98745	44,9	0.00204	0,4	8.98541	44,5	I.OI459
. 0971	. 98790	44,9	. 00204		. 98586	44,5	.01414
. 0972	. 98835	44,8	. 00205		. 98630	44,4	. 01370
. 0973	. 98880	44,8	. 00205		. 98675	44,4	.OI325
. 0974	. 98925	44,7	. 00206		. 98719	44,3	.0128I
0.0975	8.98969	44,7	0.00206	0,4	8.98763	44,3	I. 01237
. 0976	.99014	44,6	. 00207		. 98807	44,2	. OI 193
. 0977	. 99059	44,6	. 00207	-	. 98852	44,2	. OII48
. 0978	.99103	44,5	.00207		. 98896	44, I.	. OI IO4
. 0979	. 99148	44,5	. 00208		. 98940	44, I-	. 01060
0.0980	8.99192	44,5	0.00208	0,4	8.98984	44,0	1.01016
.098I	-.99237	44,4	. 00209		. 99028	44,0	. 00972
. 0982	.99281	44,4	. 00209		. 99072	43,9	. 00928
. 0983	. 99325	44,3	. 00209		.99116	43,9	. 00884
. 0984	. 99370	44,3	. 00210		. 99160	43,9	. 00810
0.0985	8.99414	44,2	0.00210	0,4	8.99203	43,8	1.00797
. 0986	. 99458	44,2	.002̇II		. 99247	43,8	. 00753
. 0987	. 99502	44,2	.002II		. 99291	43,7	. 00709
. 0988	. 99546	44, I	. 00212		. 99335	43,7	. 00665
. 0989	. 99590	44,1-	. 00212		. 99378	43,6	. 00622
0.0990	8.99634	44,0	0.00212	0,4	8.99422	43,6	I. 00578
. 0991	. 99678	44,0	. 00213		. 99466	43,5	. 00534
. 0992	. 99722	43,9	. 00213		. 99509	43,5	. 00491
. 0993	. 99766	43,9	.002I4		. 99553	43,4	. 00447
. 0994	.99810	43,8	.00214		. 99596	43,4	. 00404
0.0995	8.99854	43,8	0.00215	0,4	8.99639	43,4	1.00361
. 0996	. 99898	43,7	. 00215		. 99683	43,3	. 00317
. 0997	. 99941	43,7	.00215		. 99726	43,3	. 00274
. 0998	. 99985	43,7	. 00216		. 99769	43,2.	.0023I
. 0999	9.00029	43,6	.00216		.99812	43,2.	. 00188
0.1000	9.00072	43,6	0.00217	0,4	8.99856	43, I	I. 00144
u	$\log \tan g d \mu$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega F_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.100	9.00072	435,7	0.00217	4,3	8.99856	431,4	I. 00144
. IOI	. 00506	43I,5	.0022I	4,4	9.00285	427, I	0.99715
. 102	. 00935	427,3	. 00226	4,4	. 00710	422,8	. 99290
. 103	. O1360	423, I	. 00230	4,5	. OII3I	418,7	. 98869
. 104	. 01782	419, I	. 00234	4,5	. O1547	414,6	. 98453
0.105	9.02199	415,I	0.00239	4,5	9.01960	410,6	0.98040
. 106	. 02612	4II,2	. 00244	4,6	. 02368	406,7	. 97632
. 107	.03021	407,4	. 00248	4,6	. 02773	402,8	. 97227
. 108	. 03427	403,7	. 00253	4,7	.03174	399,0	. 96826
. 109	. 03829	400,0	. 00257	4,7	. 03571	395,3	. 96429
O.IIO	9.04227	396,4	0.00262	4,8	9.03965	391,6	0.96035
. III	. 04621	392,9	. 00267	4,8	. 04354	388, I	. 95646
. II2	.05013	389,4	. 00272	4,8	. 0474 I	384,5	. 95259
. II3	. 05400	386,0	.00277	4,9	.05124	381, I	. 94876
. II4	. 05785	382,6	. 00282	4,9	. 05503	377,7	. 94497
0.115	9.06165	379,3	0.00287	5,0	9.05879	374,3	0.94121
. 116	. 06543	376, I	. 00292	5,0	. 06252	371 I	. 93748
. II7	.06918	372,9	. 00297	5, I	. 06621	367,8	. 93379
. 118	. 07289	369,8	. 00302	5, I	. 06987	364,7	. 93013
. 119	. 07657	366,7	. 00307	5, I	. 07350	36I,5	. 92650
0.120	9.08022	363,6	0.00312	5,2	9.07710	358,5	0.92290
. 12 I	. 08384	360,7	. 00317	5,2	. 08067	355,4	. 91933
. 122	. 08744	357,7	. 00322	5,3	.0842I	352,5	.91579
. 123	. 09100	354,9	. 00328	5,3	. 08772	349,5	. 91228
. 124	. 09453	352,0	. 00333	5,4	.09120	346,7	. 90880
0.125	9.09804	349,2	0.00338	5,4	9.09466	343,8	0.90534
. 126	. 10152	346,5	. 00344	5,4	. 09808	341, I	. 90192
. 127	. 10497	343,8	. 00349	5,5	. 10148	338,3	. 89852
. 128	. 10840	341, I	. 00355	5,5	. 10485	335,6	. 89515
. 129	. I I I79	338,5	.00360	5,6	. 108I9	333,0	.89181
O. I30	9.11517	336,0	0.00366	5,6	9.III5I	330,3	0.88849
. I3 I	. II85I	333,4	. 00372	5,7	. II480	327,8	. 88520
. I32	. 12183	330,9	. 00377	5,7	. 11806	325,2	.88I94
. I33	. I2513	328,5	.00383	5,7	. 12130	322,7	. 87870
. 134	. 12840	326,0	. 00389	5,8	. 12452	320,3	. 87548
0. 135	9.13165	323,7	0.00395	5,8	9. 12771	317,8	0.87229
. 136	. I3488	321,3	. 00400	5,9	. I3087	315,4	. 86913
. 137	. I3808	319,0	. 00406	5,9	- 13402	313,1	. 86598
. 138	. 14126	316,7	.00412	6,0	. 13713	310,7	. 86287
. 139	. 14441	314,5	.00418	6,0	. 14023	308,5	. 85977
0.140	9. 14755	312,2	0.00424	6,0	9.14330	306,2	0.85670
. I4I	. 15066	310,0	. 00430	6, I	. 14635	304,0	. 85365
. 142	. 15375	307,9.	. 00436	6,1	. 14938	301,8	. 85062
. I43	. 15682	305,8	. 00443	6,2	. 15239	299,6	. 84761
. I44	. 15986	303,7	. 00449	6,2	. 15538	297,5	. 84462
0.145	9.16289	301,6	0.00455	6,3	9. 15834	295,4	0.84166
. 146	. 16589	299,6	.0046I	6,3	. 16128	293,3	. 83872
. 147	. 16888	297,6	. 00468	6,3	. 16420	291,2	. 83580
. 148	. 17185	295,6	. 00474	6,4	. 1671 I	289,2	. 83289
. 149	. 17479	293,6	. 00480	6,4	. 16999	287,2	. 83001
0.150	9.17772	291,7	0.00487	6,5	9.17285	285,2	0.82715
u	$l o g t a n g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{singdu}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.150	9.17772	291,7	0.00487	6,5	9. 17285	285,2	0.82715
.15I	. 18063	289,8	. 00493	6,5	. 17569	283,3	.8243I
. 152	. 18351	287,9	. 00500	6,6	. 17852	28I, 4	.82I48
. 153	. 18638	286, I	. 00506	6,6	.18I32	279,5	.81868
. 154	. 18924	284,2	.005I3	6,6	.184II	277,6	.81589
0.155	9.19207	282,4	0.00520	6,7	9. 18687	275,8	0.81313
. 156	. 19488	280,6	. 00526	6,7	. 18962	273,9	.81038
. 157	. 19768	278,9	. 00533	6,8	. 19235	272,1	. 80765
. 158	. 20046	277, I	. 00540	6,8	. 19506	270,3	. 80494
. 159	. 20323	275,4	. 00547	6,8	. 19776	268,6	. 80224
0.160	9.20597	273,7	0.00554	6,9	9.20044	266,9	0.79956
.161	. 20870	272,I	. 00560	6,9	. 20310	265,1	. 79690
. 162	.2114I	270,4	. 00567	7,0	. 20574	263,4	. 79426
.163	. 21411	268,8	. 00574	7,0	. 20837	26I, 8	. 79163
. 164	. 21679	267,2	.00581	7,I	. 21097	260,1	. 78903
0. 165	9.21945	265,6	0.00589	7,I	9.21357	258,5	0.78643
. 166	. 22210	264,0	. 00596	7,I	.21614	256,9	. 78386
. 167	. 22473	262,5	. 00603	7,2	.21871	255,3	.78129
. 168	. 22735	260,9	.00610	7,2	. 22125	253,7	. 77875
.169	. 22995	259,4	.00617	7,3	. 22378	252,2	. 77622
0.170	9.23254	257,9	0.00625	7,3	9.22629	250,6	0.77371
. 171	.2351 I	256,4	. 00632	7,4	. 22879	249, I	. 77121
. 172	. 23767	255,0	. 00639	7,4	.23128	247,6	. 76872
. 173	. 2402 I	253,5	. 00647	7,4	. 23374	246, 1	. 76626
. 174	. 24274	252, I	. 00654	7,5	. 23620	244,6	. 76380
0.175	9.24525	250,7	0.00662	7,5	9.23864	243,2	0.76136
. 176	. 24775	249,3	. 00669	7,6	. 24106	241,7	. 75894
. 177	. 25024.	247,9	. 00677	7,6	. 24347	240,3	. 75653
. 178	.2527I	246,5	. 00684	7,6	. 24587	238,9	. 75413
. 179	. 25517	245,2	. 00692	7,7	. 24825	237,5	. 75175
0.180	9.25762	243,9	0.00700	7,7	9.25062	236,1	0.74938
. 181	. 26005	242,5	. 00708	7,8	. 25297	234,8	. 74703
. 182	. 26247	241,3	. 00715	7,8	. 25531	233,4	. 74469
.183	. 26487	240,0	. 00723	7,9	. 25764	232,I	.74236
. 184	. 26727	238,7	. 0073 I	7,9	. 25996	230,8	. 74004
0. 185	9.26965	237,4	0.00739	7,9	9.26226	229,5	0.73774
. 186	. 27201	236,2	. 00747	8,0	. 26454	228,2	. 73546
.187	. 27437	234,9	. 00755	8,0	. 26682	226,9	. 733 I8
. 188	.2767I	233,7	.00763	8 , I	. 26908	225,7	. 73092
. 189	. 27904	232,5	. 00771	8, I	. 27133	224,4	. 72867
0.190	9.28 I 36	23I,3	0.00779	8,2	9.27357	223,2	0.72643
. 191	. 28367	230,1	. 00787	8,2	. 27580	22I,9	. 72420
. 192	. 28597	229,0	. 00796	8,2	. 27801	220,7	. 72199
. 193	. 28825	227,8	. 00804	8,3	.2802I	219,5	. 71979
. 194	.29052	226,7	.00812	8,3	.28240	218,3	. 71760
0. 195	9.29278	225,5	0.00821	8,4	9.28458	217,2	0.71542
. 196	. 29503	224,4	. 00829	8,4	. 28674	216,0	. 71326
. 197	. 29727	223,3	. 00837	8,4	. 28890	214,9	. 71110
. 198	. 29950	222,2	. 00846	8,5	. 29104	213,7	. 70896
. 199	. 30172	22I, I	. 00854	8,5	. 29317	212,6	. 70683
0.200	9.30392	220,0	0.00863	8,6	9.29529	2II,5	0.70471
4	$\log \tan \mathrm{gd} u$	' ω F ${ }_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathbf{u}$

[^12]Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.200	9.30392	220,0	0.00863	8,6	9.29529	2II,5	0.70471
. 201	. 30612	219,0	. 00871	8,6	. 29740	210,4	. 70260
. 202	. 30830	217,9	. 00880	8,7	. 29950	209,3	. 70050
. 203	. 31047	216,9	. 00889	8,7	. 30159	208,2	. 6984 I
. 204	. 31264	215,8	. 00897	8,7	. 30366	207, I	. 69634
0.205	9.31479	214,8	0.00906	8,8	$9 \cdot 30573$	206,0	0.69427
. 206	. 31693	213,8	.009I5	8,8	. 30778	205,0	. 69222
. 207	. 31907	212,8	. 00924	8,9	. 30983	203,9	. 69017
. 208	-32II9	211,8	. 00933	8,9	- 31186	202,9	.68814
. 209	. 32330	210,8	. 00942	8,9	. 31389	201,9	.686I I
0.210	9.32541	209,8	0.00951	9,0	9.31590	200,8	0.68410
. 211	. 32750	208,9	. 00960	9,0	. 31790	199,8	. 68210
. 212	. 32958	207,9	. 00969	9, I	. 31990	198,8	.68010
. 213	. 33166	207,0	. 00978	9,I	- 32188	197,9	. 67812
. 214	. 33372	206,0	. 00987	9,2	. 32385	196,9	. 67615
0.215	9.33578	205, I	0.00996	9,2	9.32582	195,9	0.67418
. 216	. 33783	204,2	. 01005	9,2	. 32777	194,9	. 67223
. 217	. 33986	203,3	. 01015	9,3	. 32972	194,0	. 67028
. 218	. 34189	202,4	.01024	9,3	. 33165	193,0	. 66835
. 219	.3439I	201,5	. 01033	9,4	- 33358	192, I	. 66642
0.220	$9 \cdot 34592$	200,6	0.01043	9,4	9.33549	191,2	0.66451
. 22 I	. 34792	199,7	. 01052	9,4	. 33740	190,3	. 66260
. 222	. 34991	198,8	. 01062	9,5	. 33930	189,3	. 66070
. 223	. 35190	198,0	. 01071	9,5	-34119	188,4	. 6588 I
. 224	. 35387	197, I	. 01081	9,6	. 34307	187,5	. 65693
0.225	9.35584	196,3	0.01090	9,6	9.34494	186,7	0.65506
. 226	. 35780	195,4	. 01100	9,7	. 34680	185,8	. 65320
. 227	. 35975	194,6	. OIIO9	9,7	. 34865	184,9	. 65135
. 228	. 36169	193,8	. OIII9	9,7	. 35050	184,0	. 64950
. 229	. 36362	193,0	. OII 29	9,8	. 35234	183,2	. 64766
0.230	9.36555	192, I	0.01139	9,8	9.35416	182,3	0.64584
. 231	. 36747	191,3	. OII49	9,9	. 35598	181,5	. 64402
. 232	. 36938	190,5	. 01158	9,9	. 35779	180,6	. 6422 I
. 233	. 37128	189,8	. 01168	9,9	. 35959	I79,8	. 64047
. 234	.37317	189,0	. 01178	10,0	-36I39	I79,0	. 63861
0.235	9.37506	188,2	0.01188	10,0	9.36317	178,2	0.63683
. 236	. 37694	187,4	. 01198	10, 1	. 36495	177,4	. 63505
. 237	.3788I	186,7	. 01208	10, I	. 36672	176,6	. 63328
. 238	. 38067	185,9	. 01219	10, I	-36848	I75,8	. 63152
. 239	. 38252	185,2	. 01229	10,2	. 37024	175,0	. 62976
0.240	9.38437	184,4	0.01239	10,2	9.37198	174,2	0.62802
. 241	. 3862 I	183,7	. 01249	10,3	. 37372	173,4	. 62628
. 242	-38805	183,0	. 01259	10,3	- 37545	172,6	. 62455
. 243	. 38987	182,2	. 01270	10,4	- 37717	I71,9	. 62283
. 244	. 39169	I8I,5	. 01280	IO,4	. 37889	I7I, I	.62III
0.245	9.39350	180,8	0.01291	10,4	9.38060	I70,4	0.61940
. 246	-3953I	180,1	. 01301	10,5	- 38230	169,6	. 61770
. 247	. 39710	179,4	. O1312	10,5	- 38399	168,9	. 61601
. 248	. 39889	178,7	. O1322	10,6	. 38567	168, 1	. 61433
. 249	. 40068	178,0	. O1333	10,6	-38735	167,4	.61265
0.250	9.40245	177,3	0.01343	10,6	9.38902	166,7	0.61098
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$: $\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} \mathrm{u}$
0.250	9.40245	177,3	0.01343	I0,6	9.38902	166,7	0.61098
.25I	. 40422	175,6	. OI354	10,7	. 39069	166,0	. 60931
. 252	. 40599	176,0	. 01365	10,7	. 39234	165,3	. 60766
. 253	. 40774	175,3	. OI375	10,8	. 39399	164,5	. 60601
. 254	. 40949	174,6	.01386	10,8	- 39563	163,8	. 60437
0.255	9.41124	174,0	0.01397	10,8	9.39727	163, 1	0.60273
. 256	. 41297	173,3	. 01408	10,9	. 39890	162,5	. 60110
. 257	. 41470	172,7	. 01419	10,9	. 40052	161,8	. 59948
. 258	. 41643	172,0	. 01430	I I,O	. 40213	161, 1	. 59787
. 259	.41814	I7I,4	. 0144 I	I I, 0	. 40374	160,4	. 59626
0.260	9.41986	170,8	0.01452	II,O	9.40534	I 59,7	0.59466
.26I	. 42156	170,2	. 01463	II, I	. 40693	I 59, I	. 59307
. 262	. 42326	169,5	. 01474	II, I	. 40852	158,4	. 59148
. 263	. 42495	168,9	. OI485	II, 2	.41010	157,8	. 58990
. 264	. 42664	168,3	. OI496	II, 2	. 41168	157, I	. 58832
0.265	9.42832	167,7	0.01507	II, 2	9.41324	156,5	0.58676
. 266	. 42999	167, 1	. OI519	II,3	. 41480	155,8	. 58520
. 267	. 43166	166,5	. OI530	II,3	. 41636	155,2	. 58364
. 268	. 43332	165,9	.OI54I	II,4	.41791	I54,5	. 58209
.269	. 43498	165,3	. O1553	II,4	. 41945	153,9	. 58055
0.270	9.43663	164,7	0.01564	II, 4	9.42099	I 53,3	0.57901
. 271	. 43827	164,2	. OI 576	II,5	. 42252	152,7	. 57748
. 272	. 4399 I	163,6	.OI587	I 1 ,5	. 42404	152, I	. 57596
. 273	. 44154	163,0	. 01599	I I, 6	. 42556	151,4	. 57444
. 274	. 44317	162,4	.01610	I I, 6	. 42707	150,8	. 57293
0.275	9.44479	161,9	0.01622	I I, 7	9.42857	150,2	0.57143
. 276	. 4464 I	16I,3	. 01634	II,7	. 43007	149,6	. 56993
. 277	. 44802	160,8	.01645	II,7	. 43157	149,0	. 56843
. 278	. 44962	160,2	.01657	I I, 8	. 43305	148,5	. 56695
. 279	. 45122	159,7	.01669	I 1,8	. 43454	147,9	. 56546
0.280	9.45282	I59, I	0.01681	II,9	9.43601	147,3	0.56399
.28I	. 45441	158,6	.01693	I I,9	. 43748	146,7	. 56252
. 282	. 45599	158,1	. O1704	II,9	. 43895	146, I	. 56105
.283	. 45757	157,5	.01716	12,0	. 44040	145,6	. 55960
. 284	. 45914	157,0	.01728	12,0	.44186	145,0	. 55814
0.285	9.46071	156,5	0.01740	12,I	9.44330	144,4	0.55670
. 285	. 46227	156,0	. 01752	12,I	. 44475	143,9	. 55525
.287	. 46383	I 55,5	.01765	I2, 1	. 44618	143,3	. 55382
. 288	. 46538	154,9	.01777	12,2	. 4476 I	142,8	. 55239
.289	. 46693	154,4	.01789	12,2	. 44904	142,2	. 55096
0.290	9.46847	153,9	0.01801	12,3	9.45046	141,7	0.54954
. 291	. 47001	${ }^{1} 53,4$.018ı3	12,3	. 45187	141, 1	-54813
. 292	. 47154	I 52,9	.01826	12,3	. 45328	140,6	. 54672
. 293	. 47306	152,4	.01838	12,4	. 45468	140, 1	- 54532
. 294	. 47459	1 52,0	. 01851	12,4	. 45608	1 39,5	. 54392
0.295	9.47610	151,5	0.01863	12,5	9.45747	I 39,0	0.54253
. 296	. 47762	151,0	. 01875	12,5	. 45886	138,5	. 54114
. 297	. 47912	I 50,5	. 01888	12,5	. 46024	I 38,0	. 53976
. 298	. 48063	I50,0	. 01900	12,6	. 46162	${ }^{1} 37,5$	- 53838
. 299	. 48212	149,6	. 01913	12,6	.46299	136,9	. 53701
0.300	9.48362	149, I	0.01926	12,7	9.46436	136,4	0.53564
u	$l o g t a n g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.300	9.48352	I49, I	0.01926	12,7	9.46436	136,4	0.53564
. 301	. 48510	148,6	. 01938	12,7	. 46572	135,9	. 53428
. 302	. 48559	148,2	. 01951	12,7	. 46708	135,4	. 53292
. 303	. 48807	147,7	. 01964	12,8	. 46843	134,9	. 53157
. 304	. 48954	147,2	. 01977	12,8	. 45978	134,4	. 53022
0.305	9.49101	I46,8	0.01989	12,8	9.47112	133,9	0.52888
. 305	. 49248	146,3	. 02002	12,9	. 47245	133,4	. 52755
. 307	. 49394	145,9	. 02015	12,9	. 47379	I 33, 0	. 5262 I
. 308	. 49540	145,4	. 02028	13,0	.4751 1	132,5	. 52489
. 309	. 49685	145,0	. 0204 I	13,0	. 47644	132,0	. 52356
0.310	9.49830	144,6	0.02054	13,0	9.47775	131,5	0.52225
. 311	. 49974	I.44, I	. 02067	I3, I	. 47907	131,0	. 52093
. 312	. 50118	143,7	. 02080	I3, I	. 48037	I 30,6	. 51963
. 313	. 5025 I	143,3	.02094	13,2	.48168	I30, I	. 51832
. 314	. 50404	142,8	.02107	13,2	. 48298	129,6	. 51702
0.315	9.50547	142,4	0.02120	13,2	9.48427	129,2	0.51573
. 316	. 50589	142,0	.02133	13,3	. 48556	128,7	. 51444
-317	. 50831	141,6	. 02145	I3,3	. 48684	128,2	. 51316
. 318	. 50972	I4I, I	.02160	I 3,4	.48812	127,8	. 51188
. 319	. 51113	140,7	.02173	13,4	. 48940	127,3	. 51060
0.320	9.51254	140,3	0.02187	13,4	9.49067	126,9	0.50933
. 321	. 51394	139,9	. 02200	13,5	. 49194	126,4	. 50806
. 322	. $5153+$	1 39,5	.02214	I 3,5	. 49320	126,0	. 50680
. 323	. 51673	139, I	. 02227	13,6	. 49446	125,5	. 50554
. 324	. 51812	138,7	.0224I	13,6	. 4957 I	125, I	. 50429
0.325	9.51950	138,3	0.02254	I3,6	9.49696	124,7	0.50304
. 325	. 52088	137,9	. 02268	13,7	. 49820	124,2	. 50180
. 327	. 52225	137,5	. 02282	I3,7	. 49944	123,8	. 50056
. 328	. 52363	137, I	. 02295	I 3,8	. 50068	123,4	. 49932
. 329	. 52500	136,7	. 02309	I3,8	. 50191	122,9	. 49809
0.330	9.52637	136,3	0.02323	13,8	9.50314	122,5	0.49686
. 331	. 52773	136,0	. 02337	I3,9	. 50436	122, I	. 49564
. 332	. 52909	135,6	.0235I	13,9	. 50558	121,7	. 49442
. 333	. 53044	135,2	. 02365	I 4,0	. 50679	121,3	. 4932 I
. 334	. 53179	134,8	. 02379	14,0	. 50800	120,8	. 49200
0.335	9.53314	134,5	0.02393	14,0	9.50921	120,4	0.49079
. 336	. 53448	. I34, I	. 02407	14, I	.5104I	120,0	. 48959
. 337	. 53582	1 33,7	.0242I	14, I	. 51161	I 19,6	. 48839
. 338	. 53715	133,3	. 02435	14, 1	. 5128 I	I 19,2	. 48719
. 339	. 53849	133,0	. 02449	14,2	. 51400	I 18,8	. 48600
0.340	9.53981	132,6	0.02463	14,2	9.51518	I 18,4	0.48482
. 341	.54114	I 32,3	. 02478	14,3	. 51636	I 18,0	. 48364
. 342	. 54246	131,9	. 02492	14,3	. 51754	1 17,6	. 48246
- 343	. 54378	131,5	. 02506	14,3	. 51872	II7,2	. 48128
- 344	. 54509	131,2	. 02520	14,4	. 51989	I 16,8	. 4801 I
0.345	9.54640	I30,8	0.02535	14,4	9.52105	I 16,4	0.47895
. 346	. 5477 I	130,5	.02549	14,5	. 5222 I	116,0	. 47779
- 347	. 54901	I 30, 1	. 02564	14,5	- 52337	I 1 5,7	. 47653
. 348	. 5503 I	129,8	. 02578	14,5	. 52453	II 5,3	. 47547
. 349	. 55161	129,5	. 02593	14,6	. 52568	114,9	. 47432
0.350	9.55290	129,1	0.02607	14,6	9.52682	I 14,5	0.47318
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F^{\prime}{ }^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \tanh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	\log coth u
0.350	9.55290	129, I	0.02607	14,6	9.52682	I I 4,5	0.47318
.351	. 55419	128,8	. 02622	14,6	. 52797	II4, 1	. 47203
. 352	. 55547	128,4	. 02637	14,7	. 529 I I	113,7	. 47089
- 353	. 55676	128, I	. 02651	14,7	. 53024	I I 3,4	. 46976
- 354	. 55804	127,8	. 02666	14,8	. 53137	II3,0	. 46863
0.355	9.55931	127,4	0.02681	14,8	9.53250	I I 2,6	0.46750
- 356	. 56059	127, 1	. 02696	14,8	. 53363	I 12,3	. 46637
. 357	. 56185	126,8	.027II	14,9	. 53475	I I I, 9	. 46525
. 358	. 56312	126,5	.02726	14,9	. 53586	III,5	. 46414
. 359	. 56438	126, 1	. 02740	15,0	. 53698	III,2	. 46302
0.360	9.56564	125,8	0.02755	15,0	9.53809	I 10,8	0.46191
. 361	. 56690	125,5	. 02770	15,0	. 53919	I10,5	. 46081
. 362	. 568 I 5	125,2	. 02786	15, I	. 54030	I IO, I	. 45970
. 363	. 56940	124,8	.02801	15, I	. 54140	109,7	. 45860
. 364	. 57065	124,5	.02816	15, 1	. 54249	109,4	. 45751
0.365	9.57189	124,2	0.02831	15,2	9.54358	109,0	0.45642
. 366	. 57313	123,9	. 02846	15,2	. 54467	108,7	. 45533
. 367	. 57437	123,6	.0286I	15,3	. 54576	108,3	. 45424
. 368	. 57561	123,3	.02877	15,3	. 54684	108,0	. 45316
. 369	. 57684	123,0	. 02892	15,3	. 54792	107,7	. 45208
0.370	9.57807	122,7	0.02907	I 5,4	9.54899	107,3	0.45 IOI
. 371	. 57929	122,4	. 02923	I 5,4	. 55006	107,0	. 44994
. 372	-58051	122,I	. 02938	I5,4	. 55113	106,6	. 44887
. 373	. 58173	121,8	. 02954	15,5	. 55220	106,3	. 44780
. 374	. 58295	121,5	. 02969	15,5	. 55326	106,0	. 44674
0.375	9.58416	121,2	0.02985	I 5,6	9.55432	105,6	0.44568
. 376	. 58537	120,9	. 03000	I 5,6	. 55537	105,3	. 44463
. 377	. 58658	I20,6	. 03016	15,6	. 55642	105,0	. 44358
. 378	. 58779	120,3	.03031	15,7	. 55747	104,6	. 44253
. 379	. 58899	120,0	. 03047	I 5,7	. 55852	104,3	. 44148
0.380	9.59019	119,7	0.03063	I 5,8	9.55956	104,0	0.44044
. 381	. 59138	I 19,5	. 03079	I 5,8	. 56059	103,7	. 4394 I
. 382	. 59257	119,2	. 03095	I 5,8	. 56163	103,3	. 43837
. 383	. 59377	1 18,9	.03110	15,9	. 56266	103,0	. 43734
. 384	. 59495	I 18,6	.03125	15,9	. 56369	102,7	. 4363 I
0.385	9.59614	I 18,3	0.03142	I5,9	9.56472	102,4	0.43528
. 386	. 59732	I 18,0	.03158	16,0	. 56574	102, 1	. 43426
. 387	. 59850	I I 7,8	.03174	16,0	. 56676	IOI,8	. 43324
- 388	. 59967	117,5	. 03190	16, I	. 56777	IOI,4	. 43223
-389	. 60085	1 17,2	. 03206	16, I	. 56879	IOI, I	.43121
0.390	9.60202	I 16,9	0.03222	16, 1	9.56980	100,8	0.43020
. 391	. 60319	116,7	. 03238	16,2	. 57080	100,5	. 42920
- 392	. 60435	116,4	. 03255	16,2	. 57181	100,2	.42819
. 393	. 60551	I I6, I	.0327I	16,2	. 5728 I	99,9	. 42719
. 394	. 60668	I 15,9	.03287	16,3	. 57380	99,6	. 42620
0.395	9.60783	I I 5,6	0.03303	16,3	9.57480	99,3	0.42520
. 396	. 60899	II 5,3	. 03320	16,4	. 57579	99,0	. 42421
. 397	.61014	II 5, I	. 03336	16,4	. 57678	98,7	. 42322
. 398	.61129 .61244	II 4,8 I 4,6	. 03353	16,4	. 57776	98,4	. 42224
- 399	. 61244	I 14,6	. 03369	16,5	. 57875	98, I	. 42125
0.400	9.61358	I 14,3	0.03385	16,5	9.57973	97,8	0.42027
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.400	9.61358	II 4,3	0.03385	16,5	9.57973	97,8	0.42027
. 401	.61472	I 14, 0	. 03402	16,5	. 58070	97,5	. 41930
. 402	. 61586	I I3,8	. 03419	- 16,6	. 58168	97,2	. 41832
. 403	.6I700	I 13,5	. 03435	16,6	. 58265	96,9	.41735
. 404	.618I3	113,3	. 03452	16,6	. 5836 I	96,6	. 41639
0.405	9.61926	II3,0	0.03468	16,7	9.58458	96,3	0.41542
. 406	. 62039	I I2,8	. 03485	16,7	. 58554	96, 1	. 41446
. 407	. 62152	112,5	. 03502	16,8	. 58650	95,8	. 41350
. 408	. 62264	I 12,3	. 03519	16,8	. 58746	95,5	.41254
. 409	. 62376	I 12,0	. 03535	16,8	. 58841	95,2	. 41159
0.410	9.62488	III, 8	0.03552	16,9	9.58936	94,9	0.41064
. 411	. 62600	III, 6	. 03569	16,9	. 59031	94,6	. 40969
. 412	. 62711	III, 3	. 03586	16,9	. 59125	94,4	. 40875
.4I3	. 62823	I I I, I	. 03603	17,0	- 59220	94, I	. 40780
. 414	. 62934	IIIO,8	. 03620	17,0	. 59314	93,8	. 40686
0.415	9.63044	I 10,6	0.03637	17,I	9.59407	93,5	0.40593
. 416	. 63155	110,4	. 03654	17,I	-59501	93,3	. 40499
.417	. 63265	I 10, I	. 03671	17,1	- 59594	93,0	. 40406
. 418	. 63375	109,9	. 03688	17,2	. 59587	92,7	. 40313
. 419	. 63485	109,6	. 03706	17,2	- 59779	92,4	. 4022 I
0.420	9.63594	109,4	0.03723	17,2	9.59871	92,2	0.40129
. 42 I	. 63704	109,2	. 03740	17,3	. 59963	91,9	. 40037
. 422	. 63813	109,0	. 03757	17,3	. 60055	91,6	- 39945
. 423	. 63922	108,7	. 03775	17,3	. 60147	9I,4	- 39853
. 424	. 64030	108,5	. 03792	17,4	. 60238	91, I	. 39762
0.425	9.64139	108,3	0.03810	17,4	9.60329	90,8	0.39671
. 426	. 64247	108,0	. 03827	17,5	. 60420	90,6	. 39580
. 427	. 64355	107,8	. 03844	17,5	. 60510	90,3	. 39490
. 428	. 64462	107,6	. 03862	17,5	. 60600	90, I	. 39400
.429	. 64570	107,4	. 03880	17,6	. 60690	89,8	. 39310
0.430	9.64677	107,1	0.03897	17,6	9.60780	80,6	0.39220
. 431	. 64784	106,9	. 03915	17,6	. 60869	89,3	.3913I
. 432	. 64891	105,7	. 03932	17,7	. 60959	89,0	. 39041
. 433	. 64997	106,5	. 03950	17,7	.61047	88,8	. 38953
. 434	.65104	106,3	. 03968	17,7	. 61136	88,5	. 38864
0.435	9.65210	106,0	0.03986	17,8	9.61224	88,3	0.38776
. 436	. 65316	105,8	. 04003	17,8	.613I3	88,0	. 38687
. 437	. 65422	105,6	. 04021	17,9	.6I40I	87,8	. 38599
. 438	. 65527	105,4	. 04039	17,9	.6I488	87,5	. 38512
. 439	. 65633	105,2	. 04057	17,9	.61576	87,3	. 38424
0.440	9.65738	105,0	0.04075	18,0	9.61663	87,0	0. 38337
. 441	. 65843	104,8	. 04093	18,0	. 61750	86,8	. 38250
. 442	. 65947	104,6	.04III	18,0	. 61836	86,5	.38164
. 443	. 66052	104,4	.04129	I8, I	. 61923	86,3	. 38077
. 444	. 66156	104,2	.04147	18, 1	. 62009	86, I	-3799I
0.445	9.66260	104,0	0.04165	18, 1	9.62095	85,8	0.37905
.446	. 66364	103,7	.04183	18,2	. 62180	85,6	. 37820
. 447	. 66468	103,5	. 04202	18,2	. 62266	85,3	. 37734
. 448	. 66571	103,3	.04220	18,3	. 62351	85,1	. 37649
. 449	. 66674	103, I	. 04238	18,3	. 62436	84,9	. 37564
0.450	9.66777	102,9	0.04256	18,3	9.62521	84,6	0.37479
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \mathbf{\operatorname { c o s h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.450	9.66777	102,9	0.04256	18,3	9.6252 I	84,6	0.37479
. 451	. 66880	102,7	. 04275	18,4	. 62605	84,4	. 37395
. 452	. 66983	102,5	. 04293	18,4	. 62690	84,1	. 37310
. 453	. 67085	102,3	.04312	18,4	. 62774	83,9	. 37226
. 454	.67187	102,I	. 04330	18,5	. 62857	83,7	. 37143
0.455	9.67289	IOI,9	0.04348	18,5	9.62941	83,4	0.37059
. 456	.67391	101,8	. 04367	18,5	. 63024	83,2	. 36976
. 457	. 67493	101,6	. 04385	18,6	. 63107	83,0	. 36893
. 458	. 67594	IOI,4	. 04404	18,6	. 63190	82,8	. 36810
. 459	. 67696	101,2	. 04423	18,6	. 63273	82,5	. 36727
0.460	9.67797	IOI, 0	0.04441	18,7	9.63355	82,3	0.36645
. 461	. 67898	100,8	. 04460	18,7	. 63438	82, 1	. 36562
. 462	. 67998	100,6	. 04479	18,7	. 63519	8I,8	. 3648 I
. 463	. 68099	100,4	. 04498	18,8	.63601	8I,6	. 36399
. 464	.68199	100,2	.04516	18,8	. 63683	8I,4	. 36317
0.465	9.68299	100,0	0.04535	18,9	9.63764	81,2	0.36236
. 466	. 68399	99,8	. 04554	18,9	. 63845	81,0	.36I55
. 467	. 68499	99,7	. 04573	18,9	. 63926	80,7	. 36074
. 468	. 68599	99,5	. 04592	19,0	.64007	80,5	. 35993
. 469	. 68698	99,3	.046I I	19,0	. 64087	80,3	. 35913
0.470	9.68797	99, I	0.04630	19,0	9.64167	80,1	0. 35833
. 471	. 68896	98,9	. 04649	19,1	. 64247	79,9	- 35753
. 472	. 68995	98,7	.04668	19, I	.64327	79,6	. 35673
. 473	. 69094	98,6	.04687	19,I	. 64406	79,4	- 35594
. 474	. 69192	98,4	. 04706	19,2	.64486	79,2	. 35514
0.475	9.69290	98,2	0.04726	19,2	9.64565	79,0	0.35435.
. 476	. 69388	98,0	. 04745	19,2	. 64644	78,8	. 35356
. 477	. 69486	97,8	. 04764	19,3	. 64722	78,6	. 35278
. 478	. 69584	97,7	. 04783	19,3	. 64801	78,4	-35199
. 479	. 69682	97,5	. 04803	19,3	. 64879	78,2	.35121
0.480	9.69779	97,3	0.04822	19,4	9.64957	77,9	0.35043
.481	. 69876	97, I	. 04841	19,4	. 65035	77,7	. 34965
. 482	. 69973	97,0	.0486I	19,4	.65113	77,5	- 34887
. 483	. 70070	96,8	. 04880	19,5	. 65190	77,3	-34810
. 484	. 70167	96,6	. 04900	19,5	. 65267	77, 1	- 34733
0.485	9.70264	65,5	0.04919	19,6	9.65344	76,9	0.34656
. 486	. 70360	96,3	. 04939	19,6	. 6542 I	76,7	. 34579
. 487	. 70456	96,	. 04959	19,6	. 65498	76,5	. 34502
. 488	. 70552	95,9	. 04978	19,7	. 65574	76,3	- 34426
. 489	. 70648	95,8	. 04998	19,7	. 65650	76, 1	- 34350
0.490	9.70744	95,6	0.05018	19,7	9.65726	75,9	0.34274
.49I	. 70839	95,4	. 05037	19,8	. 65802	75,7	. 34198
. 492	. 70935	95,3	. 05057	19,8	. 65878	75,5	. 34122
. 493	. 71030	95, I	. 05077	19,8	. 65953	75,3	- 34047
. 494	. 71125	95,0	. 05097	19,9	. 66028	75, I	- 33972
0.495	9.71220	94,8	0.05117	19,9	9.66103	74,9	0.33897
. 496	.71315	94,6	.05137	19,9	. 66178	74,7	. 33822
. 497	. 71409	94,5	.05156	20,0	. 66253	74,5	. 33747
. 498	. 71503	94,3	.05176	20,0	. 66327	74,3	- 33673
. 499	. 71598	94, I	.05196	20,0	.6640I	74, I	- 33599
0.500	9.71692	94,0	0.05217	20,1	9.66475	73,9	0.33525
u	$l o g t a n g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { c o s h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.500	9.71692	94,0	0.05217	20,1	9.66475	73,9	0.33525
. 501	.71786	93,8	. 05237	20, I	. 66549	73,7	. 3345 I
. 502	. 71879	93,7	. 05257	20, I	. 66623	73,5	. 33377
. 503	. 71973	93,5	. 05277	20,2	. 66696	73,3	. 33304
. 504	. 72066	93,3	. 05297	20,2	. 66769	73, I	. 3323 I
0.505	9.72160	93,2	0.05317	20,2	9.66842	72,9	0.33158
. 506	. 72253	93,0	. 05338	20,3	. 66915	72,8	. 33085
. 507	. 72346	92,9	. 05358	20,3	. 66988	72,6	. 33012
. 508	. 72438	92,7	. 05378	20,3	. 67060	72,4	- 32940
. 509	. 72531	92,6	. 05399	20,4	. 67133	72,2	. 32867
0.510	9.72624	92,4	0.05419	20,4	9.67205	72,0	0.32795
.511	. 72716	92,3	. 05439	20,4	. 67277	71,8	. 32723
. 512	. 72808	92,	. 05460	20,5	. 67348	71,6	. 32652
. 513	. 72900	92,0	. 05480	20,5	. 67420	71,5	. 32580
. 514	. 72992	91,8	.05501	20,5	.6749I	71,3	. 32509
0.515	9.73084	91,7	0.0552 I	20,6	9.67562	71,1	0.32438
. 516	.73175	91,5	. 05542	20,6	. 67633	70,9	. 32367
. 517	. 73267	91,4	. 05563	20,6	. 67704	70,7	. 32296
. 518	. 73358	91,2	. 05583	20,7	. 67775	70,5	- 32225
. 519	. 73449	91,I	. 05604	20,7	. 67845	70,3	. 32155
0.520	9.73540	90,9	0.05625	20,7	9.67916	70,2	0.32084
. 52 I	. 73631	90,8	.05645	20,8	. 67986	70,0	. 32014
. 522	. 73722	90,6	. 05666	20,8	. 68056	69,8	. 31944
. 523	. 73812	90,5	. 05687	20,8	.68125	69,6	. 31875
. 524	. 73903	90,3	. 05708	20,9	.68I95	69,5	. 31805
0.525	9.73993	90,2	0.05729	20,9	9.68264	69,3	0.31736
. 526	. 74083	90,0	. 05750	20,9	. 68333	69, I	. 31667
. 527	. 74173	89,9	. 05771	$2 \mathrm{I}, 0$. 68402	68,9	- 31598
. 528	. 74263	89,8	. 05792	21,0	. 6847 I	68,7	-3I529
. 529	. 74353	89,6	.058I3	21,0	. 68540	68,6	. 31460
0.530	9.74442	89,5	0.05834	2I, I	9.68608	68,4	0.31392
. 53 I	. 74532	89,3	. 05855	2I, I	. 68677	68,2	. 31323
. 532	. 7462 I	89,2	. 05876	2I, I	. 68745	68,0	. 31255
. 533	. 74710	89,I	. 05897	2I,2	.688I3	67,9	. 31187
. 534	. 74799	88,9	.05918	21,2	. 68880	67,7	.31120
0.535	9.74888	88,8	0.05940	2I, 2	9.68948	67,5	0.31052
. 536	. 74976	88,6	.0596I	2I,3	. 69016	67,4	. 30984
. 537	. 75065	88,5	.05982	2I,3	. 69083	67,2	-30917
. 538	. 75153	88,4	. 06004	21,3	. 69150	67,0	. 30850
. 539	. 75242	88,2	. 06025	2I,4	. 69217	66,9	. 30783
0.540	9.75330	88,1	0.06046	2I,4	9.69284	66,7	0.30716
. 541	. 75418	88,0	. 06068	2I,4	. 69350	66,5	. 30650
. 542	. 75506	87,8	.06089	2I,5	. 69417	66,3	- 30583
. 543	. 75594	87,7	.06III	$2 \mathrm{I}, 5$. 69483	66,2	- 30517
. 544	.7568I	87,6	.06132	21,5	. 69549	66,0	-3045I
	9.75769	87,4	0.06154	21,6	9.69615	65,9	0.30385
. 546	. 75856	87,3	.06I75	21,6	. 6968 I	65,7	. 30319
. 547	. 75943	87,2	.06197	21,6	. 69746	65,5	. 30254
. 548	. 76030	87,0	.06219	21,7	. 69812	65,4	- 30188
. 549	.76117	86,9	. 06240	21,7	. 69877	65,2	. 30123
0.550	9.76204	86,8	0.06262	21,7	9.69942	65,0	0.30058
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.550	9.76204	86,8	0.06262	21,7	9.69942	65,0	0.30058
. 551	.76291	86,6	.06284	21,8	. 70007	64,9	. 29993
. 552	. 76377	86,5	. 06306	21,8	. 70072	64,7	. 29928
. 553	. 76464	86,4	. 06327	21,8	. 70137	64,5	. 29863
. 554	. 76550	86,3	. 06349	21,9	. 70201	64,4	. 29799
0.555	9.76636	86,I	0.06371	21,9	9.70265	64,2	0.29735
. 556	. 76722	86,0	. 06393	21,9	. 70329	64,1	. 29671
. 557	. 76808	85,9	. 06415	22,0	. 70393	63,9	. 29607
. 558	. 76894	85,7	. 06437	22,0	. 70457	63,7	. 29543
. 559	. 76980	85,6	. 06459	22,0	. 7052 I	63,6	. 29479
0.560	9.77065	85,5	0.0648 I	22, I	9.70584	63,4	0.29416
. 561	. 7715 I	85,4	. 06503	22, I	. 70648	63,3	. 29352
. 562	. 77236	85,2	. 06525	22, 1	. 70711	63,1	. 29289
. 563	. 7732 I	85,1	. 06547	22,2	. 70774	63,0	. 29226
. 564	. 77406	85,0	. 06570	22,2	. 70837	62,8	. 29163
0.565	9.77491	84,9	0.06592	22,2	9.70900	62,7	. 29100
. 566	. 77576	84,8	.06614	22,3	. 70962	62,5	. 29038
. 567	. 7766 I	84,6	. 06636	22,3	. 71025	62,3	. 28975
. 568	. 77745	84,5	. 06659	22,3	. 71087	62,2	.28913
. 569	.77830	84,4	.0668I	22,3	.71149	62,0	.2885I
0.570	9.77914	84,3	0.06703	22,4	9.71211	6I,9	0. 28789
-571	. 77998	84,2	. 06725	22,4	. 71273	61,7	-. 28727
. 572	. 78083	84,0	. 06748	22,4	. 71334	6i,6	. 28666
. 573	.78167	83,9	. 06771	22,5	. 71396	6I,4	. 28604
. 574	. 78250	83,8	. 06793	22,5	. 71457	6I,3	. 28543
0.575	9.78334	83,7	0.06816	22,5	9.71519	6I, 1	0.2848I
. 576	. 78418	83,6	. 06838	22,6	. 71580	6I,0	. 28.420
. 577	. 78501	83,4	.0686I	22,6	. 71641	60,8	. 28359
. 578	. 78585	83,3	. 06883	22,6	. 71701	60,7	. 28299
. 579	. 78668	83,2	. 06906	22,7	. 71762	60,5	. 28238
0.580	9.78751	83, 1	0.06929	22,7	9.71822	60,4	0.28ı78
. 58 I	. 78834	83,0	.0695I	22,7	. 71883	60,2	.28117
. 582	. 78917	82,9	. 06974	22,8	. 71943	60, 1	. 28057
. 583	. 79000	82,7	. 06997	22,8	.72003	60,0	. 27997
. 584	. 79082	82,6	. 07020	22,8	.72063	59,8	. 27937
0.585	9.79165	82,5	0.07043	22,9	9.72123	59,7	0.27877
. 586	. 79247	82,4	. 07065	22,9	. 72182	59,5	.27818
. 587	. 79330	82,3	. 07088	22,9	. 72242	59,4	. 27758
. 588	. 79412	82,2	. 07 III	23,0	. 72301	59,2	. 27699
. 589	. 79494	82,I	.07134	23,0	.72360	59, I	. 27640
0.590	9.79576	82,0	0.07157	23,0	9.72419	58,9	0.2758 I
. 591	. 79658	8ı,8	. 07180	23,0	. 72478	58,8	. 27522
. 592	. 79740	81,7	. 07203	23, I	. 72537	58,7	. 27463
. 593	. 79822	8ı,6	. 07226	23, I	. 72595	58,5	. 27405
. 594	. 79903	8I,5	. 07249	23, I	. 72654	58,4	. 27346
0.595	9.79985	8r,4	0.07273	23,2	9.72712	58,2	0.27288
. 596	. 80066	81,3	. 07296	23,2	. 72770	58,	. 27230
. 597	. 80147	8I,2	. 07319	23,2	. 72828	58,0	. 27172
. 598	. 80228	8I, I	. 07342	23,3	. 72886	57,8	. 27114
. 599	.80309	8I,0	. 07366	23,3	. 72944	57,7	. 27056
0.600	9.80390	80,9	0.07389	23,3	9.73001	57,5	0.25999
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.600	9.80390	80,9	0.07389	23,3	9.73001	57,5	0.26999
. 601	. 8047 I	80,8	.07412	23,4	. 73059	57,4	. 26941
. 602	. 80552	80,7	. 07436	23,4	.73116	57,3	. 26884
. 603	. 80632	80,5	. 07459	23,4	. 73173	57, 1	. 26827
. 604	. 80713	80,4	. 07482	23,4	.7323I	57,0	. 26769
0.605	9.80793	80,3	0.07506	23,5	9.73287	56,9	0.26713
. 606	. 80874	80,2	. 07529	23,5	. 73344	56,7	. 26656
. 607	. 80954	80,1	. 07553	23,5	. 73401	56,6	. 26599
. 608	.81034	80,0	. 07576	23,6	. 73457	56,5	. 26543
. 609	.8III4	79,9	. 07600	23,6	.73514	56,3	. 26486
0.610	9.81194	79,8	0.07624	23,6	9.73570	56,2	0.26430
.6II	.81273	79,7	. 07647	23,7	. 73626	56,0	. 26374
.612	.81353	79,6	.07671	23,7	. 73682	55,9	. 26318
.613	.81433	79,5	. 07695	23,7	. 73738	55,8	. 26262
.6I4	.81512	79,4	. 07718	23,8	. 73794	55,7	. 26206
0.615	9.81591	79,3	0.07742	23,8	9.73849	55,5	0.26151
. 616	.81671	79,2	. 07766	23,8	. 73905	55,4	. 26095
. 617	.81750	79, 1	. 07790	23,8	. 73960	55,3	. 26040
. 618	. 81829	79,0	.07814	23,9	. 74015	55, I	. 25985
. 619	.81908	78,9	. 07838	23,9	. 74070	55,0	. 25930
0.620	9.81987	78,8	0.07861	23,9	9.74125	54,9	0.25875
. 621	. 82065	78,7	. 07885	24,0	. 74180	54,7	. 25820
. 622	.82I44	78,6	. 07909	24,0	. 74235	54,6	. 25765
. 623	. 82223	78,5	. 07933	24,0	. 74289	54,5	. 25711
. 624	. 82301	78,4	. 07957	24,1	. 74344	54,3	. 25656
0.625	9.82380	78,3	0.07982	24,1	9.74398	54,2	0.25602
. 626	. 82458	78,2	. 08006	24, I	. 74452	54, I	. 25548
. 627	. 82536	78,1	. 08030	24, I	. 74506	54,0	. 25494
. 628	.82614	78,0	. 08054	24,2	. 74560	53,8	. 25440
. 629	. 82692	77,9	.08078	24,2	.74614	53,7	. 25386
0.630	9.82770	77,8	0.08 IO 2	24,2	9.74667	53,6	0.25333
. 631	. 82848	77,7	.08126	24,3	. 74721	53,5	. 25279
. 632	. 82925	77,6	.08I51	24,3	. 74774	53,3	. 25226
. 633	.83003	77,5	.08I75	24,3	. 74828	53,2	. 25172
. 634	. 83080	77,4	. 08200	24,4	. 7488 I	53,1	.25119
0.635	9.83158	77,3	0.08224	24,4	9.74934	53,0	0.25066
. 636	. 83235	77,3	. 08248	24,4	. 74987	52,8	. 25013
. 637	. 83312	77,2	. 08273	24,4	. 75040	52,7	. 24960
. 638	. 83389	77, 1	. 08297	24,5	. 75092	52,6	. 24908
. 639	. 83466	77,0	. 08322	24,5	. 75145	52,5	. 24855
0.640	9.83543	76,9	0.08346	24,5	9.75197	52,3	0.24803
. 641	. 83620	76,8	.0837I	24,6	. 75249	52,2	.24751
. 642	. 83697	76,7	.08395	24,6	. 75302	52, I	. 24698
. 643	. 83774	76,6	. 08420	24,6	. 75354	52,0	. 24646
. 644	. 83850	76,5	. 08445	24,7	. 75406	51,9	. 24594
0.645	9.83927	76,4	0.08469	24,7	9.75457	51,7	0.24543
. 646	. 84003	76,3	. 08494	24,7	. 75509	51,6	. 24491
. 647	. 84079	76,2	. 08519	24,7	.7556I	5I,5	. 24439
. 648	.84155	76,	. 08543	24,8	.75612	5I,4	. 24388
. 649	. 84232	76, 1	. 08568	24,8	. 75663	51,3	. 24337
0.650	9.84308	76,0	0.08593	24,8	9.75715	51,1	0.24285
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.650	9.84308	76,0	0.08593	24,8	9.75715	51, I	0.24285
. 651	. 84383	75,9	.086I8	24,9	. 75766	51,0	. 24234
. 652	. 84459	75,8	. 08643	24,9	.75817	50,9	. 24183
. 653	. 84535	75,7	. 08668	24,9	. 75867	50,8	. 24133
. 654	.846II	75,6	. 08693	24,9	.75918	50,7	. 24082
0.655	9.84686	75,5	0.08718	25,0	9.75969	50,6	0.24031
. 656	. 84762	75,4	. 08742	25,0	. 76019	50,4	. 23981
. 657	. 84837	75,4	. 08768	25,0	. 76070	50,3	. 23930
. 658	. 84912	75,3	. 08793	25, I	. 76120	50,2	. 23880
. 659	. 84988	75,2	.088I8	25, I	.76170	50, I	.23830
0.660	9.85063	75, I	0.08843	25, 1	9.76220	50,0	0.23780
. 661	. 85138	75,0	. 08868	25, I	. 76270	49,9	. 23730
. 662	. 85213	74,9	. 08893	25,2	. 76320	49,7	. 23680
. 663	. 85288	74,8	.08918	25,2	. 76369	49,6	. 2363 I
. 664	. 85362	74,7	. 08943	25,2	. 76419	49,5	. 2358 I
0.665	9.85437	74,7	0.08969	25,3	9.76469	49,4	0.23531
. 666	.85512	74,6	. 08994	25,3	. 76518	49,3	. 23482
. 667	. 85586	74,5	. 09019	25,3	. 76567	49,2	. 23433
. 668	.8566I	74,4	. 09045	25,3	. 76616	49, I	. 23384
. 669	. 85735	74,3	. 09070	25,4	. 76665	48,9	. 23335
0.670	9.85809	74,2	0.09095	25,4	9.76714	48,8	0.23286
. 671	. 85884	74,2	.09121	25,4	. 76763	48,7	. 23237
. 672	. 85958	74,1	. 09146	25,5	. 76812	48,6	.23188
. 673	. 86032	74,0	.09172	25,5	. 76860	48,5	. 23140
. 674	.86106	73,9	. 09197	25,5	. 76909	48,4	. 23091
0.675	9.86180	73,8	0.09223	25,5	9.76957	48,3	0.23043
. 676	. 86253	73,7	. 09248	25,6	. 77005	48,2	. 22995
. 677	. 86327	73,7	. 09274	25,6	. 77053	48,	. 22947
. 678	.86401	73,6	. 09300	25,6	.77101	47,9	. 22899
. 679	. 86474	73,5	. 09325	25,7	. 77149	47,8	. 22851
0.680	9.86548	73,4	0.09351	25,7	9.77197	47,7	0.22803
.681	. 86621	73,3	. 09377	25,7	. 77245	47,6	. 22755
. 682	. 86694	73,3	. 09402	25,7	. 77292	47,5	22708
. 683	. 86768	73,2	. 09428	25,8	. 77340	47,4	22660
. 684	. 8684 J	73,1	. 09454	25,8	. 77387	47,3	. 226I3
0.685	9.86914	73,0	0.09480	25,8	9.77434	47,2	0.22566
. 686	. 86987	72,9	. 09505	25,9	. 7748 I	47,1	. 22519
. 687	. 87060	72,9	.0953I	25,9	. 77528	47,0	. 22472
. 688	. 87133	72,8	. 09557	25,9	. 77575	46,9	. 22425
. 689	. 87205	72,7	. 09583	25,9	. 77622	46,8	. 22378
0.690	9.87278	72,6	0.09609	26,0	9.77669	46,7	0.22331
. 691	.87351	72,5	. 09635	26,0	. 77715	46,6	. 22285
. 692	. 87423	72,5	. 0966 I	26,0	. 77762	46,4	. 22238
. 693	. 87495	72,4	. 09687	26,	. 77808	46,3	. 22192
. 694	. 87568	72,3	. 09713	26,1	. 77855	46,2	. 22145
0.695	9.87640	72,2	0.09739	26, I	9.77901	46, 1	0.22099
. 696	. 87712	72,2	. 09765	26, 1	. 77947	46,0	. 22053
. 697	. 87784	72,1	. 09792	26,2	. 77993	45,9	. 22007
. 698	. 87856	72,0	.09818	26,2	. 78039	45,8	. 21961
. 699	. 87928	71,9	. 09844	26,2	. 78084	45,7	. 21916
0.700	9.88000	71,9	0.09870	26,2	9.78 I 30	45,6	0.21870
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{cscgd} u$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.700	9.88000	71,9	0.09870	26,2	9.78130	45,6	0.21870
. 701	. 88072	71,8	.0989'	26,3	.78176	45,5	. 21824
. 702	. 88144	71,7	. 09923	26,3	. 78221	45,4	.21779
. 703	. 88216	71,6	. 09949	26,3	. 78266	45,3	. 21734
. 704	. 88287	71,6	. 09975	26,4	.78312	45,2	. 21688
0.705	9.88359	71,5	0.10002	26,4	9.78357	45, I	0.21643
. 706	. 88430	7I,4	. 10028	26,4	. 78402	45,0	. 21598
. 707	. 88502	71,3	. 10055	26,4	. 78447	44,9	. 21553
. 708	. 88573	71,3	. 1008I	26,5	. 78492	44,8	. 21508
. 709	. 88544	71,2	. 10108	26,5	. 78536	44,7	. 21464
0.710	9.88715	71,1	0.10134	26,5	9.7858 I	44,6	0.21419
.7II	. 88786	71,0	. 10161	26,5	. 78626	44,5	. 21374
. 712	. 88857	71,0	. 10187	26,6	. 78670	44,4	. 21330
. 713	. 88928	70,9	. 10214	26,6	. 78714	44,3	. 21286
. 714	. 88999	70,8	. 10240	26,6	. 78759	44,2	. 21241
0.715	9.89070	70,8	0. 10267	26,7	9.78803	44, I	0.21197
. 716	.8914I	70,7	. 10294	26,7	. 78847	44,0	.21153
. 717	. 8921 I	70,6	. 10320	26,7	.78891	43,9	. 21109
. 718	. 89282	70,5	. 10347	26,7	. 78935	43,8	. 21065
. 719	. 89352	70,5	. 10374	26,8	. 78978	43,7	. 21022
0.720	9.89423	70,4	$0.104 Q 1$	26,8	9.79022	43,6	0.20978
.721	. 89493	70,3	. 10427	26,8	. 79066	43,5	. 20934
. 722	. 89563	70,3	. 10454	26,8	. 79109	43,4	. 20891
. 723	. 89634	70,2	. 10481	26,9	. 79153	43,3	. 20847
. 724	. 89704	70, I	. 10508	26,9	. 79196	43,2	. 20804
0.725	9.89774	70,0	0. 10535	26,9	9.79239	43,1	0.20761
. 726	. 89844	70,0	. 10562	27,0	. 79282	43,0	. 20718
. 727	. 89914	69,9	. 10589	27,0	. 79325	42,9	. 20675
. 728	. 89984	69,8	. 10616	27,0	. 79368	42,8	. 20632
. 729	. 90054	69,8	. 10643	27,0	.794II	42,7	. 20589
0.730	9.90123	69,7	0. 10670	27,1	9.79453	42,6	0.20547
.731	. 90193	69,6	. 10697	27, I	. 79496	42,5	. 20504
. 732	. 90263	69,6	. 10724	27, I	. 79538	42,5	. 20462
. 733	. 90332	69,5	. 10751	27, I	.7958I	42,4	. 20419
. 734	. 90402	69,4	. 10778	27,2	. 79623	42,3	. 20377
0.735	9.9047 I	69,4	0. 10805	27,2	9.79665	42,2	0.20335
. 736	. 90540	69,3	. 10833	27,2	. 79708	42, I	. 20292
. 737	.90610	69,2	. 10860	27,2	. 79750	42,0	. 20250
. 738	. 90679	69,2	. 10887	27,3	.79791	41,9	. 20209
. 739	. 90748	69, I	. 10915	27,3	. 79833	4I,8	. 20167
0.740	9.90817	69,0	0.10942	27,3	9.79875	41,7	0.20125
.74I	. 90886	69,0	. 10969	27,3	. 79917	41,6	. 20083
. 742	. 90955	68,9	. 10997	27,4	. 79958	41,5	. 20042
. 743	. 91024	68,8	. 11024	27,4	. 80000	41,4	. 20000
. 744	. 91092	68,8	. I 1051	27,4	. 80041	41,3	. 19959
0.745	9.91161	68,7	0.11079	27,5	9.80082	41,2	0.19918
. 746	.91230	68,6	. 11106	27,5	. 80124	41,2	. 19876
. 747	.91298	68,6	. III34	27,5	. 80165	4I, I	. 19835
. 748	.91367	68,5	. III6I	27,5	. 80206	41,0	. 19794
. 749	.91436	68,4	. 11189	27,6	. 80247	40,9	. 19753
0.750	9.91504	68,4	0.11216	27,6	9.80288	40,8	0.19712
4	$\log \tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \operatorname{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.750	9.91504	68,4	0.11216	27,6	9.80288	40,8	0.19712
. 751	.91572	68,3	. II244	27,6	. 80328	40,7	. 19672
. 752	.9164I	68,2	. I I272	27,6	. 80369	40,6	. 19631
. 753	.91709	68,2	. I I299	27,7	. 80410	40,5	. 19590
. 754	.91777	68, 1	. II327	27,7	. 80450	40,4	. 19550
0.755	9.91845	68,1	O. II355	27,7	9.80490	40,3	0. 195IO
. 756	.91913	68,0	- IoI 382	27,7	. 80531	40,3	. 19469
. 757	.9198I	67,9	. II4IO	27,8	. 80571	40,2	. 19429
. 758	. 92049	67,9	. II438	27,8	.806II	40, I	. 19389
. 759	.92II7	67,8	. I I 466	27,8	. 80651	40,0	. 19349
0.760	9.92185	67,7	O. II493	27,8	9.8069 I	39,9	O. 19309
.76I	. 92252	67,7	. II52I	27,9	. 80731	39,8	. 19269
. 762	. 92320	67,6	. II549	27,9	. 80771	39,7	. 19229
. 763	. 92387	67,6	. II577	27,9	.80810	39,6	. 19190
. 764	. 92455	67,5	. 11605	27,9	. 80850	39,6	. 19150
0.765	9.92522	67,4	0. II633	28,0	9.80889	39,5	O. I9II I
. 766	. 92590	67,4	. 11661	28,0	. 80929	39,4	. 19071
. 767	. 92657	67,3	. II689	28,0	. 80968	39,3	. 19032
. 768	. 92724	67,3	. II7I7	28,0	.81007	39,2	. 18993
.769	. 92792	67,2	. II74.	28, I	.81047	39, I	. 18953
0.770	9.92859	67,1	0.11773	28, I	9.81086	39,0	0. 18914
. 771	. 92926	67, 1	. II80I	28,1	.81125	39,0	. 18875
. 772	. 92993	67,0	. 11829	28, I	.81164	38,9	. 18836
. 773	. 93060	67,0	. 11858	28,2	.81202	38,8	. 18798
-7.74	.93127	66,9	. 11886	28,2	.8I24I	38,7	. 18759
0.775	9.93194	66,8	O. IIgI4	28,2	9.81280	38,6	0. 18720
. 776	.9326I	66,8	. II942	28,2	.81318	38,5	. 18682
. 777	. 93327	66,7	. I 1970	28,3	.81357	38,4	. 18643
. 778	. 93394	66,7	. II999	28,3	. 81395	38,4	. 18605
. 779	.9346I	66,6	. 12027	28,3	. 81434	38,3	. 18566
0.780	9.93527	66,5	O. 12055	28,3	9.81472	38,2	0. 18528
.78I	. 93594	66,5	. 12084	28,4	.81510	38, 1	. 18490
. 782	. 93660	66,4	. 12112	28,4	.81548	38,0	. 18452
.783	. 93727	66,4	. 12141	28,4	. 81586	37,9	. 18414
.784	. 93793	66,3	. 12169	28,4	.81624	37,9	. 18376
0.785	9.93859	66,2	0.12197	28,5	9.81662	37,8	o. 18338
. 786	. 93925	66,2	. 12226	28,5	.81699	37,7	. 18301
. 787	. 93992	66, 1	. 12254	28,5	.81737	37,6	. 18263
. 788	. 94058	66, 1	. 12283	28,5	.81775	37,5	. 18225
. 789	. 94124	66,0	. 12312	28,6	.81812	37,4	. 18188
0.790	9.94190	66,0	0.12340	28,6	9.81850	37,4	0.18I50
.791	. 94256	65,9	. 12369	28,6	.81887	37,3	. 18113
. 792	-9432I	65,8	. 12397	28,6	. 81924	37,2	. 18076
-793	-94387	65,8	. 12426	28,7	.8196I	37, I	. 18039
. 794	. 94453	65,7	. 12455	28,7	. 8I998	37,0	. 18002
0.795	9.94519	65,7	0.12483	28,7	9.82035	37,0	
. 796	. 94584	65,6	. 12512	28,7	. 82072	36,9	. I7928
. 797	. 94650	65,6	. 1254 I	28,8	. 82109	36,8	. I7891
. 798	-947I6	65,5	. I2570	28,8	. 82146	36,7	. 17854
. 799	.94781	65,5	. 12598	28,8	. 82183	36,6	. 17817
0.800	9.94846	65,4	0.12627	28,8	9.82219	36,6	0.17781
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.800	9.94846	65,4	0.12627	28,8	9.82219	36,6	0.17781
. 801	. 94912	65,3	. 12656	28,9	. 82256	36,5	. I7744
. 802	. 94977	65,3	. 12685	28,9	. 82292	36,4	. 17708
. 803	. 95042	65,2	. 12714	28,9	. 82329	36,3	. 17671
. 804	.95108	65,2	. 12743	28,9	. 82365	36,2	. 17635
0.805	9.95173	65,1	0.12772	29,0	9.82401	36,2	0.17599
. 806	. 95238	65, 1	. 12801	29,0	. 82437	36, 1	. 17563
. 807	. 95303	65,0	. 12830	29,0	. 82473	36,0	. 17527
. 808	. 95368	65,0	. 12859	29,0	. 82509	35,9	. 17491
. 809	. 95433	64,9	. 12888	29, I	. 82545	35,9	. 17455
0.810	9.95498	64,9	0.12917	29, 1	9.8258 I	35,8	0.17419
.8II	. 95563	64,8	. 12946	29, I	. 82617	35,7	. 17383
. 812	. 95627	64,8	. 12975	29, I	. 82652	35,6	. 17348
. 813	. 95692	64,7	. 13004	29,2	. 82688	35,5	. 17312
. 814	. 95757	64,6	. 13033	29,2	. 82723	35,5	. 17277
0.815	9.9582 I	64,6	0.13063	29,2	9.82759	35,4	0.17241
.816	. 95886	64,5	. I3092	29,2	. 82794	35,3	. 17206
.8I7	. 95950	64,5	. 13121	29,2	. 82829	35,2	.17171
. 818	.96015	64,4	- I3I50	29,3	. 82865	35,2	. I7I35
. 819	. 96079	64,4	. 13180	29,3	. 82900	35, I	. 17100
0.820	9.96144	64,3	0.13209	29,3	9.82935	35,0	0.17065
. 821	. 96208	64,3	. 13238	29,3	. 82970	34,9	. 17030
. 822	. 96272	64,2	. 13268	29,4	. 83005	34,9	. 16995
. 823	. 96336	64,2	. I3297	29,4	. 83040	34,8	. 16960
. 824	.9640I	64, I	. 13326	29,4	. 83074	34,7	. 16926
0.825	9.96465	64,1	0.13356	29,4	9.83109	34,6	0. 16891
. 826	. 96529	64,0	. 13385	29,5	. 83144	34,6	. 16856
. 827	. 96593	64,0	. 13415	29,5	. 83178	34,5	. 16822
. 828	. 96657	63,9	. 13444	29,5	. 83213	34,4	. 16787
. 829	.9672I	63,9	. I3474	29,5	. 83247	34,3	. 16753
0.830	9.96784	63,8	0.13503	29,6	9.83281	34,3	0.16719
. 831	. 96848	63,8	. I 3533	29,6	. 83316	34,2	. 16684
. 832	.96912	63,7	. 13562	29,6	. 83350	34,1	. 16650
. 833	. 96976	63,7	. 13592	29,6	. 83384	34,0	. 16616
. 834	. 97039	63,6	. 13622	29,6	. 83418	34,0	. 16582
0.835	9.97103	63,6	0.13651	29,7	9.83452	33,9	0. 16548
. 836	. 97167	63,5	. 13681	29,7	. 83486	33,8	. 16514
. 837	. 97230	63,5	. 13711	29,7	. 83519	33,8	. 16481
. 838	. 97293	63,4	. 13740	29,7	. 83553	33,7	. 16447
. 839	. 97357	63,4	. 13770	29,8	. 83587	33,6	. 16413
0.840	9.97420	63,3	0.13800	29,8	9.83620	33,5	0. 16380
.84I	. 97484	63,3	. 13830	29,8	. 83654	33,5	. 16346
. 842	. 97547	63,2	. 13860	29,8	. 83687	33,4	. 16313
. 843	.97610	63,2	- I3889	29,9	. 83721	33,3	. 16279
. 844	. 97673	63,1	. 13919	29,9	. 83754	33,3	. 16246
0.845	9.97736	63,1	0. 13949	29,9	9.83787	33,2	0. 16213
. 846	. 97799	63,0	. 13979	29,9	. 83820	33, 1	. 16180
. 847	. 97862	63,0	. 14009	29,9	. 83853	33,0	. 16147
. 848	. 97925	62,9	. 14039	30,0	. 83886	33,0	. 16II4
. 849	. 97988	62,9	. 14069	30,0	. 83919	32,9	. 1608I
0.850	9.98051	62,8	0. 14099	30,0	9.83952	32,8	0. 16048
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.850	9.98051	62,8	0. I4099	30,0	9.83952	32,8	0. 16048
. 851	.98II4	62,8	. 14129	30,0	. 83985	32,8	. 16015
. 852	.98177	62,7	. 14159	30, I	. 84018	32,7	. 15982
. 853	. 98239	62,7	. 14189	30, I	. 84050	32,6	. I 5950
. 854	. 98302	62,7	. 14219	30, I	. 84083	32,6	. 15917
0.855	9.98365	62,6	0.14249	30, I	9.84115	32,5	0.15885
. 856	. 98427	62,6	. I4279	30, I	. 84148	32,4	. 15852
. 857	. 98490	62,5	.14310	30,2	.84180	32,3	. 15820
. 858	. 98552	62,5	. 14340	30,2	. 84213	32,3	. 15787
. 859	.986I5	62,4	. 14370	30,2	. 84245	32,2	. 15755
0.860	9.98677	62,4	0.14400	30,2	9.84277	32, 1	0. 15723
. 86 I	. 98739	62,3	. 14430	30,3	. 84309	32,1	. 15691
. 862	. 98802	62,3	. I446I	30,3	. 84341	32,0	. 15659
. 863	. 98864	62,2	. I449I	30,3	. 84373	31,9	. 15627
. 864	. 98926	62,2	. I452I	30,3	. 84405	31,9	. 15595
0.865	9.98988	62, 1	0.14552	30,3	9.84437	3I,8	-. 15563
. 866	. 9905 I	62, 1	. I4582	30,4	. 84469	31,7	. 1553 I
. 867	.99113	62,1	. 14612	30,4	. 84500	31,7	. 15500
. 868	. 99175	62,0	. I4643	30,4	. 84532	31,6	. I 5468
. 869	. 99237	62,0	. 14673	30,4	. 84563	31,5	. 15437
0.870	9.99299	6I,9	0.14704	30,5	9.84595	31,5	0. 15405
. 871	. 99361	6I,9	. 14734	30,5	. 84626	31,4	. I5374
. 872	. 99422	6I,8	. 14765	30,5	. 84658	31,3	. 15342
. 873	. 99484	61,8	. 14795	30,5	. 84689	3I,3	. 153 II
. 874	. 99546	6I,7	. 14826	30,5	. 84720	31,2	. 15280
0.875	9.99608	6I,7	0.14856	30,6	9.84751	3I, I	0. 15249
. 876	. 99669	61,7	. 14887	30,6	. 84783	31, I	. 15217
. 877	. 9973 I	6I,6	. 14917	30,6	.84814	31,0	. 15186
. 878	. 99793	6I,6	. 14948	30,6	. 84845	30,9	. 15155
. 879	. 99854	6I,5	. 14979	30,7	. 84875	30,9	. 15125
0.880	9.99916	6I,5	0.15009	30,7	9.84906	30,8	0. 15094
.88I	. 99977	6I,4	. 15040	30,7	. 84937	30,7	. 15063
. 882	0.00038	6I,4	. 1507 I	30,7	. 84968	30,7	. 15032
. 883	. 00100	6I,3	. 15101	30,7	. 84998	30,6	. 15002
. 884	.00161	6r,3	. 5152	30,8	. 85029	30,5	. 14971
0.885	0.00222	6r,3	0.15163	30,8	9.85059	30,5	0. I494I
. 886	. 00284	6I,2	.15194	30,8	. 85090	30,4	. 14910
. 887	. 00345	61,2	. 15225	30,8	. 85120	30,3	. 14880
. 888	. 00406	61, 1	. 15255	30,9	.85I5I	30,3	. 14849
. 889	. 00467	6I,I	. 15285	30,9	.85181	30,2	.148I9
0.890	0.00528	61,0	0.15317	30,9	9.852 II	30,2	0.14789
. 891	. 00589	61,0	. 15348	30,9	. 85241	30,1	. 14759
. 892	. 00650	6i,0	. 15379	30,9	. 8527 I	30,0	. 14729
. 893	.007II	60,9	. 15410	31,0	. 85301	30,0	. I4699
. 894	. 00772	60,9	. 1544 I	31,0	. 8533 I	29,9	. I4669
0.895	0.00833	60,8	0. I 5472	31,0	9.85361	29,8	0. 14639
. 896	. 00894	60,8	. I5503	31,0	. 85391	29,8	. I4609
. 897	. 00955	60,8	. 15534	31,0	. 8542 I	29,7	. I4579
. 898	. OIOI5		. 15565	$3 \mathrm{I}, \mathrm{I}$. 85450	29,6	. I4550
. 899	. 01076	60,7	. 15556	3I, I	. 85480	29,6	. I4520
0.800	0.01137	60,6	0.15627	3I, I	9.85509	29,5	0.14491
u	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \mathrm{csc} \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.900	0.01137	60,6	0. 15627	3I, I	9.85509	29,5	0. I4491
. 901	. 01197	60,6	. I5658	3I, I	. 85539	29,5	.1446I
. 902	.01258	60,5	. 15689	3I,2	. 85568	29,4	. 14432
. 903	.01318	60,5	. 1572 I	3I,2	. 85598	29,3	. 14402
. 904	.OI379	60,5	. 15752	31,2	. 85627	29,3	. 14373
0.905	0.01439	60,4	0. 15783	3I,2	9.85656	29,2	O. I4344
. 906	.OI500	60,4	. 15814	31,2	. 85685	29,2	. 14315
. 907	. 01560	60,3	. 15846	$3 \mathrm{I}, 3$. 85715	29, I	. 14285
. 908	.01620	60,3	. 15877	$3 \mathrm{I}, 3$. 85744	29,0	. 14256
. 909	.0168I	60,3	. 15908	3I,3	. 85773	29,0	. I4227
0.910	0.01741	60,2	0.15939	31,3	9.85801	28,9	0.14199
.91I	. 01801	60,2	. I5971	3I,3	. 85830	28,8	. 14170
. 912	.0186I	60,1	. 16002	3I,4	. 85859	28,8	. 14141
. 913	.0192I	60, 1	. 16033	3I,4	. 85888	28,7	. 14112
. 914	.0198I	60, 1	. 16065	3I,4	. 85917	28,7	. I4083
0.915	0.0204 I	60,0	0.16096	3I,4	9.85945	28,6	0.14055
. 916	.02101	60,0	. 16128	31,4	. 85974	28,5	. 14026
.917	.0216I	59,9	. 16159	31,5	. 86002	28,5	. I3998
. 918	.0222I	59,9	. 16191	3I,5	. 8603 I	28,4	. 13969
. 919	.0228I	59,9	. 16222	3I,5	. 85059	28,4	. I394I
0.920	0.0234 I	59,8	0.16254	3I,5	9.86088	28,3	0.13912
.92I	. 02401	59,8	. 16285	31,5	.86ir6	28,2	. 13884
. 922	.02461	59,8	. 16317	31,6	.86I44	28,2	. I3856
.923	. 02520	59,7	. 16348	31,6	.86r72	28, I	. 13828
. 924	. 02580	59,7	. 16380	3I,6	. 86200	28, I	. 13800
0.925	0.02640	59,6	0.164II	31,6	9.86228	28,0	0. I3772
. 926	. 02699	59,6	. 16443	31,6	. 86256	27,9	. I3744
.927	. 02759	59,6	. 16475	$3 \mathrm{I}, 7$. 86284	27,9	. 13716
. 928	.02819	59,5	. 16506	$3 \mathrm{I}, 7$. 86312	27,8	. 13688
. 929	.02878	59,5	. 16538	31,7	. 86340	27,8	. I3660
0.930	0.02937	59,4	0. 16570	3I,7	9.86368	27,7	0.13632
.93I	. 02997	59,4	. 16602	31,7	. 86395	27,7	. 13605
. 932	. 03056	59,4	. 16633	3I,8	. 86423	27,6	. I3577
. 933	.03116	59,3	. 16665	$3 \mathrm{I}, 8$. 86450	27.5	. I3550
. 934	.03175	59,3	. 16697	31,8	. 86478	27,5	. 13522
0.935	0.03234	59,3	0.16729	31,8	9.86505	27,4	0.13495
. 936	. 03293	59,2	. 16761	31,9	. 86533	27,4	. I3467
. 937	. 03353	59,2	. 16792	31,9	. 86560	27,3	- I3440
. 938	.03412	59, I	. 16824	3I,9	. 86587	27,3	. 13413
. 939	. 0347 I	59, I	. 16856	31,9	.866I5	27,2	. 13385
0.940	0.03530	59,1	0. 16888	31,9	9.86642	27, I	0. 13358
.94I	. 03589	59,0	. 16920	32,0	. 86669	27, I	. I333I
.942	. 03648	59,0	. 16952	32,0	. 86696	27,0	. 13304
. 943	.03707	59,0	. 16984	32,0	. 86723	27,0	. 13277
. 944	. 03766	58,9	. 17016	32,0	. 86750	26,9	. 13250
0.945	0.03825	58,9	0.17048	32,0	9.86777	26,9	0. I3223
. 946	. 03884	58,9	. 17080	32,0	. 86804	26,8	. I3196
. 947	. 03943	58,8	. 17112	$32, \mathrm{I}$. 86830	26,7	.13170
.948	.04001	58,8	. I7I44	32, I	. 85857	26,7	. 13143
. 949	. 04060	58,7	. 17176	32, I	. 86884	26,6	. 13116
0.950	0.04119	58,7	0.17208	32,I	9.86910	26,6	0.13090
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.950	0.04119	58,7	0. 17208	32, I	9.86910	26,6	0. I3090
.95I	.04178	58,7	. 17241	32, I	. 86937	26,5	. 13063
. 952	. 04236	58,6	. 17273	32,2	. 86963	26,5	. 13037
. 953	. 04295	58,6	. 17305	32,2	. 86990	26,4	. 13010
. 954	. 04353	58,6	. 17337	32,2	. 87016	26,4	. 12984
0.955	0.04412	58,5	0.17369	32,2	9.87043	26,3	0. 12957
. 956	. 04470	58,5	. 17402	32,2	. 87069	26,2	. 12931
. 957	. 04529	58,5	. I7434	32,3	. 87095	26,2	. 12905
. 958	. 04587	58,4	. 17466	32,3	. 87121	26, I	. 12879
. 959	. 04646	58,4	. 17498	32,3	. 87147	26, I	. 12853
0.960	0.04704	58,4	0.1753I	32,3	9.87173	26,0	0. 12827
. 961	. 04763	58,3	. 17563	32,3	. 87199	26,0	. 12801
. 962	.0482I	58,3	. 17595	32,4	. 87225	25,9	. 12775
. 963	. 04879	58,2	. 17628	32,4	. 8725 I	25,9	. 12749
. 964	. 04937	58,2	. 17660.	32,4	. 87277	25,8	. 12723
0.965	0.04996	58,2	0.17693	32,4	9.87303	25,8	0. 12697
. 966	. 05054	58, I	. 17725	32,4	. 87329	25,7	. 12671
. 967	.05112	58, I	. I7757	32,5	. 87354	25,7	. 12646
. 968	.05170	58, I	. 17790	32,5	. 87380	25,6	. 12620
. 969	. 05228	58,0	. 17822	32,5	. 87406	25,5	. 12594
0.970	0.05286	58,0	0. 17855	32,5	9.87431	25,5	0. 12569
. 971	. 05344	58,0	. 17887	32,5	. 87456	25,4	. 12544
. 972	. 05402	57,9	. 17920	32,6	. 87482	25,4	. 12518
. 973	. 05460	57,9	. 17953	32,6	. 87507	25,3	. 12493
. 974	.05518	57,9	. 17985	32,6	. 87533	25,3	. 12467
0.975	0.05576	57,8	-. 18018	32,6	9.87558	25,2	0.12442
. 976	. 05633	57,8	. 18050	32,6	. 87583	25,2	. 12417
. 977	.0569I	57,8	. 18083	32,6	. 87608	25, I	. 12392
. 978	. 05749	57,7	. 18ir6	32,7	. 87633	25, I	. 12367
. 979	. 05807	57,7	. 18148	32,7	. 87658	25,0	. 12342
0.980	0.05864	57,7	0.1818 I	32,7	9.87683	25,0	0.12317
.98I	. 05922	57,6	. 18214	32,7	. 87708	24,9	. 12292
. 982	. 05980	57,6	. 18246	32,7	. 87733	24,9	. 12267
. 983	. 06037	57,6	. 18279	32,8	. 87758	24,8	. 12242
. 984	. 06095	57,5	.18312	32,8	. 87783	24,8	. 12217
0.985	0.06152	57,5	0. 18345	32,8	9.87807	24,7	0.12193
. 986	.06210	57,5	. 18378	32,8	. 87832	24,7	. 12168
. 987	. 06267	57,4	. 18410	32,8	. 87857	24,6	. 12143
. 988	. 06325	57,4	. 18443	32,9	. 8788 I	24,6	. 12119
.989	. 06382	57,4	. 18476	32,9	. 87906	24,5	. 12094
0.990	0.06439	57,3	0.18509	32,9	9.87930	24,5	0.12070
.99I	. 06497	57,3	. 18542	32,9	. 87955	24,4	. 12045
. 992	. 06554	57,3	. 18575	32,9	. 87979	24,3	. 12021
. 993	.066I I	57,2	. 18608	32,9	. 88003	24,3	. 11997
. 994	. 06669	57,2	. 18641	33,0	. 88028	24,2	. I 1972
0.995	0.06726	57,2	0.18674	33,0	9.88052	24,2	0. 11948
. 996	. 06783	57,2	. 18707	33,0	. 88076	24,1	. 11924
. 997	. 06840	57, I	. 18740	33,0	.88100	24, I	. 11900
. 998	. 06897	57, I	. 18773	33,0	.88I24	24,0	. 11876
. 999	. 06954	57, I	. 18806	33, I	.88I48	24,0	. 11852
1.000	0.07011	57,0	0.18839	33, 1	9.88 I 72	23,9	0. 11828
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.000	0.0701 I	57,0	0.18839	33, I	9.88172	23,9	0.11828
.001	. 07068	57,0	. 18872	33, I	.88196	23,9	. 11804
. 002	. 07125	57,0	. 18905	33, I	. 88220	23,8	. 11780
. 003	. 07182	56,9	. 18938	33,I	. 88244	23,8	. 11756
. 004	. 07239	56,9	. I8971	33, 1	. 88268	23,8	. 11732
1.005	0.07296	56,9	0. 19004	33,2	9.88291	23,7	0. 11709
. 006	. 07353	56,8	. 19038	33,2	.88315	23,7	. 11685
. 007	.07410	56,8	. 19071	33,2	. 88339	23,6	. 11661
. 008	. 07466	56,8	. 19104	33,2	. 88362	23,6	. 11638
. 009	. 07523	56,7	. 18137	33,2	. 88386	23,5	. 11614
1.010	0.07580	56,7	0.19171	33,3	9.88409	23,5	0.11591
. OII	. 07637	56,7	. 19204	33,3	. 88433	23,4	. II567
. 012	. 07693	56,7	. 19237	33,3	. 88456	23,4	. II544
. 013	. 07750	56,6	. 19270	33,3	. 88480	23,3	. II520
. 014	. 07807	56,6	. 19304	33,3	. 88503	23,3	. I 1497
1.015	0.07863	56,6	o. 19337	33,3	9.88526	23,2	O. II474
. 016	. 07920	56,5	. 19370	33,4	. 88549	23,2	. II45I
. 017	. 07976	56,5	. 19404	33,4	. 88572	23, I	. 11428
. 018	. 08033	56,5	. 19437	33,4	. 88595	23, I	. II405
. 019	. 08089	56,4	. 1947I	33,4	. 88619	23,0	. II38I
1.020	0.08146	56,4	0.19504	33,4	9.88642	23,0	0.11358
.02I	. 08202	56,4	. 19537	33,5	. 88664	22,9	. 11336
. 022	. 08258	56,4	. 1957I	33,5	. 88687	22,9	. II313
. 023	. 08315	56,3	. 19604	33,5	. 88710	22,8	. I1290
. 024	. 08371	56,3	. 19638	33,5	. 88733	22,8	. 11267
1.025	0.08427	56,3	0. 19671	33,5	9.88756	22,7	0.11244
. 026	. 08483	56,2	. 19705	33,5	. 88779	22,7	. II22I
. 027	. 08540	56,2	. 19738	33,6	.8880I	22,6	. 11199
. 028	. 08596	56,2	. 19772	33,6	. 88824	22,6	. 11176
. 029	. 08652	56, I	. 19806	33,6	. 88846	22,6	. III 54
1.030	0.08708	56, I	o. 19839	33,6	9.88859	22,5	O.III3I
.03I	. 08764	56, I	. 19873	33,6	.8889I	22,5	. II 109
. 032	. 08820	56, I	. 19906	33,6	. 88914	22,4	. 11086
. 033	. 08876	56,0	. 19940	33,7	. 88936	22,4	. 11064
. 034	. 08932	56,0	. 19974	33,7	. 88959	22,3	. IIO4I
1.035	0.08988	56,0	0.20007	33,7	9.88981	22,3	0.11019
. 036	. 09044	55,9	. 2004 I	33,7	. 89003	22,2	. 10997
. 037	. 09100	55,9	. 20075	33,7	. 89025	22,2	. 10975
. 038	. 09156	55,9	. 20109	33,7	. 89048	22,1	. 10952
. 039	. 09212	55,9	.20142	33,8	. 89070	22,I	. 10930
1.040	0.09268	55,8	0.20176	33,8	9.89092	22,0	0. 10908
.04I	. 09324	55,8	. 20210	33,8	. 89114	22,0	. 10886
. 042	. 09379	55,8	. 20244	33,8	. 89136	22,0	. 10864
. 043	. 09435	55,7	. 20278	33,8	. 89158	21,9	. 10842
. 044	. 09491	55,7	.203II	33,9	. 89180	21,9	. 10820
1.045	0.09547	55,7	0.20345	33,9	9.89201	21,8	0. 10799
. 046	. 09602	55,7	. 20379	33,9	. 89223	21,8	. 10777
. 047	. 09658	55,6	. 20413	33,9	. 89245	21,7	. 10755
. 048	. 09714	55,6	. 20447	33,9	. 89267	21,7	. 10733
. 049	. 09769	55,6	. 2048I	33,9	. 89288	21,6	. 10712
1.050	0.09825	55,6	0.20515	34,0	9.89310	21,6	0. 10690
u	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Smithsonian Tables

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1.050	0.09825	55,6	0.20515	34,0	9.89310	21,6	0. 10690
.05I	. 09880	55,5	. 20549	34,0	. 8933 I	21,6	. 10669
. 052	. 09936	55,5	.20583	34,0	. 89353	21,5	. 10647
. 053	.09991	55,5	. 20617	34,0	. 89375	21,5	. 10625
. 054	. 10047	55,4	. 20651	34,0	. 89396	2I,4	. 10604
1.055	0.10102	55,4	0.20685	34,0	9.89417	2I,4	0. 10583
. 056	. 10158	55,4	. 20719	34,1	. 89439	21,3	. 10561
. 057	. 10213	55,4	. 20753	34, I	. 89460	21,3	. 10540
. 058	. 10268	55,3	. 20787	$34, \mathrm{I}$. 8948 I	2I,2	. 10519
. 059	. 10324	55,3	. 20821	34, I	. 89502	21,2	. 10498
1.060	0.10379	55,3	0.20855	34,I	9.89524	2I,2	0.10476
.06I	. 10434	55,3	. 20889	34, I	. 89545	2I, I	. 10455
. 062	. 10489	55,2	. 20924	34,2	. 89566	2I, I	. 10434
. 063	. 10545	55,2	. 20958	34,2	. 89587	21,0	. 10413
. 064	. 10600	55,2	. 20992	34,2	. 89608	21,0	. 10392
1.065	0. 10655	55,1	0.21026	34,2	9.89629	20,9	0.10371
. 066	. 10710	55, 1	. 21060	34,2	. 89650	20,9	. 10350
. 067	. 10765	55, I	. 21094	34,2	. 89671	20,9	. IO329
. 068	. 10820	55, I	. 21129	34,3	. 89692	20,8	. 10308
. 069	. 10875	55,0	. 21163	34,3	. 89712	20,8	. 10288
1.070	0. 10930	55,0	0.21197	34,3	9.89733	20,7	0. 10267
. 071	. 10985	55,0	. 21232	34,3	. 89754	20,7	. 10246
. 072	. 11040	55,0	. 21266	34,3	. 89774	20,6	. 10226
. 073	. 11095	54,9	. 21300	34,3	. 89795	20,6	. 10205
. 074	. III 50	54,9	. 21335	34,4	. 89816	20,6	. 10184
1.075	0.11205	54,9	0.21369	34,4	9.89836	20,5	0. 10164
. 076	. II260	54,9	. 21403	34,4	. 89857	20,5	. IOI43
. 077	. II3I5	54,8	. 21438	34,4	. 89877	20,4	. 10123
. 078	. I I 370	54,8	. 21472	34,4	. 89898	20,4	. 10102
. 079	. II424	54,8	.21507.	34,4	. 89918	20,3	. 10082
1.080	O. II479	54,8	0.2154 I	34,4	9.89938	20,3	0. 10062
.081	. II 534	54,7	- .21575	34,5	. 89959	20,3	. 1004 I
. 082	. II589	54,7	. 21610	34,5	. 89979	20,2	. 1002 I
. 083	. 11643	54,7	. 21644	34,5	. 89999	20,2	. 10001
. 084	. 11698	54,7	. 21679	34,5	.90019	20, I	. 09981
1.085	0. II753	54,6	0.21713	34,5	9.90039	20,1	0.0996 I
. 086	. 11807	54,6	. 21748	34,5	. 90059	20,1	. 09941
. 087	. 11862	54,6	. 21782	34,6	. 90079	20,0	. 0992 I
. 088	. 11916	54,5	.21817	34,6	. 90099	20,0	. 0990 I
. 089	. 11971	54,5	. 21852	34,6	.90119	19,9	.0988I
1.090	0.12025	54,5	0.21886	34,6	9.90139	19,9	0.09861
.091	. 12080	54,5	. 21921	34,6	.90159	19,9	. 09841
. 092	. 12134	54,4	. 21955	34,6	.90179	19,8	. 09821
. 093	. 12189	54,4	. 21990	34,7	.90199	19,8	. 09881
. 094	. 12243	54,4	. 22025	34,7	.902I8	19,7	. 09782
1.095	0.12298	54,4	0.22059	34,7	9.90238	19,7	0.09762
. 096	. 12352	54,4	. 22094	34,7	. 90258	19,6	. 09742
. 097	. 12406	54,3	. 22 I29	34,7	. 90277	19,6	. 09723
. 098	. 12461	54,3	. 22164	34,7	. 90297	19,6	. 09703
. 099	. 12515	54,3	. 22198	34,7	. 90317	19,5	. 09683
1. 100	0.12569	54,3	0.22233	34,8	9.90336	19,5	0.09664
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1. 100	0. 12569	54,3	0.22233	34,8	9.90336	19,5	0.09664
. IOI	. 12623	54,2	. 22268	34,8	. 90356	19,4	. 09644
. 102	.. 12678	54,2	. 22303	34,8	. 90375	19,4	. 09625
. 103	. 12732	54,2	. 22337	34,8	. 90394	19,4	. 09606
. 104	. 12786	54,2	. 22372	34,8	.904I4	19,3	. 09586
1. 105	0. 12840	54,1	0.22407	34,8	9.90433	19,3	0.09567
. 106	. I2894	54, I	. 22442	34,9	. 90452	19,2	. 09548
. 107	. I2948	54, I	. 22477	34,9	. 90472	19,2	. 09528
. 108	. I3002	54, I	. 22512	34,9	.90491	19,2	. 09509
. 109	. 13056	54,0	. 22547	34,9	. 90510	19,I	. 09490
I.IIC	O.I3III	54,0	0.22582	34,9	9.90529	19, 1	0.09471
. 111	. 13165	54,0	. 22616	34,9	. 90548	19, 1	. 09452
. 112	. 13218	54,0	. 22651	35,0	. 90567	19,0	. 09433
. II3	. 13272	53,9	. 22686	35,0	. 90586	19,0	. 09414
. 114	. 13326	53,9	. 22721	35,0	. 90605	18,9	. 09395
I. II5	0. 13380	53,9	0.22756	35,0	9.90624	18,9	0.09376
. 116	. I3434	53,9	. 22791	35,0	. 90643	18,9	. 09357
. II7	- I3488	53,8	. 22826	35,0	. 90662	18,8	. 09338
. 118	. I3542	53,8	. 2286 I	35,0	. 90680	18,8	. 09320
. 119	. 13596	53,8	. 22896	35, I	. 90699	18,7	.09301
I. 120	0.13649	53,8	0.22931	35, I	9.90718	18,7	0.09282
. 12 I	. 13703	53,8	. 22967	35, I	. 90737	18,7	. 09263
. 122	. 13757	53,7	. 23002	35, I	. 90755	18,6	. 09245
. 123	. 1381 I	53,7	. 23037	35, I	. 90774	18,6	. 09226
. 124	. 13864	53,7	. 23072	35, I	. 90792	18,6	. 09208
I. 125	0.13918	53,7	0.23107	35, I	9.908 II	18,5	0.09189
. 125	. 13972	53,6	. 23142	35,2	. 90830	18,5	.09170
. 127	. 14025	53,6	. 23177	35,2	. 90848	I8,4	.09152
. 128	. 14079	53,6	. 23213	35,2	.90866	18,4	.09134
. 129	.14133	53,6	. 23248	35,2	. 90885	18,4	.09II5
I. I30	0.14186	53,5	0.23283	35,2	9.90903	18,3	0.09097
. 131	. 14240	53,5	. 23318	35,2	.9092I	18,3	. 09079
. 132	. I4293	53,5	. 23353	35,3	. 90940	18,3	. 09060
. 133	. 14347	53,5	. 23389	35,3	. 90958	18,2	. 09042
. 134	. 14400	53,5	. 23424	35,3	. 90976	18,2	. 09024
I. 135	O. I4454	53,4	0.23459	35,3	9.90994	18,1	0.09006
. 136	. 14507	53,4	. 23495	35.3	.91012	18, 1	. 08988
. 137	. 14560	53,4	. 23530	35,3	. 91030	I8, 1	. 08970
. 138	. 14614	53,4	. 23565	35,3	. 91049	18,0	. 08951
. 139	. 14667	53,3	.2360I	35,4	.91067	18,0	. 08933
I. I40	0.14720	53,3	0.23636	35,4	9.91085	18,0	0.08915
. 141	. 14774	53,3	. 23671	35,4	.91102	17,9	. 08898
. 142	. I4827	53,3	. 23707	35,4	.91120	I7,9	. 08880
. I43	. I4880	53,3	. 23742	35,4	.91I38	17,8	. 08862
. I44	. 14934	53,2	. 23778	35,4	.91I56	17,8	. 08844
I. 145	0. 14987	53,2	0.238I3	35,4	9.91174	17,8	0.08826
. 146	. 15040	53,2	. 23848	35,5	.91192	17,7	. 08808
. 147	. 15093	53,2	. 23884	35,5	.91209	17,7	.08791
. I48	. 15146	53,2	. 23919	35,5	.91227	17,7	. 08773
. 149	. 15200	53, I	. 23955	35,5	.91245	17,6	. 08755
I. 150	0.15253	53, I	0.23990	35,5	9.91262	17,6	0.08738
u	$\log \operatorname{tangd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1. 150	0. 15253	53, I	0.23990	35,5	9.91262	17,6	0.08738
. 151	. 15305	53, I	. 24026	35,5	. 91280	17,6	. 08720
. 152	. 15359	53, I	. 24061	35,5	.91297	17,5	. 08703
. 153	. 15412	53,0	. 24097	35,6	.91315	17,5	. 08685
. 154	. 15465	53,0	.24133	35,6	.91332	17,5	. 08668
1.155	0.15518	53,0	0.24168	35,6	9.91350	17,4	0.08650
. 156	. 15571	53,0	. 24204	35,6	.91367	17,4	. 08633
. 157	. 15624	53,0	. 24239	35,6	.91385	17,3	.08615
. 158	. 15677	52,9	. 24275	35,6	.91402	17,3	.08598
. 159	. 15730	52,9	. 243 II	36,6	.91419	17,3	.0858I
1.160	0. 15783	52,9	0.24346	35,7	9.91436	17,2	0.08564
.16I	. 15836	52,9	. 24382	35,7	. 91454	17,2	. 08546
. 162	. 15888	52,9	. 24418	35,7	.91471	17,2	. 08529
.163	. 15941	52,8	. 24453	35,7	. 91488	17,I	.08512
. 164	. 15994	52,8	. 24489	35,7	.91505	17,1	. 08495
I. 165	0. 16047	52,8	0.24525	35,7	9.91522	I7,I	0.08478
. 166	. 16100	52,8	. 24560	35,7	. 91539	17,0	.0846I
.167	.16152	52,7	. 2.4596	35,8	.91556	I7,0	. 08444
. 168	. 16205	52,7	. 24632	35,8	.91573	17,0	.08427
. 169	. 16258	52,7	. 24668	35,8	.91590	I6,9	.08410
1.170	0.163II	52,7	0.24703	35,8	9.91607	16,9	0.08393
.171	.16363	52,7	. 24739	35,8	. 91624	16,9	. 08376
. 172	. 16416	52,6	. 24775	35,8	.9164I	16,8	. 08359
. 173	. 16469	52,6	.248II	35,8	. 91658	16,8	. 08342
. 174	. 1652 I	52,6	. 24847	35,9	. 91674	16,8	. 08326
1.175	0.16574	52,6	0.24883	35,9	9.91691	16,7	0.08309
. 176	. 16626	52,6	. 24919	35,9	.91708	16,7	. 08292
. 177	. 16679	52,5	. 24954	35,9	.91724	16,7	. 08276
. 178	. 16731	52,5	. 24990	35,9	.9174I	16,6	. 08259
. 179	. 16784	52,5	.25026	35,9	.91758	16,6	. 08242
1. 180	0.16836	52,5	0.25062	35,9	9.91774	16,6	0.08226
. 18 I	. 16889	52,5	. 25098	35,9	.91791	16,5	. 08209
. 182	. 16941	52,4	. 25134	36,0	.91807	16,5	.08193
.183	. 16994	52,4	.25I70	36,0	.91824	16,4	.08r76
. 184	. 17046	52,4	.25206	36,0	.91840	16,4	.08160
1. 185	0.17099	52,4	0.25242	36,0	9.91857	16,4	0.08143
. 186	. 17151	52,4	. 25278	36,0	. 91873	16,3	.08127
. 187	. 17203	52,3	. 25314	36,0	. 91889	16,3	.08III
. 188	. 17256	52,3	. 25350	36,0	.91906	16,3	. 08094
. 189	. 17308	52,3	. 25386	36, 1	. 91922	16,2	. 08078
I. 190	0.17360	52,3	0.25422	36, 1	9.91938	16,2	0.08062
. 191	. 17413	52,3	. 25458	36,	. 91954	16,2	. 08046
. 192	. 17465	52,2	. 25494	36, 1	. 91970	16,2	.08030
. 193	. 17517	52,2	. 25530	36,	.91987	16,1	. 08013
. 194	. 17569	52,2	. 25567	36, 1	. 92003	16, 1	. 07997
1. 195	0.17621	52,2	0.25603	36, 1	9.92019	16,1	0.07981
. 196	. 17674	52,2	. 25639	36,2	. 92035	16,0	. 07965
. 197	. 17726	52,2	. 25675	36,2	. 9205 I	16,0	. 07949
. 198	. 17778	52,1	. 2571 I	36,2	. 92067	16,0	. 07933
. 199	. 17830	52,I	. 25747	36,2	. 92083	I5,9	.07917
I. 200	0. 17882	52, I	0.25784	36,2	9.92099	I5,9	0.07901
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.200	0.17882	52,I	0.25784	36,2	9.92099	15,9	0.07901
. 201	. 17934	52,I	. 25820	36,2	.92II4	15,9	. 07886
. 202	. 17986	52,I	. 25856	36,2	. 92130	15,8	. 07870
. 203	. 18038	52,0	. 25892	36,2	. 92146	I 5,8	. 07854
. 204	. 18090	52,0	. 25929	36,3	. 92162	I 5,8	. 07838
1.205	0.18142	52,0	0.25965	36,3	9.92178	15,7	0.07822
. 206	. 18194	52,0	. 26001	36,3	.92193	15,7	. 07807
. 207	. 18246	52,0	. 26037	36,3	-92209	15,7	.07791
. 208	. 18298	51,9	. 26074	36,3	. 92225	I5,6	. 07775
. 209	. 18350	51,9	.261 10	36,3	. 92240	15,6	. 07760
1.210	0.18402	51,9	0.26146	36,3	9.92256	15,6	0.07744
. 211	. 18454	51,9	. 26183	36,3	. 9227 I	15,5	. 07729
. 212	. 18506	51,9	. 26219	36,4	. 92287	15,5	. 07713
. 213	. 18558	51,9	. 26255	36,4	. 92302	15,5	. 07698
. 214	. 18610	51,8	. 26292	36,4	. 92318	I5,4	. 07682
1.215	0.18662	5I,8	0.26328	36,4	9.92333	15,4	0.07667
. 216	. 18713	51,8	. 26365	36,4	. 92349	15,4	.0765I
. 217	. 18765	51,8	. 26401	36,4	. 92364	I 5,4	. 07636
. 218	. 18817	51,8	. 26437	36,4	. 92379	I 5,3	.07621
. 219	. 18869	5I,7	. 26474	36,5	. 92395	I5,3	. 07605
1.220	0.18920	51,7	0.26510	36,5	9.92410	15,3	0.07590
. 22 I	. 18972	51,7	. 26547	36,5	. 92425	15,2	. 07575
. 222	. 19024	51,7	.26583	36,5	. 92440	I5,2	. 07560
. 223	. 19075	51,7	. 26620	36,5	. 92456	15,2	. 07544
. 224	. 19127	51,7	. 26656	36,5	. 9247 I	I5,I	. 07529
I. 225	0. 19179	51,6	0.26693	36,5	9.92486	15,I	0.07514
. 226	. 19230	51,6	. 26729	36,5	.92501	I5, I	. 07499
. 227	. 19282	51,6	. 26766	36,6	. 92516	15,0	. 07484
. 228	. 19334	51,6	. 26802	36,6	. 9253 I	I 5,0	. 07469
. 229	. 19385	51,6	. 26839	36,6	. 92546	I5,0	. 07454
1.230	0. 19437	51,5	0.26876	36,6	9.92561	15,0	0.07439
. 231	. 19488	51,5	. 26912	36,6	. 92576	14,9	. 07424
. 232	. 19540	51,5	. 26949	36,6	. 92591	14,9	. 07409
. 233	. I9591	51,5	. 26985	36,6	. 92606	14,9	. 07394
. 234	. I9643	51,5	. 27022	36,6	. 92621	14,8	. 07379
1.235	0. 19694	51,5	0.27059	36,7	9.92635	14,8	0.07365
. 236	. 19746	51,4	. 27095	36,7	. 92650	14,8	. 07350
. 237	. 19797	51,4	.27132	36,7	. 92665	14,7	. 07335
. 238	. 19848	5I,4	.27169	36,7	. 92680	14,7	. 07320
. 239	. 19900	51,4	. 27205	36,7	. 92694	14,7	. 07306
1.240	0.19951	5I,4	0.27242	36,7	9.92709	14,7	0.07291
.24I	. 20003	5I,4	. 27279	36,7	. 92724	14,6	. 07276
. 242	. 20054	5I,3	. 27316	36,7	. 92738	14,6	. 07262
. 243	. 20105	51,3	. 27352	36,8	. 92753	14,6	. 07247
. 244	. 20157	51,3	. 27389	36,8	. 92767	14,5	. 07233
1.245	0.20208	51,3	0.27426	36,8	9.92782	14,5	0.07218
. 246	. 20259	51,3	. 27463	36,8	. 92796	14,5	. 07204
. 247	. 20310	51,2	. 27499	36,8	.928II	14,4	. 07189
. 248	. 20362	51,2	.27536	36,8	.92825	14,4	.07175
. 249	. 20413	51,2	. 27573	36,8	. 92840	14,4	. 07160
1.250	0.20464	5I,2	0.27610	36,8	9.92854	14,4	0.07146
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { c o s h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.250	0.20464	51,2	0.27610	36,8	9.92854	14,4	0.07146
. 251	. 20515	51,2	. 27647	36,9	. 92868	14,3	. 07132
. 252	. 20566	51,2	. 27684	36,9	. 92883	14,3	.07117
. 253	. 20618	51,I	. 2772 I	36,9	. 92897	14,3	. 07103
. 254	. 20669	5I, I	. 27757	36,9	.929II	14,2	. 07089
I. 255	0.20720	51, I	0.27794	36,9	9.92926	14,2	0.07074
. 256	. 20771	51,I	. 2783 I	36,9	. 92940	I4,2	. 07060
. 257	. 20822	51,1	. 27868	36,9	. 92954	14,2	. 07046
. 258	. 20873	51, I	. 27905	36,9	. 92968	14,I	. 07032
. 259	. 20924	51,0	. 27942	36,9	. 92982	14,I	.07018
1.260	0.20975	51,0	0.27979	37,0	9.92996	14,1	0.07004
. 261	. 21026	51,0	. 28016	37,0	. 93010	14,0	. 06990
. 262	. 21077	51,0	. 28053	37,0	. 93024	14,0	. 06976
. 263	. 21128	51,0	. 28090	37,0	. 93038	14,0	.06962
. 264	.21179	51,0	.28I27	37,0	. 93052	14,0	. 06948
1.265	0.21230	50,9	0.28164	37,0	9.93066	13,9	0.06934
. 266	. 21281	50,9	. 28201	37,0	. 93080	13,9	. 06920
. 267	. 21332	50,9	. 28238	37,0	. 93094	13,9	. 06906
. 268	. 21383	50,9	. 28275	37, I	.93108	I3,8	. 06892
. 269	. 21434	50,9	. 28312	37, I	.93122	13,8	. 06878
1.270	0.21485	50,9	0.28349	37, I	9.93135	13,8	0.06865
. 271	. 21536	50,9	. 28386	37, 1	.93149	13,8	. 0685 I
. 272	. 21586	50,8	. 28423	37, I	.93163	13,7	. 06837
. 273	. 21637	50,8	. 28460	37,1	. 93177	13,7	. 06823
. 274	. 21688	50,8	. 28498	37, I	.93190	13,7	.06810
1.275	0.21739	50,8	0.28535	37, I	9.93204	13,6	0.06796
. 276	. 21790	50,8	. 28572	37,2	. 93218	13,6	. 06782
. 277	. 21840	50,8	. 28609	37,2	.9323I	13,6	. 06769
. 278	. 21891	50,7	. 28646	37,2	-93245	13,6	. 06755
. 279	. 21942	50,7	. 28683	37,2	. 93258	13,5	. 06742
1.280	0.21993	50,7	0.28721	37,2	9.93272	13,5	0.06728
. 281	. 22043	50,7	. 28758	37,2	. 93285	I3,5	. 06715
. 282	. 22094	50,7	. 28795	37,2	. 93299	I 3,5	. 06701
. 283	. 22145	50,7	. 28832	37,2	. 93312	I3,4	. 06688
. 284	. 22195	50,6	. 28869	37,2	. 93326	I3,4	. 06674
1.285	0.22246	50,6	0.28907	37,3	9.93339	13,4	0.06661
. 286	. 22296	50,6	. 28944	37,3	. 93353	13,3	. 06647
. 287	. 22347	50,6	. 28981	37,3	. 93366	I3,3	. 06634
. 288	. 22398	50,6	. 29018	37,3	-93379	13,3	. 06621
. 289	. 22448	50,6	. 29056	37,3	-93392	13,3	. 06608
1.290	0.22499	50,6	0.29093	37,3	9.93406	13,2	0.06594
. 291	. 22549	50,5	. 29130	37,3	. 93419	13,2	. 0658 I
. 292	. 22600	50,5	. 29168	37,3	. 93432	I3,2	. 06568
. 293	. 22650	50,5	. 29205	37,3	. 93445	I3,2	. 06555
. 294	.22701	50,5	. 29242	37,4	-93458	I3, I	. 06542
I. 295	0.22751	50,5	0.29280	37,4	9.93472	I3, I	0.06528
. 296	. 22802	50,5	. 29317	37,4	. 93485	I3, I	. 06515
. 297	. 22852	50,4	. 29355	37,4	. 93498	I3,1	. 06502
. 298	. 22903	50,4	. 29392	37,4	.935II	13,0	. 06489
. 299	. 22953	50,4	. 29429	37,4	. 93524	13,0	. 06476
1.300	0.23004	50,4	0.29467	37,4	9.93537	13,0	0.06463
U	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec g d u$	- $\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{~d} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.300	0.23004	50,4	0.29467	37,4	9.93537	13,0	0.06463
. 301	. 23054	50,4	. 29504	37,4	. 93550	I2,9	. 06450
. 302	.23104	50,4	. 29542	37,4	. 93563	12,9	. 06437
. 303	.23155	50,4	. 29579	37,5	. 93576	12,9	. 06424
. 304	. 23205	50,3	. 29617	37,5	. 93588	12,9	. 06412
I. 305	0.23255	50,3	0.29654	37,5	9.93601	12,8	0.06399
. 306	. 23306	50,3	. 29692	37,5	.936I4	12,8	. 06386
. 307	. 23356	50,3	. 29729	37,5	. 93627	12,8	. 06373
. 308	. 23406	50,3	. 29767	37,5	. 93640	12,8	. 06360
. 309	. 23457	50,3	. 29804	37,5	. 93652	12,7	. 06348
1.310	0.23507	50,2	0.29842	37,5	9.93665	12,7	0.06335
.311	. 23557	50,2	.29879	37,5	. 93678	12,7	. 06322
. 312	. 23607	50,2	. 29917	37,6	. 93691	12,7	. 06309
. 313	. 23657	50,2	. 29954	37,6	. 93703	12,6	. 06297
.314	. 23708	50,2	. 29992	37,6	.93716	12,6	. 06284
I.3I5	0.23758	50,2	0.30029	3\%,6	9.93728	12,6	0.06272
. 316	. 23808	50,2	. 30067	37,6	.9374I	12,6	. 06259
-317	. 23858	50, I	- 30105	37,6	-93754	12,5	. 06246
. 318	. 23908	50, I	. 30142	37,6	. 93766	12,5	. 06234
. 319	. 23958	50, I	. 30180	37,6	. 93779	12,5	. 06221
1.320	0.24009	50, I	0.30217	37,6	9.93791	12,5	0.06209
.32I	. 24059	50, I	. 30255	37,7	. 93804	12,4	. 06196
. 322	. 24109	50, I	- 30293	37,7	.93816	12,4	. 06184
. 323	. 24159	50, I	- 30330	37,7	.93828	12,4	.06I72
. 324	. 24209	50,0	. 30368	37,7	.9384I	12,4	.06I 59
1.325	0.24259	50,0	0.30406	37,7	9.93853	12,3	0.06147
. 326	. 24309	50,0	. 30444	37,7	. 93865	12,3	. 06135
. 327	. 24359	50,0	-3048I	37,7	. 93878	12,3	. 06122
. 328	. 24409	50,0	. 30519	37,7	. 93890	12,3	.06I 10
. 329	. 24459	50,0	- 30557	37,7	. 93902	12,2	. 06098
I. 330	0.24509	50,0	0.30594	37,8	9.93914	12,2	0.06086
.33I	. 24559	49,9	. 30632	37,8	. 93927	12,2	. 06073
. 332	. 24609	49,9	. 30670	37,8	. 93939	12,2	. 0606 I
. 333	. 24659	49,9	-30708	37,8	.9395I	I2,I	. 06049
. 334	. 24709	49,9	. 30746	37,8	. 93963	I2, I	. 06037
I. 335	0.24759	49,9	0.30783	37,8	9.93975	12, I	0.06025
. 336	. 24808	49,9	. 3082 I	37,8	. 93987	12,I	. 06013
. 337	. 24858	49,9	. 30859	37,8	. 93999	12,0	. 06001
. 338	. 24908	49,9	. 30897	37,8	.940I I	12,0	. 05989
. 339	. 24958	49,8	. 30935	37,8	. 04023	12,0	. 05977
1.340	0.25008	49,8	0.30972	37,9	9.94035	12,0	0.05965
. 34 I	. 25058	49,8	-31010	37,9	. 94047	II,9	. 05953
. 342	.25107	49,8	-31048	37,9	. 94059	I I,9	. 05941
. 343	. 25157	49,8	-31086	37,9	. 94071	I I,9	. 05929
. 344	. 25207	49,8	-31124	37,9	-94083	I I,9	. 05917
I. 345	0.25257	49,8	0.31162	37,9	9.94095	I 1,8	0.05905
. 346	. 25306	49,7	. 31200	37,9	.94107	I I, 8	. 05893
. 347	. 25356	49,7	-31238	37,9	.94119	II,8	.0588I
- 348	. 25406	49,7	. 31276	37,9	.94130	II,8	.05870
- 349	. 25456	49,7	-31314	37,9	. 94142	I I,8	. 05858
1. 350	0.25505	49,7	0.31352	38,0	9.94154	11,7	0.05846
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$ *	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
I . 350	0.25505	49,7	0.31352	38,0	9.94154	II,7	0.05846
. 351	. 25555	49,7	. 31390	38,0	.94166	II,7	. 05834
. 352	. 25605	49,7	. 31428	38,0	.94177	II,7	. 05823
. 353	. 25654	49,6	. 31465	38,0	.94189	II,7	.058II
. 354	. 25704	49,6	. 31503	38,0	.9420I	II,6	. 05799
1. 355	0.25754	49,6	0.31541	38,0	9.94212	I 1,6	0.05788
. 356	. 25803	49,6	-31580	38,0	. 94224	II,6	. 05776
. 357	. 25853	49,6	. 31618	38,0	. 94235	I I, 6	. 05765
. 358	. 25902	49,6	. 31656	38,0	. 94247	I I,5	. 05753
. 359	. 25952	49,6	. 31694	38,1	. 94258	II,5	. 05742
1.360	0.26002	49,6	0.31732	38, 1	9.94270	II,5	0.05730
. 361	. 26051	49,5	. 31770	38,	.94281	II,5	. 05719
. 362	.26101	49,5	. 31808	38, 1	. 94293	II,4	. 05707
.363	. 26150	49,5	. 31846	38, I	. 94304	II,4	. 05696
. 364	. 26200	49,5	. 31884	38, 1	.94316	II, 4	. 05684
1.365	0.26249	49,5	0.31922	38, I	9.94327	II,4	0.05673
. 366	. 26299	49,5	. 31960	38, I	. 94338	II,4	. 05662
. 367	. 26348	49,5	. 31998	38,1	. 94350	II,3	. 05650
. 368	. 26398	49,5	. 32036	38, 1	.9436I	II,3	. 05639
.369	. 26447	49,4	. 32075	38,2	. 94372	II,3	. 05628
1.370	0.26496	49,4	0.32 II 3	38,2	9.94384	I I, 3	0.05616
. 371	. 26546	49,4	.3215I	38,2	. 94395	II, 2	. 05605
. 372	. 26595	49,4	-32189	38,2	. 94406	II,2	. 05594
. 373	+ . 26645	49,4	- 32227	38,2	. 94417	II, 2	. 05583
. 374	. 26694	49,4	. 32266	38,2	. 94429	I I, 2	. 05571
1.375	0.26743	49,4	0.32304	38,2	9.94440	I 1,2	0.05560
. 376	. 26793	49,3	- 32342	38,2	.9445I	II, I	. 05549
. 377	. 26842	49,3	. 32380	38,2	. 94462	II, I	. 05538
. 378	. 26891	49,3	. 32418	38,2	. 94473	II, I	. 05527
. 379	. 26941	49,3	. 32457	38,2	. 94484	II, I	.05516
I. 380	0.26990	49,3	0.32495	38,3	9.94495	I I, 0	0.05505
.381	. 27039	49,3	. 32533	38,3	. 94506	I I, O	. 05494
- 382	. 27089	49,3	. 32571	38,3	. 94517	II,O	. 05483
. 383	. 27138	49,3	. 32610	38,3	. 94528	II,O	. 05472
. 384	. 27187	49,2	. 32648	38,3	. 94539	I I,O	.0546I
1. 385	0.27236	49,2	0.32686	38,3	9.94550	10,9	0.05450
. 386	. 27286	49,2	. 32725	38,3	.9456I	10,9	. 05439
. 387	. 27335	49,2	. 32763	38,3	. 94572	10,9	. 05428
. 388	. 27384	49,2	. 32801	38,3	. 94583	10,9	.05417
. 389	.27433	49,2	. 32840	38,3	. 94594	10,8	. 05406
I. 390	0.27482	49,2	0.32878	38,4	9.94604	10,8	0.05396
.391	. 27532	49,2	. 32916	38,4	.946I5	10,8	. 05385
. 392	.2758I	49,2	. 32955	38,4	. 94626	10,8	. 05374
. 393	. 27630	49, I	- 32993	38,4	. 94637	10,8	. 05363
- 394	. 27679	49, I	. 33031	38,4	. 94648	10,7	. 05352
1. 395	0.27728	49, I	0.33070	38,4	9.94658	10,7	0.05342
. 396	. 27777	49, I	. 33108	38,4	. 94669	10,7	. 0533 I
. 397	. 27826	49, I	.33147	38,4	. 94680	10,7	. 05320
. 398	. 27875	49, I	. 33185	38,4	. 94690	10,6	.05310
. 399	. 27925	49, I	. 33224	38,4	.9470I	10,6	. 05299
1.400	0.27974	49, I	0.33262	38,5	9.94712	10,6	0.05288
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	log eoth u
1.400	0.27974	49, I	0.33262	38,5	9.94712	10,6	0.05288
. 401	. 28023	49,0	. 33300	38,5	. 94722	10,6	. 05278
. 402	. 28072	49,0	- 33339	38,5	. 94733	10,6	. 05267
. 403	. 28121	49,0	- 33377	38,5	. 94743	10,5	. 05257
. 404	.28170	49,0	-33416	38,5	. 94754	10,5	. 05246
1. 405	0.28219	49,0	0. 33454	38,5	9.94764	10,5	0.05236
. 406	. 28268	49,0	. 33493	38,5	. 94775	10,5	. 05225
. 407	. 28317	49,0	- 33531	38,5	. 94785	10,5	. 05215
. 408	. 28366	49,0	- 33570	38,5	. 94796	10,4	. 05204
. 409	. 28415	48,9	- 33608	38,5	. 94806	10,4	. 05194
1.410	0.28464	48,9	0.33647	38,5	9.94817	10,4	0.05183
. 411	. 28512	48,9	. 33686	38,6	. 94827	10,4	. 05173
. 412	. 28561	48,9	. 33724	38,6	. 94837	10,3	. 05153
. 413	. 28610	48,9	. 33763	38,6	. 94848	10,3	.05152
. 414	. 28659	48,9	. 33801	38,6	. 94858	10,3	. 05142
1.415	0. 28708	48,9	0. 33840	38,6	9.94868	10,3	0.05132
. 416	. 28757	48,9	. 33878	38,6	. 94879	10,3	. 05121
.417	. 28806	48,9	- 33917	38,6	. 94889	10,2	. 05111
.418	. 28855	48,8	33956	38,6	. 94899	10,2	.05101
.419	. 28903	48,8	- 33994	38,6	. 94909	10,2	.05091
1.420	0. 28952	48,8	0.34033	38,6	9.94919	10,2	0.05081
. 421	.29001	48,8	. 34071	38,6	. 94930	10,2	. 05070
. 422	. 29050	48,8	. 34110	38,7	. 94940	10,1	. 05060
. 423	. 29099	48,8	-34149	38,7	. 94950	10, 1	. 05050
. 424	. 29147	48,8	. 34187	38,7	. 94960	IO,I	. 05040
1. 425	0.29196	48,8	0.34226	38,7	9.94970	10,1	0.05030
. 426	. 29245	48,8	- 34265	38,7	. 94980	10,1	. 05020
. 427	. 29294	48,7	- 34304	38,7	. 94990	10,0,	. 05010
. 428	. 29342	48,7	- 34342	38,7	. 95000	10,0	. 05000
. 429	. 29391	48,7	-3438I	38,7	.95010	10,0	. 04990
1. 430	0.29440	48,7	0. 34420	38,7	9.95020	10,0	0.04980
.43I	. 29489	48,7	- 34458	38,7	. 95030	10,0	. 04970
. 432	. 29537	48,7	- 34497	38,7	. 95040	9,9	. 04960
. 433	. 29586	48,7	- 34536	38,8	. 95050	9,9	. 04950
-434	. 29635	48,7	- 34575	38,8	. 95060	9,9	. 04940
1. 435	0.29683	48,7	0.34613		9.95070	9,9	0.04930
. 436	. 29732	48,6	. 34652	38,8	. 95080	9,9	. 04920
. 437	. 29781	48,6	. 34691	38,8	. 95090	9,8	. 04910
. 438	. 29829	48,6	- 34730	38,8	. 95099	9,8	. 04901
. 439	. 29878	48,6	- 34769	38,8	.95109	9,8	.04891
1. 440	0.29926	48,6	0.34807	38,8	9.95119	9,8	0.0488I
.44I	. 29975	48,6	. 34846	38,8	.95129	9,8	.04871
. 442	. 30024	48,6	- 34885	38,8	. 95139	9,7	. 04861
-443	-30072	48,6	- 34924	38,8	. 95148	9,7	. 04852
. 444	.30121	48,6	- 34963	38,8	. 95158	9,7	. 04842
1. 445	0.30169	48,5	0.35002	38,9	9.95168	9,7	0.04832
. 446	. 30218	48,5	. 35040	38,9	. 95177	9,7	. 04823
. 447	-30266	48,5	- 35079	38,9	. 95187	9,6	.04813
. 448	. 30315	48,5	-35118	38,9	. 95197	9,6	. 04803
. 449	-30363	48,5	-35157	38,9	. 95206	9,6	. 04794
1.450	0.30412	48,5	0.35196	38,9	9.95216	9,6	0.04784
u	$\log \tan$ gd u	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	log csc gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1.450	0.30412	48,5	0.35196	38,9	9.95216	9,6	0.04784
.45I	. 30460	48,5	. 35235	38,9	. 95225	9,6	. 04775
. 452	. 30509	48,5	. 35274	38,9	. 95235	9,5	. 04765
. 453	. 30557	48,5	. 35313	38,9	. 95245	9,5	. 04755
. 454	. 30606	48,4	. 35352	38,9	. 95254	9,5	. 04746
I. 455	0.30654	48,4	0.3539 I	38,9	9.95264	9,5	0.04736
. 456	. 30703	48,4	. 35429	39,0	. 95273	9,5	. 04727
. 457	. 30751	48,4	. 35468	39,0	. 95283	9,5	. 04717
. 458	. 30799	48,4	. 35507	39,0	. 95292	9,4	. 04708
. 459	. 30848	48,4	. 35546	39,0	.9530I	9,4	. 04699
1.460	0.30896	48,4	0.35585	39,0	9.953 II	9,4	0.04689
.461	. 30945	48,4	. 35624	39,0	. 95320	9,4	. 04680
. 462	. 30993	48,4	. 35663	39,0	. 95330	9,4	. 04670
.463	.3104I	48,3	. 35702	39,0	. 95339	9,3	. 04661
. 464	. 31090	48,3	. 35741	39,0	. 95348	9,3	. 04652
1.465	0.31138	48,3	0.35780	39,0	9.95358	9,3	0.04642
. 466	. 31186	48,3	.35819	39,0	. 95367	9,3	. 04633
. 467	. 31235	48,3	. 35858	39,0	. 95376	9,3	. 04624
. 468	-31283	48,3	. 35897	39, I	. 95385	9,2	.046I5
.469	.3133I	48,3	. 35937	39, I	. 95395	9,2	.04605
1.470	0.31379	48,3	0.35976	39,1	9.95404	9,2	0.04596
. 471	. 31428	48,3	.36015	39,1	. 95413	9,2	. 04587
. 472	. 31476	48,3	. 36054	39, I	. 95422	9,2	. 04578
. 473	. 31524	48,2	. 36093	39, I	.9543I	9,2	. 04569
. 474	.31572	48,2	. 36132	39, I	.9544I	9,1	. 04559
1.475	0.31621	48,2	0.36171	39,1	9.95450	9,I	0.04550
. 476	. 31669	48,2	.36210	39, I	. 95459	9,I	. 04541
. 477	. 31717	48,2	- 36249	39, I	. 95468	9, I	. 04532
. 478	.31765	48,2	- 36288	39, I	. 95477	9,1	. 04523
. 479	.318I4	48,2	. 36328	39, I	. 95486	9,0	.045I4
1.480	0.31862	48,2	0.36367	39,2	9.95495	9,0	0.04505
.48I	. 31910	48,2	. 36406	39,2	. 95504	9,0	. 04496
. 482	. 31958	48,2	. 36445	39,2	.95513	9,0	. 04487
. 483	. 32006	48, I	. 36484	39,2	. 95522	9,0	. 04478
. 484	. 32054	48, I	. 36523	39,2	.9553 I	9,0	. 04469
1.485	0.32102	48, 1	0.36563	39,2	. 95540	8,9	. 04460
. 486	.32151	48, I	. 36602	39,2	. 95549	8,9	. 04451
. 487	. 32199	48, I	. 36641	39,2	. 95558	8,9	. 04442
. 488	. 32247	48, I	. 36680	39,2	. 95567	8,9	. 04433
.489	. 32295	48,1	.36719	39,2	. 95576	8,9	. 04424
1. 490	0.32343	48, 1	0.36759	39,2	9.95584	8,8	0.04416
. 491	. 32391	48, I	. 36798	39,2	. 95593	8,8	. 04407
. 492	. 32439	48, 1	. 36837	39,2	. 95602	8,8	. 04398
. 493	. 32487	48,0	. 36876	39,3	.956II	8,8	. 04389
. 494	. 32535	48,0	. 36916	39,3	. 95620	8,8	. 04380
1. 495	0.32583	48,0	0.36955	39,3	9.95628	8,8	0.04372
. 496	. 32631	48,0	. 36994	39,3	. 95637	8,7	. 04363
. 497	. 32679	48,0	. 37033	39,3	. 95646	8,7	. 04354
. 498	. 32727	48,0	. 37073	39,3	. 95655	8,7	. 04345
. 499	. 32775	48,0	-37112	39,3	. 95663	8,7	. 04337
1.500	0.32823	48,0	0.37151	39,3	9.95672	8,7	0.04328
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{t a n h} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g}$ coth u
1.500	0.32823	48,0	0.37151	39,3	9.95672	8,7	0.04328
. 501	. 32871	48,0	. 37191	39,3	.95681	8,7	.04319
. 502	. 32919	48,0	- 37230	39,3	. 95689	8,6	.043II
. 503	. 32967	48,0	. 37269	39,3	. 95698	8,6	. 04302
. 504	. 33015	47,9	. 37309	39,3	. 95707	8,6	. 04293
1.505	0.33063	47,9	0.37348	39,3	9.95715	8,6	0.04285
. 506	.33III	47,9	. 37387	39,4	. 95724	8,6	. 04276
. 507	-33159	47,9	. 37427	39,4	. 95732	8,5	. 04268
. 508	. 33207	47,9	. 37466	39,4	.9574I	8,5	. 04259
. 509	- 33255	47,9	. 37505	39,4	. 95749	8,5	. 04251
1.510	0.33303	47,9	0.37545	39,4	9.95758	8,5	0.04242
. 511	. 33350	47,9	- 37584	39,4	. 95766	8,5	. 04234
. 512	. 33398	47,9	. 37624	39,4	. 95775	8,5	. 04225
. 513	. 33446	47,9	. 37663	39,4	. 95783	8,4	. 04217
. 514	-33494	47,8	. 37702	39,4	. 95792	8,4	. 04208
1.515	0.33542	47,8	0.37742	39,4	9.95800	8,4	0.04200
. 516	. 33590	47,8	.3778I	39,4	.95808	8,4	.04192
. 517	. 33638	47,8	. 3782 I	39,4	.95817	8,4	. 04183
. 518	. 33685	47,8	-37860	39,4	. 95825	8,4	. 04175
. 519	. 33733	47,8	. 37900	39,5	. 95834	8,3	. 04166
I. 520	0.33781	47,8	0.37939	39,5	9.95842	8,3	0.04158
. 521	. 33829	47,8	. 37979	39,5	. 95850	8,3	. 04150
. 522	. 33877	47,8	. 38018	39,5	. 95859	8,3	.04I41
. 523	. 33924	47,8	. 38057	39,5	. 95867	8,3	.04133
. 524	. 33972	47,8	. 38097	39,5	. 95875	8,3	.04125
I. 525	0.34020	47,7	0.38136	39,5	9.95883	8,2	0.04117
. 526	. 34068	47,7	.38176	39,5	. 95892	8,2	.04108
. 527	-34II5	47,7	. 38215	39,5	. 95900	8,2	. 04100
. 528	. 34163	47,7	-3825,	39,5	. 95908	8,2	. 04092
. 529	-342II	47,7	. 38295	39,5	. 95916	8,2	. 04084
1.530	0.34258	47,7	0.38334	39,5	9.95924	8,2	0.04076
. 531	. 34306	47,7	. 38374	39,5	. 95933	8,I	. 04067
. 532	- 34354	47,7	-38413	39,6	. 95941	8,1	. 04059
. 533	. 34402	47,7	. 38453	39,6	. 95949	8,I	. 04051
. 534	- 34449	47,7	-38492	39,6	. 95957	8,1	. 04043
1.535	0.34497	47,7	0.38532	39,6	9.95965	8, 1	0.04035
. 536	- 34545	47,6	. 38571	39,6	. 95973	8, I	. 04027
. 537	. 34592	47,6	. 386 II	39,6	.95981	8,0	. 04019
- 538	- 34640	47,6	. 38651	39,6	. 95989	8,0	. 0401 I
. 539	. 34687	47,6	. 38690	39,6	. 95997	8,0	. 04003
1.540	0.34735	47,6	0.38730	39,6	9.96005	8,0	0.03995
. 541	. 34783	47,6	. 38769	39,6	.96013	8,0	. 03987
. 542	. 34830	47,6	. 38809	39,6	.96021	8,0	. 03979
. 543	. 34878	47,6	- 38849	39,6	. 96029	8,0	. 03971
. 544	. 34925	47,6	. 38888	39,6	. 96037	7,9	. 03963
1.545	0.34973	47,6	0.38928	39,6	9.96045	7,9	0.03955
. 546	-3502I	47,6	. 38968	39,7	. 96053	7,9	. 03947
. 547	. 35068	47,6	- 39007	39,7	.9606I	7,9	. 03939
- 548	-35116	47,5	- 39047	39,7	. 96069	7,9	. 03931
. 549	.35163	47,5	- 39087	39,7	. 96077	7,9	. 03923
1.550	0.35211	47,5	0.39126	39,7	9.96084	7,8	0.03916
u	$\boldsymbol{l o g} \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
I. 550	0.35211	47,5	0.39126	39,7	9.96084	7,8	0.03916
. 551	. 35258	47,5	. 39166	39,7	. 96092	7,8	. 03908
. 552	-35306	47,5	. 39206	39,7	.96100	7,8	. 03900
. 553	. 35353	47,5	. 39245	39,7	.96108	7,8	. 03892
. 554	-3540I	47,5	- 39285	39,7	.961 16	7,8	. 03884
I. 555	0.35448	47,5	0.39325	39,7	9.96123	7,8	0.03877
. 556	. 35496	47,5	- 39365	39,7	.96I3I	7,7	. 03869
. 557	- 35543	47,5	- 39404	39,7	-.96I39	7,7	. 03861
. 558	.3559I	47,5	. 39444	39,7	.96147	7,7	. 03853
. 559	. 35638	47,5	. 39484	39,7	. 96154	7,7	. 03846
I. 560	0.35686	47,4	0.39524	39,8	9.96162	7,7	0.03838
. 561	. 35733	47,4	. 39563	39,8	.96I70	7,7	. 03830
. 562	35780	47,4	. 39603	39,8	.96I77	7,7	. 03823
. 563	35828	47,4	. 39643	39,8	. 96185	7,6	.03815
. 564	. 35875	47,4	- 39683	39,8	.96I93	7,6	. 03807
1.565	0.35923	47,4	0.39722	39,8	9.96200	7,6	0.03800
. 566	. 35970	47,4	. 39762	39,8	. 96208	7,6	. 03792
. 567	. 36017	47,4	. 39802	39,8	.962 5	7,6	. 03785
. 568	. 36065	47,4	. 39842	39,8	. 96223	7,6	. 03777
. 569	.36112	47,4	. 39882	39,8	.9623I	7,5	. 03769
I. 570	0.36160	47,4	0.39921	39,8	9.96238	7,5	0.03762
. 571	. 36207	47,4	. 39961	39,8	. 96246	7,5	. 03754
. 572	. 36254	47,3	. 4000 I	39,8	. 96253	7,5	. 03747
. 573	. 36302	47,3	. 40041	39,8	.96261	7,5	. 03739
. 574	. 36349	47,3	.4008I	39,9	.96268	7,5	. 03732
1.575	0.36396	47,3	0.40121	39,9	9.96276	7,5	0.03724
. 576	. 36444	47,3	. 4016 I	39,9	. 96283	7,4	. 03717
. 577	- 36491	47,3	. 40200	39,9	.96291	7,4	. 03709
. 578	. 36538	47,3	. 40240	39,9	.96298	7,4	. 03702
. 5.79	. 36585	47,3	. 40280	39,9	. 96305	7,4	. 03695
I. 580	0.36633	47,3	0.40320	39,9	9.96313	7,4	0.03687
. 58 I	. 36680	47,3	. 40360	39,9	. 96320	7,4	. 03680
. 582	. 36727	47,3	. 40400	39,9	. 96327	7,4	. 03673
. 583	-36775	47,3	. 40440	39,9	.96335	7,3	. 03665
. 584	. 36822	47,2	. 40480	39,9	. 96342	7,3	. 03658
I. 585	0.36869	47,2	0.40520	39,9	9.96349	7,3	0.03651
. 586	. 36916	47,2	. 40560	39,9	. 96357	7,3	. 03643
. 587	. 36964	47,2	. 40599	39,9	. 96364	7,3	. 03636
. 588	. 37011	47,2	. 40639	39,9	.9637I	7,3	. 03629
. 589	. 37058	47,2	. 40679	40,0	. 96379	7,3	. 03621
I. 590	0.37105	47,2	0.40719	40,0	9.96386	7,2	0.03614
. 591	. 37152	47,2	. 40759	40,0	. 96393	7,2	. 03607
. 592	. 37200	47,2	. 40799	40,0	. 96400	7,2	. 03600
. 593	- 37247	47,2	. 40839	40,0	. 96407	7,2	. 03593
. 594	. 37294	47,2	. 40879	40,0	.96415	7,2	. 03585
I. 595	0.37341	47,2	0.40919	40,0	9.96422	7,2	0.03578
. 596	. 37388	47,2	. 40959	40,0	. 96429	7,2	. 03571
. 597	- 37435	47, I	. 40999	40,0	. 96436	7, I	. 03564
. 598	- 37482	47, I	. 41039	40,0	. 96443	7,I	. 03557
. 599	. 37530	47, I	. 41079	40,0	. 96450	7,I	. 03550
1. 600	0.37577	47, I	0.41119	40,0	9.96457	7,I	0.03543
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.600	0.37577	47, I	0.41119	40,0	9.96457	7,1	0.03543
. 601	. 37624		.41159		. 96465		. 03535
. 602	. 37671		.41199		. 96472		. 03528
. 603	-37718		. 41239		. 96479		. 0352 I
. 604	. 37765		. 41279	40, I	. 96486	7,0	. 03514
1.605	0.37812	47,I	0.41319	40,1	9.96493	7,0	0.03507
. 606	. 37859		. 41360		. 96500		. 03500
. 607	. 37906		. 41400		. 96507		. 03493
. 608	. 37953		. 41440		.96514		. 03486
. 609	. 38001		. 41480		.9652 I		. 03479
1.610	0.38048	47,0	0.41520	40,1	9.96528	7,0	0.03472
. 611	.38095		. 41560		. 96535	6,9	. 03465
. 612	-38I42		. 41600		. 96542		. 03458
. 613	. 38189		. 41640		. 96548		. 03452
. 614	. 38236		. 41680		. 96555		. 03445
1.615	0.38283	47,0	0.41720	40, I	9.96562	6,9	0.03438
. 616	.38330		.4176I		. 96569		. 03431
. 617	. 38377		. 41801		. 96576		. 03424
.618	-38424		. 41841		. 96583	6,8	. 03417
. 619	. 38471		. 4188 I		. 96590		. 03410
1.620	0.38518	47,0	0.4192 I	40,2	9.96597	6,8	0.03403
. 621	. 38565		.4196I		. 96603		. 03397
. 622	. 38612		. 42001		.96610		. 03390
. 623	. 38659	46,9	. 42042		.96617		. 03383
. 624	. 38705		. 42082		.96624		. 03376
1.625	0.38752	46,9	0.42122	40,2	9.96630	6,7	0.03370
. 626	. 38799		. 42162		. 96637		. 03363
. 627	- 38846		. 42202		.96644		. 03356
. 628	- 38893		. 42243		. 9665 I		. 03349
. 629	. 38940		. 42283		. 96657		. 03343
1.630	0.38987	46,9	0.42323	40,2	9.96664	6,7	0.03336
. 631	. 39034		. 42363		.9667 I		. 03329
. 632	.39081		. 42403		. 96677		. 03323
. 633	.39128		. 42444		. 96684	6,6	. 03316
. 634	. 39175		. 42484		.9669I		. 03309
1.635	0.39221	46,9	0.42524	40,2	9.96697	6,6	0.03303
. 636	. 39268		. 42564	40,3	. 96704		. 03296
. 637	. 39315	46,8	. 42605		.96710		. 03290
. 638	- 39362		. 42645		.96717		. 03283
. 639	. 39409		. 42685		. 96724		. 03276
1.640	0.39456	46,8	0.42725	40,3	9.96730	6,5	
. 641	- 39502		. 42766		. 96737		. 03263
.642	. 39549		. 42806		. 96743		. 03257
. 643	- 39596		. 42846		. 96750		. 03250
. 644	. 39643		. 42887		. 96756		. 03244
I. 645	0.39690	46,8	0.42927	40,3	9.96763	6,5	0.03237
. 646	. 39736		. 42967		. 96769		. 0323 I
. 647	- 39783		. 43008		. 96776		. 03224
. 648	. 39830		. 43048		. 96782	6,4	. 03218
. 649	-39877		. 43088		. 96788		. 03212
1.650	0.39923	46,8	0.43129	40.3	9.96795	6,4	0.03205
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	\log coth u
1.650	0.39923	46,8	0.43129	40,3	9.96795	6,4	0.03205
. 651	- 39970	46,7	. 43169		. 96801		. 03199
. 652	. 40017		. 43209	40,4	. 96808		. 03192
. 653	. 40064		. 43250		. 96814		. 03186
. 654	.40110		. 43290		. 96820		.03180
1. 655	0.40157	46,7	0.43330	40,4	9.96827	6,4	0.03173
. 656	. 40204		. 43371		. 96833	6,3	. 03167
. 657	. 40251		-434II		. 96840		. 03160
. 658	. 40297		-4345I		. 96846		. 03154
. 659	. 40344		-43492		. 96852		. 03148
1.660	0.40391	46,7	0.43532	40,4	9.96858	6,3	0.03142
. 661	. 40437		. 43573		. 96865		. 03135
. 662	. 40484		. 43613		. 96871		. 03129
. 663	.40531		. 43653.		. 96887		.03123
. 664	. 40577		. 43694		. 96883	6,2	. 03117
1. 665	0.40624	46,7	0.43734	40,4	9.96890	6,2	0.03110
. 666	. 40671	46,6	. 43775		. 96896		.03104
. 667	. 40717		. 43815		. 96902		. 03098
. 668	. 40764		-43856		. 96908		. 03092
. 669	.40811		. 43896	40,5	. 96915		. 03085
1.670	0.40857	46,6	0.43937	40,5	9.96921	6,2	0.03079
. 671	. 40904		. 43977		. 96927		. 03073
. 672	. 40950		-44017		. 96933	6,1	. 03067
. 673	-40997		. 44058		. 96939		. 03061
. 674	. 41044		. 44098		. 96945		. 03055
1. 675	0.41090	46,6	0.44139	40,5	9.96951	6,1	0.03049
. 676	.41137		. 44179		. 96957		. 03043
. 677	. 41183		. 44220		. 96964		. 03036
. 678	. . 41230		. 44260		. 96970		. 03030
. 679	. 41277		. 44301		. 96976		. 03024
1.680	0.41323	46,6	0.44341	40,5	9.96982	6,0	0.03018
. 681	. 41370	46,5	. 44382		. 96988		. 03012
. 682	.41416		. 44422		. 96994		. 03006
. 683	. 41463		. 44463		. 97000		. 03000
. 684	. 41509		. 44503		. 97006		. 02994
1.685	0.41556	46,5	0.44544	40,5	9.97012	6,0	0.02988
. 686	.41602		. 44585		. 97018		. 02982
. 687	. 41649		. 44625	40,6	. 97024		. 02976
. 688	. 41695		. 44666		. 97030	5,9	. 02970
. 689	. 41742		. 44706		. 97036		. 02964
1.690	0.41788	46,5	0.44747	40,6	9.97042	5,9	0.02958
.691	. 41835		. 44787		-97047		. 02953
. 692	.4188I		. 44828		. 97053		. 02947
. 693	. 41928		. 44869		. 97059		. 02941
. 694	. 41974		. 44909		. 97065		. 02935
1.695	0.42021	46,5	0.44950	40,6	9.97071	5,9	0.02929
. 696	. 42067		. 44990		. 97077		. 02923
. 697	. 42114	46,4	.45031		. 97083	5,8	. 02917
. 698	. 42160		. 45072		. 97089		.02911
. 699	. 42207		.45112		-97094		. 02906
1.700	0.42253	46,4	0.45153	40,6	9.97100	5,8	0.02900
u	log $\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc gd u

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1.700	0.42253	46,4	0.45153	40,6	9.97100	5,8	0.02900
. 701	. 42299		. 45193		.97106		. 02894
. 702	. 42346		. 45234		.97112		. 02888
. 703	. 42392		. 45275		.97118		. 02882
. 704	. 42439		. 45315		. 97123		. 02877
1.705	0.42485	46,4	0.45356	40,7	9.97129	5,7	0.02871
. 706	. 4253 I		. 45397		. 97135		. 02865
. 707	. 42578		. 45437		.9714I		. 02859
. 708	. 42624		. 45478		. 97146		. 02854
. 709	. 42671		.45519		.97152		. 02848
1.710	0.42717	46,4	0.45559	40,7	9.97158	5,7	0.02842
. 711	. 42763		. 45600		.97163		. 02837
. 712	. 42810		. 4564 I		. 97169		.02831
. 713	. 42856	46,3	.45681		.97175		. 02825
. 714	. 42902		. 45722		. 97180	5,6	. 02820
1.715	0.42949	46,3	0.45763	40,7	9.97186	5,6	0.02814
. 716	. 42995		. 45803		. 97192		. 02808
. 717	. 43041		. 45844		. 97197		.02803
. 718	. 43088		.45885		. 97203		. 02797
. 719	.43134		. 45926		. 97208		. 02792
1.720	0.43180	46,3	0.45966	40,7	9.97214	5,6	0.02786
. 721	. 43227		. 46007		. 97220		. 02780
. 722	. 43273		. 46048		. 97225		. 02775
. 723	. 43319		. 46089		.97231	5,5	. 02769
. 724	. 43365		.46129	40,8	. 97236		. 02764
1.725	0.43412	46,3	0.46170	40,8	9.97242	5,5	0.02758
. 726	. 43458		.462 I		. 97247		. 02753
. 727	. 43504		. 46252		. 97253		. 02747
. 728	. 43551		. 46292		. 97258		.02742
. 729	. 43597		. 46333		. 97264		. 02736
1.730	0.43643	46,2	0.46374	40,8	9.97269	5,5	0.02731
. 731	. 43689		. 46415		. 97275		. 02725
. 732	. 43736		. 46455		. 97280	5,4	. 02720
. 733	. 43782		. 46496		. 97285		. 02715
. 734	. 43828		. 46537		.9729I		. 02709
1.735	0.43874	46,2	0.46578	40,8	9.97296	5,4	0.02704
. 736	. 43920		. 46619		. 97302		. 02698
. 737	. 43967		. 46660		. 97307		. 02693
. 738	. 44013		. 46700		. 97313		. 02687
. 739	. 44059		. 46741		.97318		.02682
1.740	0.44105	46,2	0.46782	40,8	9.97323	5,4	0.02677
. 74 I	.4415I		. 46823		. 97329	5,3	. 02671
. 742	. 44198		. 46864	.	. 97334		. 02666
. 743	. 44244		. 46905		. 97339		. 02661
. 744	. 44290		. 46945	40,9	. 97345		. 02655
1.745	0.44336	46,2	0.46986	40,9	9.97350	5,3	0.02650
. 746	. 44382		. 47027		. 97355		. 02645
. 747	. 44428		. 47068	-	. 97360		. 02640
. 748	. 44475	46, I	. 47109		. 97366		. 02634
. 749	. 44521		. 47150		. 9737 I		. 02629
1.750	0.44567	46, I	0.47191	40,9	9.97376	5,3	0.02624
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.750	0.44567	46, 1	0.47191	40,9	9.97376	5,3	0.02624
. 751	. 44613		.4723I		. 97382	5,2	. 02618
. 752	. 44659		. 47272		. 97387		.02613
. 753	. 44705		. 47313		. 97392		.02608
. 754	. 4475 I		. 47354		. 97397		. 02603
1.755	0.44797	46,1	0.47395	40,9	9.97402	5,2	0.02598
. 756	. 44844		. 47436		. 97408		. 02592
. 757	. 44890		. 47477		. 97413		. 02587
. 758	. 44936		. 47518		. 97418		. 02582
. 759	. 44982		. 47559		. 97423		. 02577
1.760	0.45028	46,1	0.47600	40,9	9.97428	5, I	0.02572
. 761	. 45074		. 47641		. 97433		. 02567
. 762	. 45120		. 47682		. 97439		. 02561
.763	. 45166		. 47722		. 97444		. 02556
. 764	. 45212		. 47763	41,0	. 97449		. 02551
1.765	0.45258	46, 1	0.47804	41,0	9.97454	5,I	0.02546
. 766	. 45304	46,0	. 47845		. 97459		. 02541
.767	. 45350		. 47886		. 97464		. 02536
. 768	. 45396		. 47927		. 97469		.0253I
.769	. 45442		. 47968		. 97474		. 02526
1.770	0.45488	46,0	0.48009	41,0	9.97479	5,0	0.02521
. 771	. 45534		. 48050		. 97484		. 02516
. 772	. 45580		. 48091		. 97489		.025II
. 773	. 45627		.48I32		. 97494		. 02506
. 774	. 45673		.48173		. 97499		. 02501
1.775	0.45719	46,0	0.48214	41,0	9.97504	5,0	0.02496
. 776	. 45765		. 48255		. 97509		. 02491
. 777	.45810		. 48296		.97514		. 02486
. 778	. 45856		. 48337		. 97519		.0248I
. 779	. 45902		. 48378		. 97524		. 02476
1.780	0.45948	46,0	0.48419	41,0	9.97529	4,9	0.02471
. 781	. 45994		. 48460		. 97534		. 02466
. 782	. 46040		. 48501		. 97539		.0246I
.783	. 46086		. 48542		. 97544		. 02456
. 784	. 46132		. 48583		. 97549		.02451
1.785	0.46178	45,9	0.48624	41,1	9.97554	4,9	0.02446
. 786	. 46224		. 48666		. 97559		. 02441
. 787	. 46270		. 48707		. 97564		. 02436
. 788	. 46316		. 48748		. 97568		. 02432
.789	. 46362		. 48789		. 97573		. 02427
1.790	0.46408	45,9	0.48830	41, I	9.97578	4,8	0.02422
. 791	. 46454		. 48871		. 97583		. 02417
. 792	. 46500		. 48912		. 97588		. 02412
. 793	. 46546		. 48953		. 97593		. 02407
. 794	. 46592		. 48994		. 97597		. 02403
1.795	0.46637	45,9	0.49035	41, I	9.97602	4,8	0.02398
. 796	. 46683		. 49076		. 97607		. 02393
. 797	. 46729		. 49117		.97612		. 02388
. 798	. 46775		. 49159		.97617		.02383
. 799	. 4682 I		. 49200		.97621		. 02379
1.800	0.46867	45,9	0.49241	41.1	9.97626	4,8	0.02374
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.800	0.46867	45,9	0.4924 I	41,I	9.97626	4,8	0.02374
. 801	. 46913		. 49282		.97631	4,7	. 02369
. 802	. 46959		. 49323		. 97636		. 02364
. 803	. 47004		. 49364		. 97640		. 02360
. 804	. 47050	45,8	. 49405		. 97645		. 02355
1.805	0.47096	45,8	0.49446	4I, I	9.97650	4,7	0.02350
. 806	. 47142		. 49488		. 97654		. 02346
. 807	. 47188		. 49529	4I,2	. 97659		. 02341
. 808	. 47234		. 49570		. 97664		. 02336
. 809	. 47279		. 4961 I		. 97668		. 02332
1.810	0.47325	45,8	0.49652	41,2	9.97673	4,7	0.02327
.8II	. 47371		. 49693		. 97678	4,6	. 02322
. 812	. 47417		. 49734		. 97682		. 02318
. 813	. 47463		. 49776	.	. 97687		. 02313
.814	. 47509		. 49817		. 97692		. 02308
1.815	0.47554	45,8	0.49858	41,2	9.97696	4,6	0.02304
.816	. 47600		. 49899		.97701		. 02299
.817	. 47646		. 49940		. 97705		. 02295
.818	. 47692		. 49982		. 97710		. 02290
.819	. 47737		. 50023		. 97715		. 02285
1.820	0.47783	45,8	0.50064	41,2	9.97719	4,6	0.0228 I
. 82 I	. 47829		. 50105		. 97724		. 02276
. 822	. 47875		. 50146		. 97728	4.5	. 02272
. 823	. 47921		. 50188		. 97733		. 02267
. 824	. 47966		. 50229		. 97737		. 02263
1.825	0.48012	45,7	0.50270	4I,2		4,5	0.02258
. 826	. 48058		. 5031 I		. 97746		. 02254
. 827	.48104		. 50353		. 97751		. 02249
. 828	.48149		. 50394		. 97755		. 02245
. 829	.48195		. 50435		. 97760		. 02240
1.830	0.48241	45,7	0.50476	41,3	9.97764	4,5	0.02236
.83I	. 48286		. 50518		. 97769		. 02231
. 832	. 48332		. 50559		. 97773		. 02227
. 833	. 48378		. 50600	\cdots	. 97778	4,4	. 02222
. 834	. 48424		. 5064 I		. 97782		. 022218
1.835	0.48469	45,7	0.50683	41,3	9.97787	4,4	0.02213
. 836	. 48515		. 50724		. 97791		. 02209
. 837	. 48561		. 50765		. 97796		. 02204
. 838	. 48606		. 50806		. 97800		. 02200
. 839	. 48652	-	- 50848		. 97804		. 02196
1.840	0.48698	45,7	0.50889	4I,3	9.97809	4,4	0.02191
.841	. 48743		. 50930	41,3	.97813		.02187
. 842	. 48789		. 50972		. 97817		. 02183
. 843	. 48835		. 51013		. 97822	.	.02178
. 844	. 48880		. 51054		. 97826	4,3	.02174
1.845	0.48926	45,7	0.51096	4I,3	9.9783 I	4,3	0.02169
. 846	. 48972	45,6	. 51137		. 97835		. 02165
.847	. 49017		- 51178		. 97839		.0216I
. 848	. 49063		. 51219		. 97843		. 02157
. 849	. 49109		. 5126 I		. 97848		. 02152
I. 850	0.49154	45,6	0.51302	41,3	9.97852	4,3	0.02148
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh u	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.850	0.49154	45,6	0.51302	41,3	9.97852	4,3	0.02148
.851	. 49200		. 51343		. 97856		. 02144
. 852	. 49246		. 51385		.97861		. 02139
. 853	. 49291		. 51426		. 97865		. 02135
. 854	. 49337		. 51468	41,4	. 97869		.02131
1. 855	0.49382	45,6	0.51509	41,4	9.97873	4.3	0.02127
. 856	. 49428		. 51550		. 97878	4,2	. 02122
. 857	. 49474		. 51592		. 97882		. 02118
. 858	. 49519		. 51633		. 97886		. 02114
. 859	. 49565		. 51674		. 97890		.02110
1.860	0.49610	45,6	0.51716	41,4	9.97895	4,2	0.02105
. 861	. 49656		. 51757		. 97899		. 02101
. 862	. 49702		. 51798		. 97903		. 02097
. 863	. 49747		. 51840		. 97907		02093
. 864	. 49793		. 51881		.97911		. 02089
1.865	0.49838	45,6	0.51923	41,4	9.97916	4,2	0.02084
. 866	. 49884		. 51964		. 97920		. 02080
. 867	. 49929		. 52005		. 97924		. 02076
. 868	. 49975		. 52047		. 97928	4, I	. 02072
. 869	. 50020	45,5	. 52088		. 97932		. 02068
1.870	0.50066	45,5	0.52130	41,4	9.97936	4, I	0.02064
. 871	. 50112		. 52171		. 97940		. 02060
. 872	. 50157		. 52212		. 97945		. 02055
. 873	. 50203		. 52254		. 97949		. 02051
. 874	. 50248		. 52295		. 97953		. 02047
1.875	0.50294	45,5	0.52337	41,4	9.97957	4, I	0.02043
. 876	. 50339		. 52378		.97961		. 02039
. 877	. 50385		. 52420		. 97965		. 02035
. 878	. 50430		. 5246I		. 97969		.0203I
. 879	. 50476		. 52503		. 97973		. 02027
1.880	0.50521	45,5	0.52544	41,5	9.97977	4,0	0.02023
. 88 I	. 50567		. 52585		.97981		. 02019
. 882	. 50612		. 52627		. 97985		. 02015
. 883	. 50658		. 52668		. 97989		. 02011
. 884	. 50703		. 52710	-	. 97993		. 02007
1.885	0.50749	45,5	0.52751	41,5	9.97997	4,0	0.02003
. 886	. 50794		. 52793		.9800I		. 01999
. 887	. 50840		. 52834		. 98005		. 01995
. 888	. 50885		. 52876		. 98009		. 01991
. 889	. 50931		. 52917	.	.98013		. 01987
1. 890	0. 50976	45,5	0.52959	41,5	9.98017	4,0	0.01983
. 891	. 51021		. 53000		. 98021		. 01979
. 892	. 51067	45,4	. 53042		. 98025		. 01975
. 893	. 51112		. 53083		. 98029	3.9	. 01971
. 894	. 51158		. 53125		. 98033		. 01967
1. 895	0.51203	45,4	0.53166	41,5	9.98037	3,9	0.01963
. 896	. 51249		. 53208		.9804I		. 01959
. 897	. 51294		. 53249		. 98045		. 01955
. 898	. 51340		. 53291		. 98049		. 01951
. 899	. 51385		. 53332		. 98053		. 01947
1.900	0.51430	45,4	0.53374	41,5	9.98057	3,9	0.01943
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc$ gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1.900	0.51430	45,4	0.53374	41,5	9.98057	3,9	0.01943
. 901	. 51476		. 53415		. 98060		. 01940
. 902	. 5152 I		- 53457		. 98064		. 01936
. 903	.51567		. 53498		. 98068		. 01932
. 904	. 51612		. 53540		. 98072		. 01928
1.905	0.51657	45,4	0.5358I	41,5	9.98076	3,8	0.01924
. 906	. 51703		. 53623	41,6	. 98080		. 01920
. 907	. 51748		. 53665		. 98084		. 01916
. 908	. 51794		- 53706		. 98087		. 01913
. 909	. 51839		. 53748		.9809I		. 01909
1.910	0.51884	45,4	0.53789	41,6	9.98095	3,8	0.01905
.91I	. 51930		. 5383 I		. 98099		. 01901
. 912	.51975	-	- 53872		.98103		. 01897
.913	. 52020		. 53914		.98106		. 01894
.914	. 52066		- 53956		.98i 10		. 01890
1.915	0.5211 I	45,4	0.53997	41,6	9.98II4	3,8	0.01886
. 916	. 52157		. 54039		.98il8		. 01882
. 917	. 52202	45,3	. 54080		.98122		. 01878
.918	. 52247		. 54122		.98125	1	. 01875
. 919	. 52293		. 54164		.98I29	3,7	. 01871
1.920	0.52338	45,3	0.54205	41,6	9.98133	3,7	0.01867
. 92 I	. 52383		. 54247		.98137		. 01863
. 922	. 52429		. 54288		.98140		. 01860
. 923	. 52474		. 54330		.98144		. 01856
. 924	. 52519		. 54372		.98148		. 01852
1.925	0.52565	45,3	0.54413	41,6	9.98151	3,7	0.01849
. 926	. 52610		. 54455		.98I55		. 01845
. 927	. 52655		. 54496		. 98159		. 01841
. 928	. 52700		- 54538		.98162		. 01838
. 929	. 52746		- 54580		.98166		. 01834
1.930	0.52791	45,3	0.54621	41,6	9.98170	3,7	0.01830
. 931	. 52836		. 54663		.98173		. 01827
. 932	. 52882		. 54705		.98177	3,6	. 01823
. 933	. 52927		- 54746		.98181		.01819
. 934	. 52972		. 54788	41,7	.98I84		.01816
1.935	0.53018	45,3	0.54830	41,7		3,6	0.01812
. 936	. 53063		. 54871		. 98192		. 01808
. 937	. 53108		. 54913		.98195		. 01805
. 938	. 53153		. 54955		.98199		. O I801
. 939	. 53199		. 54996		. 98202		. 01798
1.940	0.53244	45,3	0.55038	41,7	9.98206	3,6	0.01794
.94I	. 53289		. 55080		. 98210		. 01790
. 942	. 53334		. 55121		. 98213		. 01787
. 943	. 53380	45,2	. 55163		. 98217		. 01783
. 944	- 53425		. 55205		. 98220		. 01780
1.945	0.53470	45,2	0.55246	41,7	9.98224	3,6	0.01776
. 946	. 53515		. 55288		. 98227	3,5	. Q1773
. 947	. 5356 I		. 55330		.9823I		. 01769
. 948	. 53606		-55371		. 98235		. 01765
. 949	. 53651		-55413		. 98238		. 01762
1.950	0.53696	45,2	0.55455	41,7	9.98242	3,5	0.01758
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \operatorname{cscgd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.950	0.53696	45,2	0.55455	41,7	9.98242	3,5	0.01758
.95I	. 53742		. 55496		. 98245		. 01755
. 952	. 53787		- 55538		. 98249		. 01751
. 953	. 53832		- 55580		. 98252		. 01748
. 954	. 53877		. 55622		. 98256		. 01744
1.955	0.53922	45,2	0.55663	41,7	9.98259	3,5	0.01741
. 956	. 53968		. 55705		. 98263		. 01737
. 957	. 54013		. 55747		. 98266		. 01734
. 958	. 54058		. 55788		. 98269		. 01731
. 959	. 54103		. 55830		. 98273		. 01727
1.960	0. 54148	45,2	0.55872	41,7	9.98276	3,4	0.01724
. 961	. 54194		. 55914		. 98280		. 01720
. 962	. 54239		. 55955		. 98283		. 01717
. 963	. 54284		. 55997		. 98287		. OI713
. 964	. 54329		. 56039	41,8	. 98290		. 01710
1.965	0.54374	45,2	0.5608I	4I,8	9.98294	3,4	0.01706
. 966	. 54419		. 56122		. 98297		. 01703
. 967	. 54465		. 56164		. 98300		. 01700
. 968	. 54510		. 56206		. 98304		. 01696
. 969	. 54555		. 56248		. 98307		. 01693
1.970	0.54600	45,2	0.56290	41,8	9.983 II	3,4	0.01689
.971	. 54645	45, 1	. 56331		. 98314		. 01686
. 972	. 54690		. 56373		. 98317		. 01683
. 973	. 54736		. 56415		.98321		.01679
. 974	. 5478 I		. 56457		. 98324		. 01676
1.975	0.54826	45,1	0.56498	4I,8	9.98327	3,3	0.01673
. 976	. 54871		. 56540		. 9833 I		. 01669
. 977	. 54916		- 56582		. 98334		. 01666
. 978	. 54961		. 56624		. 98337		. 01663
. 979	. 55006		. 56666		.9834I		. 01659
1.980	0.55051	45,1	0.56707	41,8	9.98344	3,3	0.01656
.981	. 55097		. 56749		. 98347		. 01653
. 982	.55142		. 56791		.9835I		. 01649
. 983	. 55187		. 56833		. 98354		. 01646
. 984	. 55232		. 56875		. 98357		. 01643
	0.55277	45,1	0.56916	41,8		3,3	
. 986	. 55322		. 56958		$.98364$. 01636
. 987	. 55367		. 57000		. 98367		. 01633
. 988	. 55412		. 57042		. 98370		. 01630
. 989	. 55457		. 57084		. 98374		. 01626
1.990	0.55502	45, I	0.57126	41,8	9.98377	3,2	0.01623
.991	. 55547		. 57167		. 98380		. 01620
. 992	. 55593		. 57209		. 98383		. 01617
. 993	. 55638		. 5725 I		. 98387		. 01613
. 994	. 55683		. 57293		. 98390		.01610
I. 995	0.55728	45, I	0.57335	41,9	9.98393	3,2	0.01607
. 996	. 55773		. 57377		. 98396		. 01604
. 997	. 55818		. 57419		. 98399		. 01601
. 998	. 55863		. 57460		. 98403		. O1597
. 999	. 55908		. 57502		. 98406		. OI 594
2.000	0.55953	45,0	0.57544	41,9	9.98409	3,2	0.01591
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
2.000	0.55953	45,0	0.57544	41,9	9.98409	3,2	0.01591
. 001	. 55998		. 57586		. 98412		. 01588
. 002	. 56043		. 57628		. 98415		. 01585
. 003	. 56088	.	. 57670		. 98418		. 01582
. 004	. 56133		. 57712		. 98422		. 01578
2.005	0. 56178	45,0	0.57754	41,9	9.98425	3,2	0.01575
. 006	. 56223		. 57795		. 98428	3,1	. 01572
. 007	. 56268		. 57837		. 98431		. 01569
. 008	. 56313		. 57879		. 98434		. 01566
. 009	. 56358		. 57921		. 98437		. 01563
2.010	0.56403	45,0	0.57963	41,9	9.98440	3,i	0.01560
. 011	. 56448		. 58005		. 98444		. 01556
. 012	. 56493		. 58047		. 98447		. 01553
. 12	. 56538		. 58089		. 98450		. 01550
. 014	. 56583		.58131		. 98453		. 01547
2.015	0. 56628	45,0	0.58172	41,9	9.98456	3, I	0.01544
. 016	. 56673		. 58214		. 98459		. 01541
. 017	. 56718		. 58256		. 98462		. 01538
. 018	. 56723		. 58298		. 98465		. 01535
. 019	. 56808		. 58340		. 98468		.or532
2.020	0. 56853	45,0	0.58382	41,9	9.98471	3,1	0.01529
. 021	. 56898		. 58424		. 98474		. 01526
. 022	. 56943		. 58466		. 98477	3,0	. 01523
. 023	. 56988		. 58508		. 98480		. 01520
. 024	. 57033		. 58550		. 98484		. 01516
2.025	0.57078	45,0	0.58592	41,9	9.98487	3,0	0.01513
. 026	. 57123		. 58634		. 98490		. 01510
. 027	. 57168		. 58676		. 98493		. 01507
. 028	. 57213		. 58718	42,0	. 98496		. 01504
. 029	. 57258		. 58760		. 98499		. 01501
2.030	0.57303	45,0	0.58802	42,0	9.98502	3,0	0.01498
.031	. 57348		. 58843		. 98505		. 01495
. 032	. 57393	44,9	. 58885		. 98508		. 01492
. 033	-57438		. 58927		. 9851 I		. 01489
. 034	. 57483		. 58969		. 28514		. 01486
2.035	0.57528	44,9	0.59011	42,0		3,0	
. 036	. 57573		. 59053		. 98519		.01481
. 037	. 57618		. 59095		. 98522		. 01478
. 038	. 57663		. 59137		. 98525	2,9	. 01475
. 039	- 57708		. 59179		. 98528		. 01472
2.040	0.57753	44.9	0.59221	42,0	9.98531	2,9	0.01469
.041	. 57797		. 59263		. 98534		. 01466
. 042	. 57842		. 59305		. 98537		. 01463
. 043	. 57887		- 59347		. 98540		. 01460
. 044	. 57932		. 59389		. 98543		. 01457
2.045	0.57977	44,9	0.59431	42,0	9.98546	2,9	0.01454
. 046	. 58022		. 59473		. 98549		. 01451
. 047	. 58067		- 59515		. 98552		. 01448
. 048	. 58112	.	- 59557		. 98555		. 01445
. 049	. 58157		. 59599		. 98558		. 01442
2.050	0.58202	44,9	0. 59641	42,0	9.98560	2,9	0.01440
u	log tan gdu	$\omega \mathrm{Fo}^{\prime}$	log sec ad u	$\omega \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc od u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.050	0.58202	44.9	0.59641	42,0	9.98560	2,9	0.01440
. 051	. 58246		. 59683		. 98563		. 01437
. 052	. 58291		. 59725		. 98566		. 01434
. 053	. 58336		. 59767		. 98569		.01431
. 054	.58381		. 59809		. 98572		.01428
2.055	0.58426	44,9	0.59851	42,0	9.98575	2,9	0.01425
. 056	. 58471		. 59893		. 98578	2,8	. 01422
. 057	. 58516		. 59935		. 98580		. 01420
. 058	. 58561		. 59977		. 98583		.01417
. 059	. 58606		. 60019		. 98586		. 01414
2.060	0.58650	449	0.60061	42,0	9.98589	2,8	0.01411
. 061	. 58695		. 60104		. 98592		. 01408
. 062	. 58740		. 60146		. 98595		. 01405
. 063	.58785		. 60188		. 98597		. 01403
. 064	. 58830		. 60230	42, I	. 98600		. 01400
2.065	0.58875	44,8	0.60272	42, I	9.98603	2,8	0.01397
. 066	. 58920		. 60314		. 98606	-	. O1394
. 067	. 58964		. 60356		. 98609		. 01391
. 068	. 59009		. 60398		.986I I		. 01389
. 069	. 59054		. 60440		. 98614		. 01386
2.070	0.59099	44,8	0.60482	42, I	9.98617	2,8	0.01383
. 071	. 59144		. 60524		. 98620		. 01380
. 072	. 59189		. 60566		. 98622		. 01378
. 073	. 59233		. 60608		. 98625		. 01375
. 074	. 59278		. 60650		. 98628	2,7	. 01372
2.075	0.59323	44,8	0.60692	42, I	9.98631	2,7	0.01369
. 076	. 59368		. 60734		. 98633		. 01367
. 077	. 59413		. 60777		. 98636		.01364
. 078	. 59457		. 60819		. 98639		. 01361
. 079	. 59502		.60861		. 98642		.OI358
2.080	0.59547	44,8	0.60903	42, I	9.98644	2,7	0.01356
. 081	. 59592		. 60945	42,1	. 98647		. 01353
. 082	. 59637		. 60987		. 98650		. 01350
. 083	. 5968 I		. 61029		. 98652		. 01348
. 084	. 59726		.6107 I		. 98655		. 01345
2.085	0.59771	44,8	0.61113	42, I	9.98658	2,7	0.01342
. 086	. 59816		.6II55		. 98660		. 01340
.087	. 5986 I		. 61198		. 98663		. 01337
. 088	. 59905		. 61240		. 98666		.OI334
. 089	. 59950		.61282		. 98668		. 01332
2.090	0.59995	44,8	0.61324	42, I	- 9.98671	2,7	
.091	. 60040		.61366		. 98674		. 01326
. 092	. 60085		.61408		. 98676	2,6	. 01324
. 093	. 60129		.6I450		. 98679		. 01321
. 094	. 60174		. 61492		. 98682		. 01318
2.095	0.60219	44,8	0.61535	42, I	9.98684	2,6	0.01316
. 096	. 60264		.6I577		. 98687		. 01313
. 097	. 60308		. 61619		. 98690		. 01310
. 098	. 60353		.6166I		. 98692		. 01308
. 099	. 60398		.61703		. 98695		. 01305
2. 100	0.60443	44,8	0.61745	42, 1	9.98597	2,6	0.01303
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
2. 100	0.60443	44,8	0.61745	42, 1	9.98697	2,6	0.01303
. 101	. 60487	44,7	. 61787		. 98700		. 01300
. 102	. 60532		. 61830	42,2	. 98703		. 01297
. 103	. 60577		. 61872		. 98705		. 01295
. 104	. 60622		. 61914		. 98708		. 01292
2.105	0.60666	44,7	0.61956	42,2	9.98710	2,6	0.01290
. 106	. 60711		. 61998		. 98713		. 01287
. 107	. 60756		. 62040		. 98716		. 01284
. 108	. 60801		. 62083		. 98718		. 01282
. 109	. 60845		. 62125		. 98721		. 01279
2.110	0.60890	44,7	0.62167	42,2	9.98723	2,6	0.01277
. III	. 60935		. 62209		. 98726	2,5	. 01274
. 112	. 60979		.62251		. 98728		. 01272
. 113	. 61024		. 62293		. 98731		. 01269
. 114	. 61069		. 62336		.98733		. 01267
2.115	0.61114	44,7	0.62378	42,2	9.98736	2,5	0.01264
. 116	. 61158		. 62420		. 98738		. 01262
. 117	. 61203		. 62462		. 98741		. 01259
. 118	. 61248		. 62504		. 98743		. 01257
. 119	.61292		. 62546		. 98746		. 01254
2.120	0.61337	44,7	0.62589	42,2	9.98748	2,5	0.01252
. 121	. 61382		. 62631		. 98751		. 01249
. 122	. 61427		. 62673		. 98753		. 01247
. 123	. 61471		. 62715		. 98756		. 01244
. 124	.61516		. 62757		. 98758		. 01242
2.125	0.61561	44,7	0.62800	42,2	9.98761	2,5	0.01239
. 126	. 61605		. 62842		. 98763		. 01237
. 127	. 61650		. 62884		. 98766		. 01234
. 128	. 61695		. 62926		. 98768		. 01232
. 129	. 61739		. 62969		. 98771		. 01229
2.130	0.61784	44,7	0.63011	42,2	9.98773		
.131	. 61829		. 63053		. 98776	2,4	. 01224
. 132	. 61873		. 63095		. 98778		. 01222
.133	. 61918		. 63137		. 98781		. 01219
. 134	. 61963		. 63180		. 98783		. 01217
2.135	0.62007	44,7	0.63222	42,2	9.98785	2,4	0.01215
. 136	. 62052		. 63264		. 98788		. 01212
. 137	. 62097		. 63306		. 98790		. 01210
. 138	.62141		. 63349		. 98793		. 01207
. 139	. 62186		. 63391		. 98795		. 01205
2.140	0.62231	44,6	-0.63433	42,2	9.98798	2,4	0.01202
. 141	. 62275		. 63475		. 98800		. 01200
. 142	. 62320		. 63518		. 98802		. 01198
. 143	. 62365		. 63560	42,3	. 98805		. 01195
. 144	. 62409		. 63602		. 98807		. 01193
2.145	0.62454	44,6	0.63644	42,3	9.988io	2,4	0.01190
. 146	. 62498		. 63687		. 98812		. 01188
. 147	. 62543		. 63729		.98814		. 01186
. 148	. 62588		. 63771		. 98817		. 01183
. 149	. 62632		.63813		. 98819		.01181
2.150	0.62677	44,6	0.63856	42,3	9.98821	2,4	0.01179
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\mathbf{l o g} \csc$ gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.150	0.62677	44,6	0.63856	42,3	9.98821	2,4	0.01179
. 151	. 62722		. 63898		. 98824		. 01176
. 152	. 62766		. 63940		. 98825	2,3	. 01174
. 153	. 62811		. 63982		. 98828		. 01172
. 154	. 62855		. 64025		. 98831		. 01169
2.155	0.62900	44,6	0.64067	42,3	9.98833	2,3	0.01167
. 156	. 62945		. 64109		. 98835		. 01165
. 157	. 62989		. 64152		. 98838		. 01162
. 158	. 63034		. 64194		. 98840		. 01160
- 159	. 63079		. 64236		. 98842		. 01158
2.160	0.63123	44,6	0.64278	42,3	9.98845	2,3	0.01155
. 161	. 63168		. 6432 I		. 98847		. 01153
. 162	. 63212		. 64363		. 98849		. 01151
. 163	. 63257		. 64405		. 98852		. 01148
. 164	. 63302		. 64448		. 98854		. 01146
2. 165	0.63346	44,6	0.64490	42,3	9.98856	2,3	0.01144
. 166	. 63391		. 64532		. 98859		. 01141
. 167	. 63435		. 64574		.98861		. 01139
. 168	. 63480		. 64617		. 98853		. 01137
. 169	. 63524		. 64659		. 98865		. 01135
2.170	0.63569	44,6	0.64701	42,3	9.98868	2,3	0.01132
. 171	. 63614		. 64744		. 98870		. 01130
. 172	. 63658		. 64785		. 98872		. 01128
. 173	. 63703		. 64828		. 98874		. 01126
. 174	. 63747		. 64871		. 98877	2,2	. 01123
2. 175	0.63792	44,6	0.64913	42,3	9.98879	2,2	0.01121
. 176	. 63836		. 64955		.9888I		. 01119
. 177	. 63881		. 64998		. 98883		. 01117
. 178	. 63926		. 65040		. 98886		. 01114
. 179	. 63970		. 65082		. 98888		.01112
2. 180	0.64015	44,6	0.65125	42,3	9.98890	2,2	0.01110
. 181	. 64059		. 65167		. 98892		. 01108
. 182	. 64104	44,5	. 65209		. 98894		. 01106
.183	. 64148		. 65252		. 98897		. 01103
. 184	. 64193		. 65294		. 98899		.orioi
2.185	0.64237	44.5	0.65336	- 42,3	9.98901	2,2	0.01099
. 185	. 64282		. 65379		. 98903		. 01097
. 187	. 64326		. 65421	42,4	. 98905		. 01095
. 188	. 64371		. 65463		. 98908		. 01092
. 189	. 64416		. 65506		. 98910		. 01090
2. 190	0.64460	44,5	0. 65548	42,4	9.98912	2,2	0.01088
. 191	. 64505		. 65590		. 98914		. 01086
. 192	. 64549		. 65633	-	. 98916		. 01084
. 193	. 64594		. 65675		. 98919		. 01081
. 194	. 64638		. 65718		. 9892 I		. 01079
2. 195	0.64683	44,5	0.65760	42,4	9.98923	2,2	0.01077
. 196	. 64727		. 65802		. 98925		. 01075
. 197	. 64772		. 65845		- 08927	2,1	. 01073
. 198	. 64816		. 65887		. 98929		. 01071
. 199	. 64861		. 65929		.9893r		. 01069
2.200	0.64905	44,5	0.65972	42,4	9.98934	2,1	0.01066
u	10 tan gd u	ar $\mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log $\sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \mathrm{csc} \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.200	0.64905	44,5	0.65972	42,4	9.98934	2,1	0.01066
. 201	. 64950		. 66014		. 98936		. 01064
. 202	. 64994		. 66056		. 98938		. 01062
. 203	. 65039		. 66099		. 98940		. 01060
. 204	. 65083		.6614I		. 98942		. 01058
2.205	0.65128	44,5	0.66184	42,4	9.98944	2,I	0.01056
. 206	. 65172		. 66226		. 98946		. 01054
. 207	. 65217		. 66268		. 98948		. 01052
. 208	. 65261		. 663 I I		. 98950		. 01050
. 209	.65306		. 66353		. 98953		. 01047
2.210	0.65350	44,5	0.66396	42,4	9.98955	2, I	0.01045
. 211	. 65395		. 66438		. 98957		. 01043
. 212	. 65439		. 66480		- 98959		. 01041
. 213	. 65484		. 66523		. 98961		. 01039
. 214	. 65528		. 66565		. 98963		. 01037
2.215	0.65573	44,5	0.66608	42,4	9.98965	2,I	0.01035
. 216	. 65617		. 66650		. 98967		. 01033
. 217	. 65662		. 66692		. 98969		.01031
. 218	. 65706		. 66735		. 98971		. 01029
. 219	. 6575 I		. 66777		. 98973		. 01027
2.220	0.65795	44,5	0.66820	42,4	9.98975	2,0	0.01025
. 22 I	. 65840		. 66862		. 98977		. 01023
. 222	. 65884		. 66905		. 98979		. 01021
. 223	. 65928		. 66947		. 98982		. 01018
. 224	. 65973		. 66989		. 98984		. 01016
2.225	0.66017	44.5	0.67032	42,4	9.98986	2,0	0.01014
. 225	. 66062		. 67074		. 98988		. 01012
. 227	.66106		. 67117		. 98990		. 01010
. 223	.6615I	44,4	. 67159		. 98992		. 01008
. 229	.66195		. 67202		. 98994		. 01006
2.230	0.66240	44,4	0.67244	42,4	9.98996	2,0	0.01004
. 231	. 66284		. 67285		. 98998		. 01002
. 232	. 66328		. 67329		. 99000		. 01000
. 233	. 66373		. 6737 I		. 99002		. 00998
. 234	.66417		. 67414		. 99004		. 00996
2.235	0.66462	44,4	0.67456	42,4	9.99006	2,0	0.00994
. 236	. 66506		. 67499		. 99008		. 00992
. 237	. 66551		. 67541	42,5	. 99010		. 00990
. 238	. 66595		. 67583		. 99012		. 00988
. 239	. 66640		.67626		. 99014		. 00986
2.240	0.66684	44,4	0.67668	42,5	9.99016	2,0	0.00984
. 241	. 66728		. 67711		. 99018		. 00982
. 242	. 66773		. 67753		. 99019		.00981
. 243	.668I7		. 67796		. 99021		. 00979
. 244	. 66862		. 67838		. 99023		. 00977
	0.66906	44,4		42,5		I,9	0.00975
. 246	. 66950		. 67923		. 99027		. 00973
. 247	. 66995		. 67966		. 99029		. 00971
. 248	. 67039		. 68008		. 99031		. 00969
. 249	. 67084		.6805I		. 99033		. 00967
2.250	0.67128	44,4	0.68093	42,5	9.99035	1,9	0.00965
u	$\log \tan \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\boldsymbol{\operatorname { l o g }} \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	\log coth u
2.250	0.67128	44,4	0.68093	42,5	9.99035	I,9	0.00965
. 251	. 67173		.68ı36		.99037		. 00963
. 252	. 67217		.68ı78		. 99039		.00961
. 253	. 67261		. 68220		. 9904 I		. 00959
. 254	. 67306		. 68263		. 99043		. 00957
2.255	0.67350	44,4	0.68305	42,5	9.99045	I,9	0.00955
. 256	. 67394		. 68348		. 99047		. 00953
. 257	. 67439		. 68390		. 99048		. 00952
. 258	.67483		. 68433		. 99050		. 00950
. 259	. 67528		. 68475		. 99052		. 00948
2.260	0.67572	44,4	0.68518	42,5	9.99054	I,9	0.00946
. 261	. 67616		. 68560		. 99056		. 00944
. 262	. 67661		. 68603		. 99058		. 00942
. 263	. 67705		. 68645		. 99060		. 00940
. 264	. 67750		. 68688		. 99062		. 00938
2.265	0.67794	44,4	0.68730	42,5	9.99064	1,9	0.00936
. 266	. 67838		. 68773		. 99065		. 00935
.267	. 67883		.68815		. 99067		. 00933
. 268	. 67927		. 68858		. 99069		. 0093 I
.269	. 67971		. 68900		. 9907 I		. 00929
2.270	0.68016	44,4	0.68943	42,5	9.99073	I,9	0.00927
. 271	. 68060		. 68985		. 99075		. 00925
. 272	.68105		. 69028		. 99077	I,8	. 00923
.273	.68149		. 69070		. 99078		. 00922
. 274	.68193		. 69113		. 99080		. 00920
2.275	0.68238	44,4	0.69156	42,5	9.99082	1,8	0.00918
. 276	. 68282		. 69198		. 99084		. 00916
. 277	. 68326		. 6924 I		. 99086		. 00914
. 278	.68371		. 69283		. 99088		. 00912
. 279	. 68415	44,3	.69326		. 99089	-	.009II
2.280	0.68459	44,3	0.69368	42,5	9.99091	1,8	0.00909
.281	. 68504		. 6941 I		. 99093		. 00907
. 282	. 68548		. 69453		. 99095		. 00905
.283	. 68592		. 69496		. 99097		. 00903
.284	. 68637		. 69538		. 99098		. 00902
2.285	0.6868I	44,3	0.69581	42,5	9.99100	1,8	0.00900
. 286	. 68725		. 69623		. 99102		. 00898
. 287	.68770		. 69666		. 99104		. 00896
. 288	.68814		. 69708		.99106		. 00894
. 289	. 68858		. 69751		.99107		. 00893
2.290	0.68903	44,3	0.69794	42,5	9.99109	I,8	0.00891
. 291	. 68947		. 69836		. 99111		. 00889
. 292	. 68991		. 69879	42,6	. 99113		. 00887
. 293	. 69036		. 69921		.99115		. 00885
. 294	. 69080		. 69964		.99116		. 00884
2.295	0.69124	44,3	0.70006	42,6	9.99118	1,8	0.00882
. 296	. 69169		. 70049		. 99120		. 00880
. 297	. 69213		. 70091		. 99122		. 00878
. 298	. 69257		. 70134		. 99123		. 00877
. 299	. 69302		.70177		. 99125	1,7	. 00875
2.300	0.69346	44,3	0.70219	42,6	9.99127	I,7	0.00873
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.300	0.69346	44,3	0.70219	42,6	9.99127	1,7	0.00873
. 301	. 69390		. 70262		. 99129		. 00871
. 302	. 69435		. 70304		. 99130		. 00870
. 303	. 69479		. 70347		. 99132		. 00868
. 304	. 69523		. 70389		.99134		. 00866
2.305	0. 69568	44,3	0.70432	42,6	9.99136	1,7	0.00864
. 306	. 69612		. 70475		. 99137		. 00863
. 307	. 69656		. 70517		.99139		. 00861
. 308	. 69700		. 70560		.9914I		. 00859
. 309	. 69745		.70602		. 99142		. 00858
2.310	0.69789	44,3	0.70645	42,6	9.99144	1,7	0.00856
. 3 II	. 69833		. 70687		. 99146		. 00854
. 312	. 69878		. 70730		. 99148		. 00852
. 313	. 69922		. 70773		. 99149		. 00851
. 314	. 69966		. 708 I 5		.99151		. 00849
2.315	0.70010	44,3	0.70858	42,6	9.99153	1,7	0.00847
. 316	. 70055		. 70900		.99154		. 00846
-317	. 70099		. 70943		.99156		. 00844
. 318	. 70143		. 70986		. 99158		. 00842
. 319	. 70188		. 71028		.99159		. 00841
2.320	0.70232	44,3	0.71071	42,6	9.99161	1,7	0.00839
. 321	. 70276		.71113		.99163		. 00837
. 322	. 70320		.71156		. 99164		. 00836
. 323	. 70365		.71199		.99166		. 00834
. 324	. 70409		.71241		.99168		. 00832
2.325	0.70453	44,3	0.71284	42,6	9.99169	1,7	0.00831
. 326	. 70497		. 71326		.99171		. 00829
. 327	. 70542		. 71369		. 99173		. 00827
. 328	. 70586		. 71412		. 99174		. 00826
. 329	. 70630		. 717454		.99176	1,6	. 00824
-2.330	0.70675	44,3	0.71497	42,6	9.99178	1,6	0.00822
. 331	. 70719		. 71539	.	.99179		. 00821
. 332	. 70763		. 71582		.99181		.00819
. 333	. 70807		. 71625		.99183		.00817
. 334	. 70852		.71667		. 99184		.00816
2.335	0.70896		0.71710	42,6	9.99186	1,6	0.00814
. 336	. 70940	44,2	. 71753		. 99188		.008í 2
. 337	. 70984		. 71795		. 99189		.008II
. 338	.71029		. 71838		.99191		. 00809
. 339	. 71073		. 71880		. 99192		. 00808
2.340	0.71117	44,2	0.71923	42,6	9.99194	1,6	0.00806
. 341	.71161		. 71966		. 99196		. 00804
. 342	. 71206		. 72008		. 99197		. 00803
. 343	. 71250		. 72051		. 99199		. 00801
. 344	. 71294		. 72094		. 99200		. 00800
2.345	0.71338	44,2	0.72136	42,6	9.99202	1,6	0.00798
. 346	-71382		. 72179		. 99204		. 00796
- 347	. 71427		. 72221		. 99205		. 00795
- 348	. 71471		. 72264		. 99207	1	. 00793
. 349	.71515		. 72307		. 99208		. 00792
2.350	0.71559	44,2	0.72349	42,6	9.99210	I,6	0.00790
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.350	0.71559	44,2	0.72349	42,6	9.99210	I,6	0.00790
. 351	. 71604		. 72392		. 99212		. 00788
. 352	. 71648		. 72435		. 99213		. 00787
. 353	. 71692		. 72477	42,7	. 99215		. 00785
. 354	. 71736		. 72520		. 992 I6		. 00784
2.355	0.7178 I	44,2	0.72563	42,7	9.99218	1,6	0.00782
. 356	. 71825		. 72605		. 99219		.00781
. 357	. 71869		. 72648		-9922I		. 00779
. 358	. 71913		-72691		-99223		. 00777
. 359	. 71957		. 72733		- 99224		. 00776
2.360	0.72002	44,2	0.72776	42,7	9.99226	1,5	0.00774
. 361	. 72046		. 72819		. 99227		. 00773
. 362	. 72090		. 72861		. 99229		. 00771
. 363	. 72134		. 72904		-99230		. 00770
. 364	. 72178		. 72947		. 99232		.00768
2.365	0.72223	44,2	0.72989	42,7	9.99233	1,5	0.00767
. 366	. 72267		. 73032		. 99235		. 00765
. 367	. 72311		. 73075		. 99236		. 00764
. 368	. 72355		. 73117		- 99238		. 00762
. 369	. 72399		.73160		-99239		.00761
2.370	0.72444	44,2	0.73203	42,7	9.9924 I	1,5	0.00759
. 371	. 72488		. 73245		. 99242		. 00758
. 372	. 72532		. 73288		. 99244		. 00756
. 373	. 72576		.73331		. 99245		. 00755
. 374	. 72620		. 73373		. 9924		. 00753
2.375	0.72665	44,2	0.73416	42,7	9.99249	1,5	0.00751
. 376	. 72709		. 73459		. 99250		. 00750
. 377	. 72753		. 73501		. 99252		. 00748
. 378	. 72797		. 73544		. 99253		. 00747
-379	.7284I		. 73587		. 99254		. 00746
2.380	0.72885	44,2	0.73630	42,7	9.99256	I,5	0.00744
.381	. 72930		. 73672		. 99257		. 00743
. 382	. 72974		. 73715		. 99259		.00741
. 383	. 73018		. 73758		. 99260		. 00740
. 384	. 73062		. 73800		. 99262		. 00738
2.385	0.73106	44,2	0.73843	42,7	9.99263	1,5	0.00737
. 386	.7315I		. 73886		. 99265		. 00735
. 387	. 73195		. 73928		. 99266		. 00734
-388	. 73239		. 73971		. 99268		. 00732
. 389	. 73283		. 74014		- 99269		. 00731
2.390	0.73327	44,2	0.74056	42,7	9.9927 I	1,5	0.00729
-391	. 73371		. 74099		. 99272		. 00728
- 392	. 73416		. 74142		- 99274		. 00726
- 393	. 73460		. 74185		. 99275	1,4	. 00725
- 394	. 73504		. 74227		. 99277		. 00723
2.395	0.73548	44,2	0.74270	42,7	9.99278	1,4	0.00722
. 396	. 73592		. 743 I 3		. 99279		. 00721
- 397	. 73636		. 74355		.9928I		. 00719
- 398	. 73680		. 74398		- 99282		. 00718
- 399	. 73725		.74441		. 99284		. 00716
2.400	0.73769	44,2	0.74484	42,7	9.99285	1,4	0.00715
u	log tan gd u	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	log csc od u

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.400	0.73769	44,2	0.74484	42,7	9.99285	I,4	0.00715
. 401	.73813	44,1	. 74526		. 99287		. 00713
. 402	. 73857		. 74569		. 99288		. 00712
. 403	. 73901		. 74612		. 99289		.00711
. 404	. 73945		. 74655		.9929I		. 00709
2.405	0.73990	44, I	0.74697	42,7	9.99292	I,4	0.00708
. 406	. 74034		. 74740		. 99294		. 00706
. 407	. 74078		. 74783		. 99295		. 00705
. 408	.74122		. 74825		. 99297		. 00703
. 409	.74166		. 74868		. 99298		. 00702
2.410	0.74210	44,1	0.74911	42,7	9.99299	1,4	0.00701
.4II	. 74254		. 74954		.99301		. 00699
. 412	. 74298		. 74996		. 99302		. 00698
. 413	. 74343		. 75039		. 99304		. 00696
.4I4	. 74387		. 75082		. 99305		. 00695
2.415	0.74431	44, I	0.75125	42,7	9.99306	I,4	0.00694
. 416	. 74475		.75167		. 99308		. 00692
. 417	. 74519		. 75210		. 99309		.0069I
. 418	.74563		. 75253		. 99310		. 00690
.419	.74607		. 75296		. 99312		. 00688
2.420	0.74652	44, 1	0.75338	42,7	9.993I3	I,4	0.00687
. 421	. 74696		.75381		. 99315		. 00685
. 422	. 74740		. 75424	42,8	. 99316		. 00684
. 423	. 74784		. 75467		. 99317		. 00683
. 424	. 74828		. 75509		.99319		. 0068 I
2.425	0.74872	44,1	0.75552	42,8	9.99320	1,4	0.00680
. 426	. 74916		. 75595		. 9932 I		. 00679
. 427	. 74960		. 75638		. 99323		. 00677
. 428	. 75004		. 75680		. 99324		. 00676
. 429	. 75049		. 75723		. 99325	I,3	. 00675
2.430	0.75093	44, 1	0.75766	42,8	9.99327	1,3	0.00673
. 431	.75137		. 75809		. 99328		. 00672
. 432	.7518I		.7585I		. 99329		. 00671
. 433	. 75225		. 75894		.9933I		. 00669
. 434	. 75269		. 75937		. 99332		. 00668
2.435	0.75313	44, 1	0.75980	42,8	9.99333	1,3	0.00667
. 436	. 75357		. 76022		. 99335		. 00665
. 437	.75401		. 76065		. 99336		. 00664
. 438	. 75445		.76108		. 99337		. 00663
. 439	. 75490		.76151		. 99339		. 00661
2.440	0.75534	44,1	0.76194	42,8	9.99340	I,3	0.00660
. 441	. 75578		. 76236		. 9934 I		. 00659
. 442	. 75622		. 76279		. 99343		. 00657
. 443	. 75666		. 76322		. 99344		. 00656
. 444	. 75710		. 76365		. 99345		. 00655
2.445	0.75754	44, 1	0.76407	42,8	9.99347	I,3	0.00653
. 446	.75798		. 76450		. 99348		. 00652
. 447	. 75842		. 76493		. 99349		.0065I
. 448	. 75886		. 76536		. 9935 I		$.00649$
. 449	. 75930		. 76579		. 99352		. 00648
2.450	0.75975	44, I	0.76621	42,8	9.99353	I,3	0.00647
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \cdot F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	\log coth u
2.450	0.75975	44, I	0.76621	42,8	9.99353	1,3	0.00647
. 451	. 76019		. 76664		. 99354		. 00646
. 452	. 76063		. 76707		. 99356		. 00644
. 453	. 76107		. 76750		-99357		. 00643
. 454	.76151		. 76793		. 99358		. 00642
2.455	0.76195	44,1	0.76835	42,8	9.99360	I,3	0.00640
. 456	. 76239		. 76878		. 99361		. 00639
. 457	. 76283		. 76921		. 99362		. 00638
. 458	. 76327		. 76964		-. 99363		. 00637
. 459	. 76371		. 77006		. 99365		. 00635
2.460	0.76415	44, I	0.77049	42,8	9.99366	1,3	0.00634
. 461	. 76459		. 77092		. 99367		. 00633
. 462	. 76503		. 77135		-99369		. 00631
. 463	. 76547		. 77178		. 99370		. 00630
. 464	. 76592		. 77220		. 99371		. 00629
2.465	0.76636	44,1	0.77263	42,8	9.99372	I,3	0.00628
. 466	. 76680		. 77306		. 99374		. 00626
. 467	. 76724		. 77349		. 99375		. 00625
-468	. 76768		. 77392		-99376	1,2	. 00662
. 469	.76812		. 77435		-99377		. 00623
2.470	0.76856	44,1	0.77477	42,8	9.99379	1,2	0.00621
.471	. 76900		. 77520		. 99380		. 00620
. 472	. 76944		. 77563		.99381		. 00619
. 473	. 76988		. 77606		. 99382		. 00618
. 474	. 77032		. 77649		-99384		. 00616
2.475	0.77076	44,0	0.77691	42,8	9.99385	1,2	0.00615
. 476	. 77120		. 77734		. 99386		. 00614
. 477	. 77164		. 77777		. 99387		. 006613
. 478	. 77208		. 77820		. 99388		. 00612
. 479	. 77252		. 77863		. 99390		. 00610
2.480	0.77296	44,0	0.77906	42,8	9.99391	1,2	0.00609
.481	. 77340		. 77948		. 99392		. 00608
. 482	. 77384		. 77991		-99393		. 00607
. 483	. 77429		. 78034		-99394		. 00606
. 484	. 77473		. 78077		. 99396		. 00604
2.485	0.77517	44,0	0.78120	42,8	9.99397	1,2	0.00603
. 486	. 7756 r		.78163		. 99398		. 00602
. 487	. 77605		. 78205		. 99399		. 00601
. 488	. 77649		. 78248		. 99401		$.00599$
. 489	. 77693		. 78292		. 99402		. 00598
2.490	0.77737	44,0	0.78334	42,8	9.99403	1,2	0.00597
. 491	.77781		. 78377		. 99404		. 00596
- 492	. 77825		. 78420	,	. 99405		. 00595
- 493	. 77869		. 78462		. 99406		. 00594
-494	. 77913		. 78505		-99408		. 00592
2.495	0.77957	44,0	0.78548	42,8	9.99409	1,2	0.00591
. 496	. 78001		. 78591		.99410		. 00590
. 497	. 78045		. 78634		. 9941 I		. 00589
. 498	$\bullet .78089$. 78677		. 99412		.00588
. 499	.78133		. 78719		. 99414		. 00586
2.500	0.78177	44,0	0.78762	42,8	9.99415	1,2	0.00585
u	$\log \tan \mathrm{ad} u$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc gdu

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
2.500	0.78177	44,0	0.78762	42,8	9.99415	I,2	0.00585
. 501	. 78221		.78803		. 99416		. 00584
. 502	. 78265		. 78848	42,9	. 99417		. 00583
. 503	. 78309		.78891		. 99418		. 00582
. 504	. 78353		. 78934		. 99419		. 0058 I
2.505	0.78397	44,0	0.78977	42,9	9.99421	1,2	0.00579
. 506	. 78441		. 79019		. 99422		. 00578
. 507	. 78485		. 79062		. 99423		. 00577
. 508	. 78529		. 79105		. 99424		. 00576
. 509	. 78573		.79148		. 99425	I, I	. 00575
2.510	0.78617	44,0	0.79191	42,9	9.99426	I, I	0.00574
.51I	.7866I		-79234		. 99427		. 00573
. 512	. 78705		. 79277		. 99429		. 0057 I
. 513	. 78749		. 79319		. 99430		. 00570
. 514	. 78793		. 79362		. 9943 I		. 00569
2.515	0.78837	44,0	0.79405	42,9	9.99432	I,I	0.00568
. 516	. 7888 I		. 79448		. 99433		. 00567
. 517	. 78925		.7949I		. 99434		. 00566
. 518	. 78969		. 79534		. 99435		. 00565
. 519	. 79013		. 79577		.99437		. 00563
2.520	0.79057	44,0	0.79619	42,9	9.99438	I, I	0.00562
. 521	.79101		. 79662		. 99439		.0056I
. 522	. 79145		. 79705		. 99440		. 00560
. 523	. 79189		. 79748		. 9944 I		. 00559
. 524	. 79233		.79791		. 99442		. 00558
2.525	0.79277	44,0	0.79834	42,9	9.99443	I, I	0.00557
. 526	. 7932 I		. 79877		. 99444		. 00556
. 527	. 79365		. 79920		. 99446		. 00554
. 528	. 79409		. 79962		. 99447		. 00553
. 529	. 79453		. 80005		. 99448		. 00552
2.530	0.79497	44,0	0.80048	42,9	9.99449	I, I	0.00551
. 531	. 7954 I		. 80091		. 99450		. 00550
. 532	. 79585		. 80134		.9945I		. 00549
. 533	. 79629		. 80177		. 99452		. 00548
. 534	. 79673		. 80220		. 99453	-	. 00547
2.535	0.79717	44,0	0.80263	42,9	9.99454	I, I	0.00546
. 536	.7976I		. 80306		. 99455		. 00545
. 537	. 79805		. 80348		. 99456		. 00544
. 538	. 79849		. 80391		. 99458		. 00542
. 539	. 79893		. 80434		. 99459		. 00541
2.540	0.79937	44,0	0.80477	42,9	9.99460	I, I	0.00540
. 54 I	. 7998 I		. 80520		. 99461		. 00539
. 542	. 80025		. 80563		. 99462		. 00538
. 543	. 80069		. 80606		. 99463		. 00537
. 544	. 80113		. 80649		. 99464		. 00536
2. 545	0.80157	44,0	0.80692	42,9	9.99465	I, I	0.00535
. 546	. 80201		. 80734		. 99466		. 00534
. 547	. 80245		. 80777		. 99467		. 00533
. 548	. 80289		. 80820		. 99468		. 00532
. 549	. 80333		. 80863		. 99469		. 00531
2.550	0.80377	44,0	0.80906	42,9	9.99470	I, I	0.00530
u	$\log \tan \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.550	0.80377	44,0	0.80906	42,9	9.99470	I,I	0.00530
. 55 I	. 80420		. 80949		. 9947 I		. 00529
. 552	. 80464		:80992		. 99473		. 00527
. 553	. 80508		. 81035		. 99474		. 00526
. 554	. 80552		.81078		. 99475		. 00525
2.555	0.80596	44,0	0.81121	42,9	9.99476	1,0	0.00524
. 556	. 80640		.81164		. 99477		. 00523
. 557	. 80684		-. 81206		. 99478		. 00522
. 558	. 80728		. 81249		. 99479		.00521
. 559	. 80772		.81292		. 99480		. 00520
2.560	0.80816	44,0	0.81335	42,9	9.99481	I,O	0.00519
. 56 I	. 80860		. 81378		. 99482		. 00518
. 562	. 80904	43,9	.8142I		.99483		.00517
. 563	. 80948		.81464		. 99484		.00516
. 564	. 80992		.81507		. 99485		. 00515
2.565	0.81036	43,9	0.81550	42,9	9.99486	1,0	0.00514
. 566	.81080		. 8I 593		. 99487		.00513
. 567	.81124		.81636		. 99488		. 005 I 2
. 568	.81168		.81678		. 99489		.005II
. 569	.81212		.8172I		. 99490		. 00510
2.570	0.81256	43,9	0.81764	42,9	9.99491	1,0	0.00509
. 571	.81299		.81807		. 99492		. 00508
. 572	.8I343		.81850		. 99493		. 00507
. 573	. 81387		.81893		. 99494		. 00506
. 574	.8I43I		.81936		. 99495		. 00505
2.575	0.81475	43,9	0.81979	42,9	9.99496	1,0	0.00504
. 576	.81519		. 82022	42,	. 99497		. 00503
. 577	.81563		. 82065		. 99498		. 00502
. 578	.81607		. 82108		. 99499		. 00501
. 579	.8165I		.8215I		. 99500		. 00500
2.580	0.8 I 695	43,9	0.82194	42,9	9.99501	1,0	0.00499
. 58 I	.81739		. 82237	4,9	. 99502		. 00498
. 582	. 81783		. 82279		. 99503		. 00497
. 583	.81827		. 82322		. 99504		. 00496
. 584	.81871		. 82365		. 99505		. 00495
		43,9		42,9	9.99506	1,0	0.00494
. 586	.81958		. 82451	42,9	. 9.99507		. 00493
. 587	. 82002		. 82494		. 99508		. 00492
. 588	. 82046	-	. 82537		. 99509		. 00491
. 589	. 82090		. 82580		. 99510		. 00490
2.590	0.82134	43,9	0.82623	42,9	9.995 II	1,O	0.00489
. 591	. 82178		. 82666		. 99512		. 00488
. 592	. 82222		. 82709		. 99513		. 00487
. 593	. 82266		. 82752		. 99514		. 00486
. 594	. 82310		. 82795		. 99515		. 00485
2.595	0.82354	43,9	0.82838	42,9	9.99516	I,O	0.00484
. 596	. 82398		.8288I		.99517		. 00483
. 597	. 82442		. 82924	43,0	. 99518		. 00482
. 598	. 82485		. 82967		. 99519		.0048I
. 599	. 82529		. 83010		. 99520		. 00480
2.600	0.82573	43,9	0.83052	43,0	9.9952 I	1,O	0.00479
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} \mathrm{u}$
2.600	0.82573	43,9	0.83052	43,0	9.9952 I	1,0	0.00479
. 601	. 82617		. 83095		. 99522		. 00478
. 602	.8266I		.83138		. 99523		. 00477
. 603	. 82705		.83181		. 99524		. 00476
. 604	. 82749		. 83224		. 99525		. 00475
2.605	0.82793	43,9	0.83267	43,0	9.99526	0,9	0.00474
. 606	. 82837		. 83310		. 99527		. 00473
. 607	.8288I		. 83353		. 99527		. 00473
. 608	. 82925		. 83396		.99528		. 00472
. 609	. 82968		. 83439		. 99529		. 00471
2.610	0.83012	43,9	0.83482	43,0	9.99530	0,9	0.00470
.6II	. 83056		. 83525		. 9953 I		. 00469
. 612	. 83100		. 83568		. 99532		. 00468
.613	.83144		.8361 I		. 99533		. 00467
. 614	.83188		. 83654		. 99534		. 00466
2.615	0.83232	43,9	0.83697	43,0	9.99535	0,9	0.00465
. 616	. 83276		. 83740		. 99536		. 00464
. 617	. 83320		. 83783		. 99537		. 00463
. 618	. 83364		. 83826		. 99538	-	. 00462
.619	. 83407		. 83869		. 99539		. 0046 I
2.620	0.83451	43,9	0.83912	43,0	9.99540	0,9	0.00460
.621	. 83495		. 83955		. 9954 I		. 00459
. 622	. 83539		. 83998		.9954I		. 00459
. 623	. 83583		. 84041		. 99542		. 00458
. 624	. 83627		. 84084		. 99543		. 00457
2.625	0.83671	43,9	0.84127	43,0	9.99544	0,9	0.00456
. 626	. 83715		. 84170		. 99545		. 00455
. 627	. 83759		. 84213		. 99546		. 00454
. 628	. 83802		. 84256		. 99547		. 00453
. 629	. 83846		. 84299		. 99548		. 00452
2.630	0.83890	43,9	0.8434 I	43,0	9.99549	0,9	0.00451
.631	. 83934		. 84384		. 99550		. 00450
. 632	. 83978		. 84427		. 9955 I		. 00449
. 633	. 84022		. 84470		. 9955 I		. 00449
. 634	. 84066		. 84513		. 99552		. 00448
2.635	0.84110	43,9	0.84556	43,0	9.99553	0,9	0.00447
. 636	. 84154		. 84599		. 99554		. 00446
. 637	.84197		. 84642		. 99555		. 00445
. 638	. 84241		. 84685		. 99556		. 00444
. 639	. 84285		. 84728		. 99557		. 00443
2.640	0.84329	43,9	0.84771	43,0	9.99558	0,9	0.00442
.64I	. 84373		.84814		. 99559		. 00441
. 642	. 84417		. 84857		. 99559		. 00441
. 643	. 84461		. 84900		. 99560		. 00440
. 644	. 84505		. 84943		. 99561		. 00439
2.645	0.84548	43,9	0.84986	43,0	9.99562	0,9	0.00438
. 646	. 84592		. 85029		. 99563		. 00437
. 647	. 84636		. 85072		. 99564		. 00436
. 648	. 84680		.85115		$.99565$. 00435
. 649	. 84724		. 85158		-99566		. 00434
2.650	0.84768	43,9	0.85201	43,0	9.99566	0,9	0.00434
4	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc$ gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
2.650	0.84768	43,9	0.85201	43,0	9.99566	0,9	0.00434
. 651	. 84812		. 85244		. 99567		. 00433
. 652	. 84855		. 85287		. 99568		. 00432
653	. 84899		. 85330		- 99569		. 00431
. 654	. 84943		. 85373		-99570		. 00430
2.655	0.84987	43,9	0.85416	43,0	9.99571	0,9	0.00429
. 656	.85031		. 85459		. 99572		. 00428
. 657	. 85075		. 85502		. 99572		. 00428
. 658	. 85119		. 85545		. 99573		. 00427
. 659	. 85162		. 85588		. 99574		. 00426
2.660	0:85206	43,9	0.85631	43,0	9.99575	o,8	0.00425
. 661	. 85250		. 85674		. 99576		. 00424
. 662	. 85294		. 85717		. 99577		. 00423
. 663	. 85338		. 85760		. 99578		. 00422
. 664	. 85382		. 85803		. 99578		. 00422
2.665	0.85426	43,9	0.85846	43,0	9.99579	0,8	0.0042 I
. 666	. 85469		. 85889		. 99580		. 00420
. 667	. 85513		. 85932		.99581		. 00419
. 668	. 85557	43,8	. 85975		. 99582		. 00418
. 669	. 85601		. 86018		. 99583		. 00417
2.670	0.85645	43,8	0.86061	43,0	9.99583	0,8	0.00417
. 671	. 85689		. 86104		. 99584		. 00416
. 672	. 85733		. 86147		. 99585		. 00415
. 673	. 85776		- . 86190		. 99586		.004I4
. 674	. 85820		. 86233		. 99587		. 00413
2.675	0. 85864	43,8	0.86276	43,0	9.99588	0,8	0.00412
. 676	. 85908		. 86320		. 99588		.00412
. 677	. 85952		. 86363		. 99589		.004II
. 678	. 85996		. 86406		. 99590		.00410
. 679	. 86039		. 86449		. 99591		. 00409
2.680	0.86083	43,8	0.86492	43,0	9.99592	0,8	0.00408
.681	. 86127		. 86535		. 99592		. 00408
. 682	.86171		. 86578		. 99593		. 00407
. 683	. 86215		. 86621		. 99594		. 00406
. 684	. 86259		. 85664		-99595		. 00405
2.685	0.86302	43,8	0.86707	43,0	9.99596	0,8	0.00404
. 685	. 86346		. 86750		. 99597		. 00403
. 687	. 86390		. 86793		. 99597		. 00403
. 688	. 86434		. 86836		. 99598		. 00402
. 689	. 86478		. 86879		. 99599		.00401
2.690	0.86522	43,8	0.85922	43,0	9.99600	0,8	0.00400
. 691	. 86565		. 86955		. 99601		. 00399
. 692	. 86609		. 87008		.99601		.00399
. 693	. 86653		. 87051		. 99602		. 00398
. 694	. 86697		. 87094		. 99603		. 00397
2.695	0.85741	43,8	0.87137	43,0	9.99604	0,8	0.00396
. 696	. 86785		. 87180		. 99605		. 00395
. 697	. 85828		. 87223		. 99605		. 00395
. 698	. 86872		. 87266		. 99605		. 00394
. 699	. 86916		. 87309		. 99607		. 00393
2.700	Q. 86960	43,8	0.87352	43,0	9.99508	0,8	0.00392
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	10 sin gd u	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log ^{\cosh } \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	$\underline{l o g} \tanh u$	$\omega \mathrm{Fo}^{\prime}$	log coth u
2.700	0.86960	43,8	0.87352	43,0	9.99608	0,8	0.00392
. 701	. 87004		. 87395		. 99608		. 00392
. 702	. 87048		. 87438		. 99609		. 00391
. 703	. 87091		. 8748 I		. 99610		. 00390
. 704	. 87135				.996II		.00389
2.705	0.87179	43,8	0.87567	43,0	9.99612	0,8	0.00388
. 706	. 87223		. 87610		. 99612		. 00388
. 707	. 87267		. 87654		. 996613		. 00387
. 708	. 87310		. 87697		. 996614		.00386
. 709	. 87354		. 87740		. 99615		. 00385
2.710	0.87398	43,8	0.87783	43,0	9.99615	0,8	0.00385
. 711	. 87442		. 87825		. 99616		. 00384
. 712	. 87486		. 87869		. 99617		.00383
. 713	. 87530		. 87912		. 996618		.00382
. 714	. 87573		. 87955		. 99619		.00381
2.715	0.87617	43,8	0.87998	43,1	9.99619	0,8	0.0038 I
. 716	.87661		. 88041		. 99620		. 00380
. 717	. 87705		. 88084		-99621		. 00379
. 718	. 87749		. 88127		. 99622		. 00378
. 719	. 87792		.88170		. 99622		. 00378
2.720	0.87836	43,8	0.88213	43,I	9.99623	o,8	0.00377
. 721	. 87880		. 88256		. 99624		. 00376
. 722	. 87924		. 88299		. 99625		. 00375
. 723	. 87968		. 888342		. 99625	0,7	. 00375
. 724	. 88011		. 88385		. 99626		. 00374
2.725	0.88055	43,8	0.88428	43, I	9.99627	0,7	0.00373
. 726	. 88899		.88471		. 99628		. 00372
. 727	. 888143		. 88515		. 99628		. 00372
. 728	. 88187		. 88558		. 99629		. 00371
. 729	. 88230		. 88601		. 99630		. 00370
2.730	0.88274	43,8	0.88644	43,1	9.9963 I	0,7	0.00369
. 731	. 88318		. 88687		. 99631		. 00369
. 732	. 88362		. 88730		. 99632		. 00368
. 733	. 88406		. 88773		. 99633		. 00367
. 734	. 88449		. 88816		. 99633		. 00367
2.735	0.88493	43,8	0.88859	43, I	9.99634	0,7	0.00366
. 736	. 88537		. 88902		. 99635		. 00365
. 737	.88581		. 88945		. 99636		.00364
. 738	. 88825		. 88988		. 99636		.00364
. 739	. 88668		. 8903 I		. 99637		.00363
2.740	0.88712	43,8		43, I		0,7	
. 741	. 88756		. 89117		. 99639		. 00361
. 742	. 88800		. 89161		. 99639		. 00361
. 743	. 88844		. 89204		. 99640		.00360
. 744	. 88887		. 89247		-9964I		. 00359
2.745	0.88931	43,8	0.89290	43, I	9.9964 I	0,7	0.00359
. 746	. 88975		. 89333		. 99642		. 00358
. 747	. 89019		. 89376		. 99643		. 00357
. 748	. 89063		. 89419		. 99644		. 003556
. 749	.89106		. 89462		. 99644		. 00356
2.750	0.89150	43,8	0.89505	43,I	9.99645	0,7	0.00355
u	log tan odu	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}$	log csc gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.750	0.89150	43,8	0.89505	43, I	9.99645	0,7	0.00355
. 751	. 89194		. 89548		. 99646		. 00354
. 752	. 89238		. 89591		. 99646	.	. 00354
. 753	. 8928 I		. 89634		. 99647		. 00353
. 754	. 89325		. 89677		. 99648		. 00352
2.755	0.89369	43,8	0.89720	43, I	9.99649	0,7	0.00351
. 756	. 89413		. 89764		. 99649		. 00351
. 757	. 89457		. 89807		. 99650		. 00350
. 758	. 89500		. 89850		. 99651		. 00349
. 759	. 89544		. 89893		.9965I		. 00349
2.760	0.89588	43,8	0.89936	43, I	9.99652	0,7	0.00348
. 761	. 89632		. 89979		. 99653		. 00347
. 762	. 89675		. 90022		. 99653		. 00347
. 763	. 89719		. 90065		. 99654		. 00346
. 764	. 89753	.	.90108		. 99655		. 00345
2.765	0.89807	43,8	0.90151	43, I	9.99656	0,7	0.00344
. 766	. 8985 I		. 9019.4		. 99656		. 00344
. 767	. 89894		. 90237		. 99657		. 00343
. 768	. 89938		.90281		. 99658		. 00342
.769	. 89982		. 90324		. 99658		. 00342
2.770	0.90026	43,8	0.90367	43, I	9.99659	0,7	0.00341
. 771	. 90069		.90410		. 99660		. 00340
. 772	.901 I3		. 90453		. 99660		. 00340
. 773	. 90157		. 90496		.9966I		. 00339
. 774	.90201		. 90539		. 99662		. 00338
2.775	0.90245	43,8	0.90582	43, I	9.99662	0,7	0.00338
. 776	. 90288		. 90625		. 99663		. 00337
. 777	. 90332		. 90668		. 99664		. 00336
. 778	. 90376		. 90712		. 99664		. 00336
. 779	. 90420		. 90755		. 99665		. 00335
. 2.780	0.90463	43,8	0.90798	43, I	9.99666	0,7	0.00334
.78I	. 90507		.90841		. 99666		. 00334
. 782	. 90551		. 90884		. 99667		. 00333
. 783	. 90595		. 90927		. 99668		. 00332
. 784	. 90638		. 90970		. 99668		. 00332
2.785	0.90682	43,8	0.91013	43, I	9.99669	0,7	0.00331
. 786	. 90726		. 91056		. 99670		. 00330
. 787	. 90770		.91099		. 99670		. 00330
. 788	.908I3		.91142		. 99671		. 00329
. 789	.90857		.91186		. 99672		. 00328
2.790	0.90901	43,8	0.91229	43, I	9.99672	0,7	0.00328
. 791	. 90945		. 91272		. 99673		. 00327
. 792	. 90989		.91315		. 99674		. 00326
. 793	. 91032		.91358		. 99674		. 00326
. 794	.91076		.9140I		. 99675		. 00325
2.795	0.91120	43,8	0.91444	43, I	9.99676	0,6	0.00324
. 796	.91164		.91487		. 99676		. 00324
. 797	.91207		.91530		. 99677		. 00323
. 798	.91251		.91574		. 99678		. 00322
. 799	.91295		.91617		. 99678		. 00322
2.800	0.91339	43,8	0.91660	43, I	9.99579	0,6	0.00321
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { t a n h }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
2.800	0.91339	43,8	0.91660	43, I	9.99679	0,6	0.0032 I
. 801	.91382		.91703		. 99679		.0032I
. 802	.91426		. 91746		. 99680		. 00320
. 803	. 91470	43,7	.91789		.9968I		.00319
. 804	.91514		.91832		.9968I		. 00319
2.805	0.91557	43,7	0.91875	43,1	9.99682	0,6	0.00318
. 806	.9160I		. 91918		. 99683		. 00317
. 807	.91645		. 91962		. 99683		. 00317
. 808	. 91689		. 92005		. 99684		. .00316
. 809	. 91732		. 92048		. 99685		. .00315
2.810	0.91776	43,7	0.92091	43, I	9.99685	0,6	0.00315
.8II	. 91820		. 92134		. 99686		.003I4
.8I2	.91864		.92I77		. 99686		. 00314
. 8 I 3	. 91907		. 92220		. 99687		. 00313
.814	.9195I		. 92263		. 99688		. 00312
2.815	0.91995	43,7	0.92306	43, I	9.99688	0,6	0.00312
.816	. 92039		. 92350		. 99689		. 003 II
.817	. 92082		. 92393		. 99690		. 00310
.818	. 92126		. 92436		. 99690		. 00310
. 819	.92170		. 92479		.9969I		. 00309
2.820	0.92213	43,7	0.92522	43, I	9.99691	0,6	0.00309
. 82 I	. 92257		. 92565		. 99692		. 00308
. 822	. 92301		- .92608		. 99693		. 00307
. 823	. 92345		. 92651		. 99693		. 00307
. 824	. 92388		. 92695		. 99694		. 00306
2.825	0.92432	43,7	0.92738	43, I	9.99694	0,6	0.00306
. 826	. 92476		.92781		. 99695		. 00305
. 827	. 92520		. 92824		. 99696		. 00304
. 828	. 92563		. 92867		. 99696		. 00304
. 829	. 92607		. 92910		. 99697		. 00303
2.830	0.92651	43,7	0.92953	43, I	9.99698	0,6	0.00302
. 831	. 92695		. 92996		. 99698		. 00302
. 832	. 92738		. 93040		. 99699		. 00301
. 833	. 92782		. 93083		. 99699		.00301
. 834	. 92826		.93126		. 99700		. 00300
2.835	0.92869	43,7	0.93169	43, 1	9.99701	0,6	0.00299
. 836	. 92913		.93212		.99701		. 00299
. 837	. 92957		. 93255		. 99702		. 00298
. 838	. .93001		. 93298		. 99702		. 00298
. 839	. 93044		.9334I		. 99703		. 00297
2.840	0.93088	43,7		43, I	9.99704	0,6	
. 841	.93132		. 93428		. 99704		. 00296
. 842	.93176		.9347I		. 99705		. 00295
. 843	. 93219		.93514		. 99705		. 00295
. 844	. 93263		. 93557		. 99706		. 00294
2.845	0.93307	43,7	0.93600	43, I	9.99706	0,6	0.00294
. 846	. 93350		. 93643		. 99707		. 00293
. 847	. 93394		. 93687		. 99708		. 00292
. 848	. 93438		. 93730		. 99708		. 00292
. 849	. 93482		. 93773		. 99709		. 00291
- 2.850	0.93525	43,7	0.93816	43, I	9.99709	0,6	0.00291
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Smithsonian Tables

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.850	0.93525	43,7	0.93816	43, I	9.99709	0,6	0.00291
. 851	. 93569		. 93859		. 99710		.00290
. 852	. 93613		. 93902		. 9971 I		. 00289
. 853	. 93657		. 93945		. 997 I I		. 00289
. 854	. 93700		. 93989		. 99712		. 00288
2.855	0.93744	43,7	0.94032	43, I	9.99712	0,6	0.00288
. 856	. 93788		. 94075		. 99713		. 00287
. 857	. 93831		.94II8		. 99713		. 00287
. 858	. 93875		.9416I		. 99714		. 00286
. 859	. 93919		. 94204		. 99715		. 00285
2.860	0.93963	43,7	0.94247	43,I	9.99715	0,6	0.00285
.861	. 94006		. 94291		. 99716		. 00284
. 862	. 94050		. 94334		. 99716		. 00284
. 863	. 94094		. 94377		. 99717		.00283
. 854	.94137		. 94420		. 99717		. 00283
2.865	0.94181	43,7	0.94463	43,1	9.99718	0,6	0.00282
. 865	. 94225		. 94506		. 99719		.0028I
. 867	. 94269		- 94549		. 99719		.00281
. 858	. 94312		. 94593		. 99720		. 00280
. 869	. 94356		. 94636	43,2	. 99720		. 00280
2.870	0.94400	43,7	0.94679	43,2	9.99721	0,6	0.00279
. 871	. 94443		. 94722		.9972I		. 00279
. 872	. 94487		. 94765		. 99722		. 00278
. 873	.9453I		. 94808		. 99722		. 00278
. 874	. 94575		. 94852		. 99723		. 00277
2.875	0.94618	43,7	0.94895	43,2	9.99724	0,6	0.00276
. 876	. 94662		. 94938		. 99724		. 00276
. 877	. 94706		.9498I		. 99725		. 00275
. 878	. 94749		. 95024		. 99725	0,5	. 00275
. 879	. 94793		. 95067		. 99726		. 00274
2.880	0.94837	43,7	0.95110	43,2	9.99726	0,5	0.00274
.88I	. 94880		.95I54		. 99727		. 00273
. 882	. 94924		.95197		. 99727		. 00273
. 883	. 94968		. 95240		. 99728		. 00272
. 884	. 95012		. 95283		. 99728		. 00272
2.885	0.95055	43,7	0.95326	43,2	9.99729	0,5	0.00271
. 886	. 95099		. 95369		. 99730		. 00270
. 887	.95143		. 95413		. 99730		. 00270
. 888	.95186		. 95456		.9973I		. 00269
. 889	. 95230		. 95499		.9973I		. 00269
2.890	0.95274	43,7	0.95542	43,2	9.99732	0,5	0.00268
. 891	. 95317		. 95585		. 99732		. 00268
. 892	.9536I		. 95628		. 99733		. 00267
. 893	. 95405		. 95672		. 99733		. 00267
. 894	. 95449		. 95715		. 99734		. 00266
2.895	0.95492	43,7	0.95758	43,2	9.99734	0,5	0.00266
. 896	. 95536		.95801		. 99735		. 00265
. 897	. 95580		. 95844		. 99735		. 00265
. 898	. 95623		. 95887		. 99736	-	. 00264
. 899	. 95667		-9593I		. 99737		. 00263
2.900	0.95711	43,7	0.95974	43,2	9.99737	0,5	0.00263
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{~d} \mathbf{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.900	0.95711	43,7	0.95974	43,2	9.99737	0,5	0.00263
. 901	. 95754		.96017		. 99738		. 00262
. 902	. 95798		. 96060		. 99738	,	. 00262
. 903	. 95842		.96103		. 99739		.0026I
. 904	. 95885		.96146		. 99739		.0026I
2.905	0.95929	43,7	0.96190	43,2	9.99740	0,5	0.00260
. 906	. 95973		. 96233		. 99740		. 00260
. 907	. 96017		. 96276		.9974I		. 00259
. 908	. 96060		. 96319		. 99741		. 00259
. 909	.96104		. 96362		. 99742		. 00258
2.910	0.96148	43,7	0.96405	43,2	9.99742	0,5	0.00258
. 911	.96191		. 96449		. 99743		600257
. 912	. 96235		. 96492		. 99743		.00257
. 913	. 96279		.96535		. 99744		. 00256
.914	.96322		. 96578		. 99744		. 00256
2.915	0.96366	43,7	0.96621	43,2	9.99745	0,5	0.00255
. 916	.96410		. 96664		. 99745		. 00255
. 917	. 96453		. 96708		. 99746		. 00254
. 918	.96497		.9675I		. 99746		. 00254
. 919	.9654I		. 96794		. 99747		. 00253
2.920	0.96584	43,7	$0.968,37$	43,2	9.99747	0,5	0.00253
. 92 I	. 96628		. 96880		. 99748		. 00252
. 922	. 96672		. 96923		. 99748		. 00252
. 923	. 96716		. 96967		. 99749		. 0025 I
. 924	. 96759		.97010		. 99749		. 0025 I
2.925	0.96803	43,7	0.97053	43,2	9.99750	0,5	0.00250
. 926	. 96847		. 97096		. 99750		. 00250
. 927	. 96890		. 97139		.9975		. 00249
. 928	. 96934		.97183		. 99751		. 00249
. 929	. 96978		. 97226		. 99752		. 00248
2.930	0.9702 I	43,7	0.97269	43,2	9.99752	0,5	0.00248
.931	. 97065		. 97312		. 99753		. 00247
. 932	.97109		. 97355		. 99753		. 00247
. 933	. 97152		. 97398		. 99754		. 00246
. 934	. 97196		. 97442		. 99754		. 00246
2.935	0.97240	43,7	0.97485	43,2	9.99755	0,5	0.00245
. 936	. 97283		. 97528		. 99755		. 00245
. 937	. 97327		. 97571		. 99756		. 00244
. 938	.9737 I		. 97614		. 99756		. 00244
. 939	. 97414		. 97658		. 99757		. 00243
2.940	0.97458	43,7	0.97701	43,2	9.99757	0,5	0.00243
.94I	. 97502		. 97744		. 99758		. 00242
. 942	. 97545		. 97787		. 99758		. 00242
. 943	. 97589		. 97830		. 99759		.0024I
. 944	. 97633		. 97874		. 99759		. 0024 I
2.945	0.97676	43,7	0.97917	43,2	9.99760	0,5	0.00240
. 946	. 97720		. 97960		. 99760		. 00240
. 947	. 97764		. 98003		.99761		. 00239
. 948	. 97807		. 98046		.99761		. 00239
. 949	.9785I		. 98089		. 99762		. 00238
2.950	0.97895	43,7	0.98 r 33	43,2	9.99762	0,5	0.00238
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
2.950	0.97895	43,7	0.98133	43,2	9.99762	0,5	0.00238
-951	. 97938		.98i76		. 99763		. 00237
. 952	. 97982		.98219		. 99763		. 00237
. 953	. 98026		. 98262		. 99763		. 00237
-. 954	. 98069		. 98305		. 99764		. 00236
2.955	0.98113	43,7	0.98349	43,2	9.99764	0,5	0.00236
. 956	.98157		. 98392		. 99765		. 00235
. 957	. 98200		. 98435		. 99765		. 00235
. 958	. 98244		. 98478		. 99766		. 00234
. 959	. 98288		.9852I		. 99766		. 00234
2.960	0.98331	43,7	0.98565	43,2	9.99767	0,5	0.00233
.96I	. 98375		. 98608		. 99767		. 00233
. 962	. 98419		.9865I		. 99768		. 00232
. 963	. 98462		. 98694		. 99768		. 00232
. 964	. 98506		. 98737		. 99769		.00231
2.965	0.98550	43,7	0.98781	43,2	9.99769	0,5	0.00231
. 966	. 98593		. 98824		. 99770		.00230
. 967	. 98637	,	. 98867		. 99770		. 00230
. 968	.9868I		. 98910		. 99770		. 00230
. 969	. 98724		. 98953		.9977I		. 00229
2.970	0.98768	43,7	0.98997	43,2	9.99771	0,5	0.00229
. 971	. 98812		. 99040		. 99772		. 00228
. 972	. 08855		. 99083		. 99772		. 00228
. 973	. 98899		.99126		. 99773		. 00227
. 974	. 98943		. 99169		. 99773		. 00227
2.975	0.98986	43,7	0.99213	43,2	9.99774	0,5	0.00226
. 976	. 99030		. 99256		. 99774		. 00226
. 977	. 99074		. 99299		. 99775		. 00225
. 978	.99117		. 99342		. 99775	0,4	. 00225
. 979	.9916I		. 99385		. 99775		. 00225
2.980	0.99205	43,7	0.99429	43,2	9.99776	0,4	0.00224
.981	. 99248		. 99472		. 99776		. 00224
. 982	. 99292		.99515		. 99777		. 00223
.983	. 99336		. 99558		. 99777		. 00223
. 984	. 99379		.9960I		. 99778		. 00222
2.985	0.99423	43,7	0.99645	43,2	9.99778	0,4	0.00222
. 986	. 99466		. 99688		. 99779		. 00221
. 987	. 99510		. 9973 I		. 99779		. 0022 I
. 988	. 99554		. 99774	-	. 99779		.0022I
.989	.99597		.99818		. 99780		. 00220
2.990	0.99641	43,6	0.99861	43,2	9.99780	0,4	0.00220
.991	. 99685		. 99904		.9978I		.00219
. 992	. 99728		. 99947		.9978I		.00219
. 993	. 99772		. 99990		. 99782		.00218
. 994	.99816		1.00034		. 99782		. 00218
2.995	0.99859	43,6	1.00077	43,2	9.99783	0,4	0.00217
. 996	. 99903		. 00120		. 99783		. 00217
. 997	. 99947	-	. 00163		. 99783		. 00217
. 998	. 99990		. 00206		. 99784		. 00216
. 999	1.00034		. 00250		. 99784		. 00216
3.000	1.00078	43,6	1.00293	43,2	9.99785	0,4	0.00215
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
3.00	I. 00078	436,5	1.00293	432,I	9.99785	4,3	0.00215
. OI	. 00514	436,4	. 00725	432,2	. 99789	4,2	. 002 II
. 02	. 00950	436,4	. OII57	432,2	. 99793	4,I	. 00207
. 03	. 01387	436,3	.OI589	432,3	. 99797	4, I	.00203
. 04	. 01823	436,3	. 02022	432,3	. 99801	4,0	.00199
3.05	1.02259	436,2	I. 02454	432,4	9.99805	3,9	0.00195
. 06	. 02696	436,2	. 02886	432,4	. 99809	3,8	.00191
. 07	. 03132	436,2	.03319	432,4	.998I3	3,7	. 00187
. 08	. 03568	436, I	.0375I	432,5	.998I7	3,7	. 00183
. 09	. 04004	436, 1	.04I84	432,5	. 99820	3,6	.00180
3.10	I. 04440	436, I	1.04616	432,5	9.99824	3,5	0.00176
. II	. 04876	436,0	. 05049	432,6	. 99827	3,4	. 00173
. 12	.05312	436,0	.0548I	432,6	. 99831	3,4	. 00169
. 13	. 05748	436,0	. 05914	432,6	. 99834	3,3	. 00166
. 14	. 06184	435,9	. 06347	432,7	. 99837	3,3	. 00163
3.15	1. 06620	435,9	1.06779	432,7	9.99841	3,2	0.00159
. 16	. 07056	435,9	. 07212	432,7	. 99844	3,1	.00156
. 17	. 07492	435,8	. 07645	432,8	. 99847	3, I	.00153
. 18	. 07927	435,8	.08078	432,8	. 99850	3,0	. 00150
. 19	. 08363	435,8	. 08510	432,8	. 99853	2,9	. 00147
3.20	1. 08799	435,7	1.08943	432,9	9.99856	2,9	0.00144
. 21	. 09235	435,7	. 09376	432,9	. 99859	2,8	. 00141
. 22	. 09670	435,7	. 09809	432,9	.9986I	2,8	.00139
. 23	. 10106	435,7	. 10242	432,9	. 99864	2,7	.00I36
. 24	. 10542	435,6	. 10675	433,0	. 99867	2,7	. O0I33
3.25	1. 10977	435,6	I. 11108	433,0	9.99869	2,6	0.00131
. 26	. II413	435,6	. I I 54I	433,0	-. 99872	2,6	.00128
. 27	. II849	435,6	. 11974	433,0	. 99875	2,5	.00125
. 28	. 12284	435,5	. 12407	433, I	. 99877	2,5	. 00123
. 29	. 12720	435,5	. 12840	433, 1	. 99879	2,4	. 0012 I
$3 \cdot 30$	I. I3I55	435,5	I. 13273	433,1	9.99882	2,4	0.00118
. 31	. I3591	435,5	. 13706	433, I	. 99884	2,3	.001 16
. 32	. 14026	435,4	. 14139	433,2	. 99886	2,3	.00114
. 33	. I446I	435,4	. 14573	433,2	. 99889	2,2	. 0011 I
. 34	. 14897	435,4	. 15006	433,2	.99891	2,2	. 00109
$3 \cdot 35$	1. 15332	435;4	I. I5439	433,2	9.99893	2,I	0.00107
. 36	. 15768	435,3	. 15872	433,2	. 99895	2,I	. 00105
. 37	. 16203	435,3	. 16306	433,3	. 99897	2,1	. 00103
. 38	. 16638	435,3	. 16739	433,3	. 99899	2,0	. 00101
. 39	. 17073	435,3	.17172	433,3	.99901	2,0	. 00099
3.40	I. I7509	435,3	1. 17605	433,3	9.99903	1,9	0.00097
. 41	. 17944	435,2	. 18039	433,3	. 99905	I,9	. 00095
.42	. 18379	435,2	. 18472	433,4	. 99907	I,9	. 00093
. 43	. 18814	435,2	. 18906	433,4	. 999009	I,8	. 00091
. 44	. 19250	435,2	. 19339	433,4	. 9991 I	1,8	. 00089
3.45	I. 19685	435,2	I. 19772	433,4	9.99912	1,8	0.00088
. 46	. 20120	435,2	. 20206	433,4	. 99914	1,7	. 00086
. 47	. 20555	435, I	. 20639	433,5	. 99916	1,7	. 00084
. 48	. 20990	435, I	. 21073	433,5	.99918	1,6	. 00082
. 49	.21425	435, 1	. 21506	433,5	.99919	1,6	.0008I
$3 \cdot 50$	1.21860	435,1	1. 21940	433,5	9.9992 I	1,6	0.00079
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
3.50	I. 21860	435, 1	1.21940	433,5	9.9992 I	1,6	0.00079
. 51	. 22296		. 22373		. 99922		. 00078
. 52	. 22731		. 22807		. 99924	I,5	. 00076
. 53	.23166	435,0	. 23240		. 99925		. 00075
. 54	.2360I		. 23674	433,6	. 99927		. 00073
3.55	1. 24036	435,0	1.24107	433,6	9.99928	I,4	0.00072
. 56	. 24471		. 24541		. 99930		. 00070
. 57	. 24906		. 24975		. 9993 I		. 00069
. 58	. 25341		. 25408		. 99933	1,3	. 00067
. 59	. 25776		. 25842		. 99934		. 00066
3.60	1.262 II	434,9	1.26275	433,6	9.99935	1,3	0.00065
.61	. 26646		. 26709	433,7	. 99936		. 00064
. 62	. 27080		. 27143		. 99938	1,2	. 00062
. 63	. 27515		.27576		. 99939		. 00061
. 64	. 27950		. 28010		. 99940		. 00060
3.65	$\text { 1. } 28385$	434,9	$\text { I. } 28444$	433,7	9.99941	1,2	0.00059
. 66	$.28820$		$.28878$. 99942		. 00058
. 67	. 29255		. 29311		. 99944	I, I	. 00056
. 68	. 29690	434,8	. 29745		. 99945		. 00055
. 69	. 30125		. 30179	433,8	. 99946		. 00054
3.70	I. 30559	434,8	1.30612	433,8	9.99947	I, I	0.00053
. 71	. 30994		. 31046		. 99948	1,0	. 00052
. 72	. 31429		. 31480		. 99949		. 0005 I
. 73	. 31864		. 31914		. 99950		. 00050
. 74	. 32299		. 32348		.9995I		. 00049
3.75	I. 32733	434,8	1.32781	433,8	9.99952	1,0	0.00048
. 76	. 33 I68		. 33215		. 99953	0,9	. 00047
. 78	. 33603		. 33649		. 99954		. 00046
. 78	. 34038	434,7	- 34083		. 99955		. 00045
. 79	. 34472		. 34517	433,9	. 99956		. 00044
3.80	1.34907	434,7	1.34951	433,9	9.99957	0,9	0.00043
. 8 I	. 35342		. 35384		. 99957		. 00043
. 82	. 35777		-35818		. 99958	0,8	. 00042
. 83	. 36211		. 36252		$\text { . } 99959$. 000041
. 84	. 36646		. 36686		. 99960		. 00040
3.85	1.3708I	434,7	1. 37120	433,9	9.9996 I	0,8	0.00039
. 86	-37515		. 37554		. 99961		. 00039
. 87	. 37950		. 37988		. 99962		. 00038
. 88	-38385		-38422		. 99963	0,7	. 00037
. 89	. 38819		. 38856		. 99964		. 00036
3.90	I. 39254	434,7	1. 39290	433,9	9.99964	0,7	0.00036
.91	. 39689	434,6	- 39724		. 99965		. 00035
. 92	. 40123		. 40158	434,0	. 99966		. 00034
. 93	. 40558		. 40591		. 99966		. 00034
. 94	. 40993		. 41025		. 99967		. 00033
	I. 41427	434,6	1.41459	434,0		0,6	0.00032
. 96	. 41862		. 41893		. 99968		. 00032
. 97	. 42296		. 42327		. 99969		. 00031
. 98	. 42731		. 42761		. 99970		. 00030
. 99	.43166		. 43195		. 99970		. 00030
4.00	1.43600	434,6	1. 43629	434,0	9.9997 I	0,6	0.00029
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
4.00	I. 43600	434,6	1.43629	434,0	9.99971	0,6	0.00029
. OI	. 44035		. 44063		.9997I		. 00029
. 02	. 44469		. 44497		. 99972		. 00028
. 03	. 44904		. 4493 I		. 99973	0,5	. 00027
. 04	. 45339		. 45365		. 99973		. 00027
4.05	I. 45773	434,6	1.45799	434,0	9.99974	0,5	0.00026
. 06	. 46208		. 46233		. 99974		. 00026
. 07	. 46642	434,5	. 46668		. 99975		. 00025
. 08	. 47077		.47102		. 99975		. 00025
. 09	.475II		.47536	434, I	. 99976		. 00024
4.10	1.47946	434,5	1.47970	434, 1	9.99976	0,5	0.00024
. II	. 48380		. 48404		. 99977		. 00023
. 12	.488I5		. 48838		. 99977		. 00023
. 13	. 49249		. 49272		. 99978	0,4	. 00022
. 14	. 49684		. 49706		. 99978		. 00022
4.15	1.50118	434,5	I. 50140	434, I	9.99978	0,4	0.00022
. 16	. 50553		. 50574		. 99979		. 0002 I
. 17	. 50987		. 51008		. 99979		. 0002 I
. 18	. 51422		. 51442		. 99980		. 00020
. 19	.51856		.51876		. 99980	-	. 00020
4.20	1.52291	434,5	1.52310	434, I	9.99980	0,4	0.00020
. 21	. 52725		. 52745		. 99981		. 00019
. 22	. 53160		. 53179		.9998I		.00019
. 23	. 53594		. 53613		. 99982		. 00018
. 24	. 54029		. 54047		. 99982		. 00018
4.25	1. 54463	434,5	1. 5448	434, 1	9.99982	0,4	0.00018
. 26	. 54898		. 54915		. 99983	0,3	. 00017
. 27	- 55332		- 55349		. 99983		.00017
. 28	. 55767		. 55783		. 99983		.00017
. 29	. 56201		. 56217		. 99984		. 00016
$4 \cdot 30$	1. 56636	434,5	1.56652	434, I	9.99984	0,3	0.00016
. 31	. 57070		. 57086		. 99984		. 00016
. 32	. 57505	434,4	. 57520		. 99985		. 00015
. 33	. 57939		. 57954	-	. 99985		. 00015
. 34	. 58373		. 58388		. 99985		. 00015
$4 \cdot 35$	1. 58808	434,4	1.58822	434, I	9.99986	0,3	0.00014
. 36	. 59242		. 59256	434,2	. 99986		. 00014
. 37	. 59677		. 59691		. 99986		. 00014
. 38	. 6011 I		. 60125		. 99986		. 00014
. 39	. 60546		. 60559		. 99987		.00013
4.40	1. 60980	434,4		434,2		0,3	0.00013
. 41	.6I414		.6I427		. 99987		.00013
. 42	. 61849		. 61851		. 99987		.00013
. 43	. 62283		. 62296		. 99988	0,2	.00012
. 44	. 62718		. 62730		. 99988		. 00012
4.45		434,4	1.63164	434,2	9.99988	0,2	0.00012
. 46	. 63587		. 63598		. 99988		. 00012
. 47	. 64021		. 64032		. 99989		. 00011
. 48	. 64455		. 64467		. 99989		.00011 .00011
. 49	. 64890		.64901		-99989		. 0001 I
4.50	1. 65324	434,4	1.65335	434,2	9.99989	0,2	0.0001 I
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \operatorname{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
$4 \cdot 50$	1.65324	434,4	1. 65335	434,2	9.99989	0,2	0.0001 I
. 51	. 65759		. 65769		. 99989		.000I I
. 52	. 66193		. 66203		. 99990		.00010
. 53	. 66627		. 66637		. 99990		.00010
. 54	. 67062		. 67072		. 99990		.00010
$4 \cdot 55$	I. 67496	434,4	1.67506	434,2	9.99990	0,2	0.00010
. 56	. 6793 I		. 67940		. 99990		.00010
. 57	. 68365		. 68374		.99991		. 00009
. 58	. 68799		. 68808		.99991		. 00009
. 59	. 69234		. 69243		. 99991		. 00009
4.60	1. 69668	434,4	- 1. 69677	434,2	9.99991	0,2	0.00009
.61	. 70102		. 70111		. 99991		. 00009
. 62	. 70537		. 70545		. 99992		. 00008
. 63	. 70971		. 70979		. 99992		. 00008
. 64	. 71406		.71414		. 99992		. 00008
4.65	1.71840	434,4	1.71848	434,2	9.99992	0,2	0.00008
. 66	. 72274		. 72282		. 99992		. 00008
. 67	. 72709		. 72716		- . 99992		. 00008
. 68	.73143		.7315I		. 99993	O,I	. 00007
. 69	. 73577		. 73585		. 99993		. 00007
4.70	1.74012	434,4	1.74019	434,2	9.99993	O,I	0.00007
. 71	. 74446		. 74453		. 99993		. 00007
. 72	.7488I		. 74887		. 99993		. 00007
. 73	. 75315		. 75322		. 99993		. 00007
. 74	. 75749		. 75756		. 99993		. 00007
4.75	1.76184	434,4	1.76190	434,2	9.99993	O, I	0.00007
. 76	. 76618		. 76624		. 99994		. 00006
. 77	. 77052		. 77059		. 99994		. 00006
. 78	. 77487		. 77493		. 99994		. 00006
. 79	.7792I		. 77927		. 99994		. 00006
4.80	1.78355	434,4	I.78361	434,2	9.99994	O,I	0.00006
.8I	. 78790		. 78796		. 99994		. 00006
. 82	. 79224		. 79230		. 99994		. 00006
. 83	. 79658	434,3	. 79664		. 99994		. 00006
. 84	. 80093		. 80098		. 99995		. 00005
		434,3		434,2	9.99995	O,I	0.00005
. 86	. 80962		. 80967		. 99995		. 00005
. 87	. 81396		:81401		. 99995		.00005
. 88	.81830		. 81835		. 99995		. 00005
. 89	. 82265		. 82269		. 99995		. 00005
4.90	1.82699	434,3	1.82704	434,2	9.99995	0,I	0.00005
.91	. 83133		. 83138		. 99995		. 00005
. 92	. 83568		. 83572		. 99995		. 00005
. 93	. 84002		. 84006		. 99995		. 00005
. 94	. 84436		. 84441	434,3	. 99996		. 00004
4.95	1.84871	434,3	1.84875	434,3	9.99996	O,I	0.00004
. 96	. 85305		. 85309		. 99996		. 00004
. 97	. 85739		. 85743		. 99996		. 00004
. 98	. 86174		. 86178		. 99996		. 00004
. 99	. 86608		. 86612		. 99996		. 00004
5.00	1.87042	434,3	1. 87046	434,3	9.99996	O,I	0.00004
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{~d} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
5.00	1.87042	434,3	1.87046	434,3	9.99996	O, I	0.00004
. 01	. 87477		. 87480		. 99996		. 00004
. 02	. 87911		. 87915		. 99996		. 00004
. 03	. 88345		. 88349		. 99996		. 00004
. 04	. 88780		.88783		. 99996		. 00004
5.05	1.89214	434,3	1.89217	434,3	9.99996	O,I	0.00004
. 06	. 89648		. 89652		. 99997		. 00003
. 07	. 90083		. 90086		. 99997		. 00003
. 08	. 90517		. 90520		. 99997		. 00003
. 09	. 90951		. 90955		. 99997		. 00003
5.10	1.91386	434,3	1.91389	434,3	9.99997	O,I	0.00003
. II	. 91820		.91823		. 99997		. 00003
. 12	. 92254		. 92257		. 99997		. 00003
. 13	. 92689		. 92692		. 99997		. 00003
. 14	. 93123		.93126		. 99997		.00003
5.15	1.93557	434,3	1.93560	434,3	9.99997	O,I	0.00003
. 16	. 93992		. 93994		. 99997		. 00003
. 17	. 94426		- . 94429		. 99997		. 00003
. 18	. 94860		. 94863		. 99997		. 00003
. 19	. 95294		. 95297		. 99997		. 00003
5.20	1. 95729	434,3	1.95731	434,3	9.99997	O,I	0.00003
. 21	. 96163		.95166		. 99997		. 00003
. 22	. 96597		. 96600		. 99997		. 00003
.23	. 97032		. 97034		. 99998	0,0	. 00002
. 24	. 97466		. 97469		. 99998		. 00002
5.25	1.97900	434,3	1.97903	434,3	9.99998	0,0	0.00002
. 26	. 98335		. 98337		. 99998		. 00002
. 27	. 98769		.98771		. 99998		. 00002
. 28	. 99203		. 99206		. 99998		. 00002
. 29	. 99638		. 99640		. 99998		. 00002
$5 \cdot 30$	2.00072	434,3	2.00074	434,3	9.99998	0,0	0.00002
. 31	. 00506		. 00508		. 99998		. 00002
. 32	. 00941		. 00943		. 99998		. 00002
. 33	.01375		. 01377		. 99998		. 00002
. 34	. 01809		.018II		. 99998		. 00002
		434,3	2.02246	434,3	9.99998	0,0	0.00002
. 36	$.02678$. 02680		. 99998		. 00002
. 37	.03112		.03II4		. 99998		. 00002
. 38	. 03547		. 03548		. 99998		. 00002
. 39	.0398I		.03983		. 99998		. 00002
5.40	2.04415	434,3	2.04417	434,3		0,0	0.00002
. 41	. 04849		. 04851		. 99998		. 00002
.42	. 05284		. 05285		. 99998		. 00002
. 43	.05718		. 05720		. 99998		. 00002
. 44	. 06152		.06154		. 99998		. 00002
5.45	2.06587	434,3	2.06588	434,3	9.99998	0,0	0.00002
. 46	. 07021		. 07023		. 99998		. 00002
. 47	. 07455		. 07457		. 99998		. 00002
. 48	. 07890		$.07891$. 99998		. 00002
. 49	. 08324		. 08325		. 99999		.00001
5.50	2.08758	434,3	2.08760	434,3	9.99999	0,0	0.00001
u	$\log \operatorname{tangd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cosh u$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
5.50	2.08758	434,3	2.08760	434,3	9.99999	0,0	0.00001
. 51	. 09193		. 09194		. 99999		.0000I
. 52	. 09627		. 09628		. 99999		.0000I
. 53	. 1006I		. 10063		. 99999		.00001
. 54	. 10495		. 10497		. 99999		.00001
5.55	2. 10930	434,3	2. 10931	434,3	9.99999	0,0	0.00001
. 56	. II364		. 11365		. 99999		.00001
. 57	. 11798		. 11800		. 99999		.00001
. 58	. 12233		. 12234		. 99999		. 00001
. 59	. I2667		. 12668		. 99999		.0000I
5.60	2.13101	434,3	2.13103	434,3	9.99999	0,0	0.00001
. 61	. 13536		. I3537		. 99999		.0000I
. 62	. I3970		. I397I		. 99999		.0000I
. 63	. 14404		. 14405		. 99999		.0000I
. 64	. 14839		. 14840		. 99999		.0000I
5.65	2. 15273	434,3	2. 15274	434,3	9.99999	0,0	0.00001
. 66	. 15707		. 15708		-99999		. 00001
. 67	.16141		.16142		. 99999		.0000I
. 68	. 16576		. 16577		. 99999		.0000I
. 69	.17010		. 1701 I		. 99999		.0000I
5.70	2.17444	434,3	2.17445	434,3	9.99999	0,0	0.00001
. 71	. 17879		. 17880		. 99999		. 00001
. 72	.18313		.183I4		. 99999		. 0000 I
. 73	. 18747		. 18748		. 99999		.0000I
. 74	. 19182		. 19182		. 99999		. 00001
5.75	2.19616	434,3	2.19617	434,3	9.99999	0,0	0.00001
. 76	. 20050		. 20051		. 99999		.00001
. 77	. 20484		. 20485		. 99999		.0000I
. 78	. 20919		. 20920		- 99999		. 00001
. 79	. 21353		. 21354		. 99999		. 0000I
5.80	2.21787	434,3	2.21788	434,3	9.99999	0,0	0.00001
.81	. 22222		. 22222		. 99999		. 00001
. 82	. 22656		. 22657		. 99999		. 00001
. 83	. 23090		. 23091		. 99999		. 00001
. 84	. 23525		. 23525		. 99999		. 00001
5.85	2.23959	434,3	2.23960	434,3	9.99999	0,0	0.00001
. 85	. 24393		. 24394		. 99999		. 00001
. 87	. 24828		. 24828		. 99999		. 00001
. 88	. 25262		. 25262		. 99999		. 00001
. 89	. 25696		. 25697		. 99999		. 00001
5.90	2.26130	434,3	2.26131	434,3	9.99999	0,0	0.00001
.91	. 26565		. 26565		. 99999		. 00001
. 92	. 26999		. 27000		. 99999		. 00001
. 93	. 27433		. 27434		. 99999		. 00001
. 94	. 27868		.27868		. 99999		. 00001
5.95	2.28302	434,3	2.28303	434,3	9.99999	0,0	0.00001
. 96	. 28736		. 28737		. 99999		. 00001
. 97	. 29171		. 29171		. 99999		. 00001
. 98	. 29605		. 29605		. 99999		. 00001
. 99	- 30039		- 30040		. 99999		. 00001
6.00	2.30473	434,3	$2.3047 \hat{4}$	434,3	9.99999	0,0	0.00001
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	$\omega F^{\prime}{ }^{\prime}$	$\log \csc g \mathrm{gd} u$

TABLE II

NATURAL HYPERBOLIC FUNCTIONS

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0000	0.00000	10,0	1.00000	0,0	0.00000	10,0	∞	∞
. 0001	.00010		. 00000		. .00010		10000.00	1000000,0
. 0002	. 00020	-	. 00000		. 00020		5000.00	250000,0
. 0003	. 00030		. 00000		. 00030		3333.33	IIIIII, I
. 0004	. 00040		. 00000		. 00040		2500.00	62500,0
0.0005	0.00050	10,0	1.00000	0,0	0.00050	10,0	2000.00	40000,0
. 0006	. 00060		. 00000		. 00060		1666.67	27777,8
. 0007	. 00070		. 00000		. 00070		1428.57	20408,2
. 0008	. 00080		. 00000		. 00080		1250.00	15625,0
. 0009	. 00090		. 00000		. 00090		IIII.II	12345,7
0.0010	0.00100	10,0	1.00000	0,0	0.00100	10,0	1000.00	10000,0
.001 I	.001 10		. 00000		.001 10		909.09	8264,5
.0012	.00120		. 00000		.00120		833.33	6944,4
. 0013	.00130		. 00000		.00130		769.23	5917,2
. 0014	.00140		. 00000		.00140		714.29	5102,0
0.0015	0.00150	10,0	1.00000	0,0	0.00150	10,0	666.67	4444, 4
.0016	.00160		. 00000		. 00160		625.00	3906,2
.0017	.00170		. 00000		.00170		588.24	3460,2
.0018	.00180		. 00000		. 00180		555.56	3086,4
.0019	.00190		. 00000		.00190		526.32	2770, I
0.0020	0.00200	10,0	1.00000	0,0	0.00200	10,0	500.00	2500,0
. 0021	.00210		. 00000		. 00210		476.19	2267,6
. 0022	. 00220		. 00000		. 00220		454.55	2066, I
. 0023	. 00230		. 00000		. 00230		434.78	1890,4
. 0024	. 00240		. 00000		. 00240		416.67	1736,1
0.0025	0.00250	10,0	1.00000	0,0	0.00250	10,0	400.00	1600,0
. 0026	. 00260		. 00000		. .00260	:	384.62	1479,3
. 0027	. 00270		. 00000		. 00270		370.37	1371,7
. 0028	. 00280		. 00000		. 00280		357.14	1275,5
. 0029	. 00290		. 00000		. 00290		344.83	1189,1
0.0030	0.00300	10,0	1.00000	0,0	0.00300	10,0	$333 \cdot 33$	IIII, 1
. 0031	.00310		. 00000		. 00310		322.58	IO40,6
. 0032	. 00320		. 00001		. 00320		312.50	976,6
. 0033	. 00330		.00001		. 00330		303.03	918,3
. 0034	. 00340		.0000I		. 00340		294.12	865, I
0.0035	0.00350	10,0	1.00001	0,0	0.00350	10,0	285.72	816,3
. 0036	. 00360		. 00001		. 00360		277.78	771,6
. 0037	. 00370		. 00001		. 00370		270.27	730,5
. 0038	. 00380		.0000I		. 00380		263.16	692,5
. 0039	. 00390		.0000I		. 00390		256.41	657,5
0.0040	0.00400	10,0	1.00001	0,0	0.00400	10,0	250.00	625,0
.004I	. 00410		. 00001		.00410		243.90	594,9
. 0042	. 00420		. 00001		. 00420		238.10	560,9
. 0043	. 00430		. 00001		. 00430		232.56	540,8
. 0044	. 00440		.0000I		. 00440		227.27	516,5
0.0045	0.00450	10,0	1.00001	0,0	0.00450	10,0	222.22	493,8
. 0046	. 00460		. 00001		. 00460		217.39	472,6
. 0047	. 00470		. 00001		. 00470		212.77	452,7
. 0048	. 00480		. 00001		. 00480		208.33	434,0
. 0049	. 00490		. 00001		. 00490		204.08	416,5
0.0050	0.00500	10,0	1.00001	O, I	0.00500	10,0	200.00	400,0
U	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0050	0.00500	10,0	1.00001	O,I	0.00500	10,0	200.00	400,0
.0051	. 00510		.00001		. 00510		196.08	384,5
. 0052	. 00520		.0000I		. 00520		192.31	369,8
. 0053	. 00530		. 00001		. 00530		188.68	356,0
. 0054	. 00540		.00001		. 00540		185.19	342,9
0.0055	0.00550	10,0	1.00002	O, I	0.00550	10,0	181.82	330,6
. 0056	. 00560		. 00002		. 00560		178.57	318,9
. 0057	. 00570		. 00002		. 00570		175.44	307,8
. 0058	. 00580		. 00002		. 00580		172.42	297,3
. 0059	. 00590		. 00002		. 00590		169.49	287,3
0.0060	0.00600	10,0	1.00002	O,I	0.00600	10,0	166.67	277,8
.0061	. 00510		. 00002		. 00610		163.94	268,7
. 0062	. 00620		. 00002		. 00520		161.29	260, I
. 0063	. 00530		. 00002		. 00630		158.73	25I,9
. 0064	. 00640		. 00002		. 00640		156.25	244, I
0.0065	0.00650	10,0	1.00002	O,I	0.00650	10,0	153.85	236,7
. 0066	. 00660		. 00002		. 00660		151.52	229,6
. 0067	. 00670		. 00002		. 00570		149.26	222,8
. 0068	. 00680		. 00002		. 00580		147.06	216,3
. 0069	. 00690		. 00002		.00690		144.93	210,0
0.0070	0.00700	10,0	1.00002	O,I	0.00700	10,0	142.86	204, I
.0071	. 00710		. 00003		. 00710		140.85	198,4
. 0072	. 00720		. 00003		. 00720		138.89	192,9
. 0073	. 00730		. 00003		. 00730		136.99	187,6
. 0074	. 00740		. 00003		:00740		I 35.14	182,6
0.0075	0.00750	10,0	1.00003	O,I	0.00750	10,0	133.34	177,8
. 0076	. 00760		. 00003		. 00760		131.58	173,1
. 0077	. 00770		. 00003		. 00770		129.87	168,7
.0078	. 00780		. 00003		. 00780		128.21	164,4
. 0079	. 00790		. 00003		. 00790		126.58	160,2
0.0080	0.00800	10,0	1.00003	OI,	0.00800	10,0	125.00	156,2
. 0081	.00810		. 00003		.00810		123.46	152,4
. 0082	. 00820		. 00003		. 00820		121.95	148,7
. 0083	. 00830		. 00003		. 00830		120.48	145,2
. 0084	. 00840		. 00004		. 00840		119.05	141,7
0.0085	0.00850	10,0	1.00004	O,I	0.00850	10,0	117.65	138,4
. 0086	. 00860		. 00004		. 00860		116.28	135,2
. 0087	. 00870		. 00004		. 00870		114.95	I32, I
. 0088	. 00880		. 00004		. 00880		113.64	I29, I
. 0089	. 00890		. 00004		. 00890		112.36	126,2
0.0090	0.00900	10,0	1.00004	O,I	0.00900	10,0	III. II	123,5
.0091	.00910		. 00004		. 00910		109.89	I20,8
. 0092	. 00920		. 00004		. 00920		108.70	118,1
. 0093	. 00930		. 00004		. 00930		107.53	I 15,6
. 0094	. 00940		. 00004		. 00940		106.39	II3,2
0.0095	0.00950	10,0	1.00005	O,I	0.00950	10,0	105.27	I 10,8
. 0096	. 00960		. 00005		. 00960		104. 17	108,5
. 0097	. 00970		. 00005		. 00970		103.10	106,3
. 0098	. 00980		. 00005		.00980		102.04	104, 1
. 0099	. 00990		. 00005		. 00990		101.OI	102,0
0.0100	0.01000	10,0	1.00005	0,1	0.01000	10,0	100.00	100,0
u	$\boldsymbol{t a n g d} u$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	csc gd u	- F ${ }_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\infty \mathrm{F}_{0}{ }^{\prime}$
0.0100	0.01000	10,0	1.00005	0,1	0.01000	10,0	100.003	1000,0
. 0101	. 01010		. 00005		. 01010		99.013	980,3
. 0102	. 01020		. 00005		. 01020		98.043	961,
. 0103	. 01030		. 00005		. 01030		97.091	942,6
. 0104	. 01040		. 00005		. 01040		96.157	924,5
0.0105	0.01050	10,0	1.00006	0,1	0.01050	10,0	95.242	907,0
. 0106	. 01060		. 00006		. 01060		94.343	890,0
. 0107	.01070		. 00006		. 01070		93.462	873,4
. 0108	.01080		. 00006		. 01080		92.595	857,3
. 0109	.01090		. 00006		. 01090		91.747	841,6
0.0110	0.01100	10,0	1.00005	O,I	0.01100	10,0	90.913	826,4
. OIII	.01IIO		. 00006		.OIIIO		90.094	8il,6
. 0112	. O1 I20		. 00006		. O1120		89.289	797,2
.OII3	.01130		. 00006		.OII30		88.499	783,1
.OII4	. OI I40		. 00006		. OII 40		87.723	769,4
0.0115	0.01150	10,0	1.00007	0,1	0.01150	10,0	86.960	756, 1
.0116	. 01160		. 00007		. 01160		86.211	743, I
. 0117	. O1I70		. 00007		. 01170		85.474	730,5
.0118	.01180		. 00007		. 01180		84.750	718,2
. 0119	. 01190		. 00007		. OII90		84.038	706,1
0.0120	0.01200	10,0	1.00007	O,I	0.01200	10,0	83.337	694,4
. OI 21	. 01210		. 00007		.01210		82.649	683,0
. 0122	. 01220		. 00007		. 01220		81.971	671,8
. 0123	. 01230		. 00008		. 01230		81. 305	660,9
. 0124	. 01240		. 00008		. 01240		80.649	650,3
0.0125	0.01250	10,0	1.00008	O, I	0.01250	10,0	80.004	640,0
. 0126	. 01260		. 00008		. 01260		79.369	629,8
. 0127	. 01270		. 00008		. 01270		78.744	620,0
. 0128	. 01280		. 00008		. 01280		78.129	610,3
. 0129	. 01290		. 00008		. 01290		77.524	600,9
0.0130	0.01300	10,0	1.00008	0,I	0.01300	10,0	76.927	591,7
.OI3I	.01310		. 00009		. 01310		76.340	582,7
. 0132	. 01320		. 00009		. 01320		75.762	573,9
. 0133	. 01330		. 00009		.01330		75.192	565,3
. 0134	. 01340		. 00009		. 01340		74.631	556,9
0.0135	0.01350	10,0	1.00009	O,I	0.01350	10,0	74.079	548,7
.0136	. 01360		. 00009		. 01360		73.534	540,6
. 0137	. 01370		. 00009		.01370		72.997	532,8
.0138	. 01380		.00010		. 01380		72.468	525, 1
.OI39	. 01390		.00010		. 01390		71.947	517,5
0.0140	0.01400	10,0	1.00010	O,I	0.01400	10,0	71.433	510,2
.0141	.01410		.00010		.01410		70.927	503,0
. 0142	. 01420		. 00010		. 01420		70.427	495,9
. 0143	. 01430		.00010		.01430		69.935	489,0
. 0144	. 01440		.00010		. 01440		69.449	482,2
0.0145	0.01450	10,0	1.00011	0,I	0.01450	10,0	68.970	475,6
. 0146	. 01460		.00011		. 01460		68.498	469, 1
. 0147	. 01470		.0001 I		. 01470		68.032	462,7
. 0148	. 01480		.0001 I		. 01480		67.573	456,5
. 0149	. 01490		. 00011		. 01490		67.119	450,4
0.0150	0.01500	10,0	1.00011	0,2	0.01500	10,0	66.672	444,4
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\csc \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0150	0.01500	10,0	1.00011	0,2	0.01500	10,0	66.672	444,4
.0151	. 01510		. 00011		. OI510		66.230	438,5
. 0152	. OI 520		. 00012		. OI 520		65.795	432,8
. 0153	. O1530		. 00012		. OI530		65.365	427,2
.OI54	. 01540		. 00012		. O1540		64.940	421,6
0.0155	0.01550	10,0	1.00012	0,2	0.01550	10,0	64.521	416,2
. 0156	. 01560		. 00012		. 01560		64.108	410,9
. 0157	. 01570		. 00012		. 01570		63.699	405,7
. 0158	. 01580		. 00012		. 01580		63.296	400,5
. OI59	. 01590		.00013		. 01590		62.898	395,5
0.0160	0.01600	10,0	1.00013	0,2	0,01600	10,0	62.505	390,6
. 0161	. 01610		. 00013		. 01610		62.117	385,8
. 0162	. 01620		.00013		. 01620		61.734	381,0
. 0163	. 01630		.00013		. 01630		61.355	376,3
. 0164	. 01640		. 00013		. 01640		60.981	371,8
0.0165	0.01650	10,0	1.00014	0,2	0.01650	10,0	60.612	367,3
. 0166	. 01660		. 00014		. 01660		60.247	362,9
. 0167	. 01670		. 00014		. 01670		59.886	358,5
. 0168	. 01680		.000I4		. 01680		59.529	354,3
. 0169	. 01690		.00014		. 01690		59.177	350, I
0.0170	0.01700	10,0	1.00014	0,2	0.01700	10,0	58.829	346,0
. 0171	.01710		. 00015		.01710		58.485	342,0
. 0172	. 01720		. 00015		. 01720		58.145	338,0
. 0173.	.01730		.00015		.01730		57.809	334, I
. 0174	. 01740		. 00015		. 01740		57.477	330,3
0.0175	0.01750	10,0	1.00015	0,2	0.01750	10,0	57. 149	326,5
. 0176	. 01760		. 00015		.01760		56.824	322,8
. 0177	.01770		.00016		. 01770		56.503	319,2
. 0178	. 01780		.00016		. 01780		56.186	315,6
. 0179	. 01790		. 00016		. 01790		55.872	312, 1
0.0180	0.01800	10,0	1.00016	0,2	0.01800	10,0	55.562	308,6
.0181	. 01810		.00016		.01810		55.255	305,2
. 0182	. 01820		.00017		. 01820		54.951	301,9
. 0183	.01830		.00017		.01830		54.65 I	298,6
. 0184	.01840		.00017		. 01840		54.354	295,3
0.0185	0.01850	10,0	1.00017	0,2	0.01850	10,0	54.060	292,2
. 0186	. 01860		.00017		. 01860		53.770	289,0
. 0187	. 01870		.00017		. 01870		53.482	285,9
. 0188	. 01880		.00018		. 01880		53.198	282,9
. 0189	. 01800		.00018		. 01800		52.916	279,9
0.0190	0.01900	10,0	I. 00018	0,2	0.01900	10,0	52.638	277,0
. 0191	. 01910		.00018		. 01910		52.362	274, I
. 0192	. 01920		.00018		. 01920		52.090	271,2
. 0193	. 01930		.00019		. 01930		51.820	268,4
. 0194	. 01940		. 00019		. 01940		5 I .553	265,7
0.0195	0.01950	10,0	1.00019	0,2	0.01950	10,0	51.289	263,0
. 0196	. 01960		. 00019		. 01960		51.027	260,3
. 0197	. 01970		. 00019		. 01970		50.768	257,6
. 0198	. 01980		. 00020		. 01980		50.512	255,0
. 0199	. 01990		. 00020		. 01990		50.258	252,5
0.0200	0.02000	10,0	1.00020	0,2	0.02000	10,0	50.007	250,0
u	tan od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega F_{0}{ }^{\prime}$
0.0200	0.02000	10,0	1.00020	0,2	0.02000	10,0	50.007	250,0
. 0201	.02010		. 00020		. 02010		49.758	247,5
. 0202	. 02020		. 00020		. 02020		49.512	245,0
. 0203	. 02030		.0002I		. 02030		49.268	242,6
. 0204	. 02040		. 0002 I		. 02040		49.026	240,3
0.0205	0.02050	10,0	I. 00021	Q,2	0.02050	10,0	48.787	237,9
. 0206	. 02060		. 00021		. 02060		48.551	235,6
. 0207	. 02070		. 0002 I		. 02070		48.316	233,3
. 0208	. 02080		. 00022		. 02080		48.084	23I, I
. 0209	. 02090		. 00022		. 02090		47.854	228,9
0.0210	0.02100	10,0	1.00022	0,2	0.02100	10,0	47.626	226,7
. 02 I I	.02110		. 00022		. 02110		47.400	224,6
. 0212	. 02120		. 00022		. 02120		47. 177	222,5
. 0213	. 02130		. 00023		. 02130		46.955	220,4
.0214	.02140		. 00023		. 02140		46.736	218,3
0.0215	0.02150	10,0	1.00023	0,2	0.02150	10,0	46.519	216,3
. 0216	.02160		. 00023		. 02160		46.303	214,3
. 0217	.02170		. 00024		.02170		46.090	212,3
.0218	. 02180		. 00024		. 02180		45.879	210,4
.0219	.02190		. 00024		. 02190		45.669	208,5
0.0220	0.02200	10,0	1.00024	0,2	0.02200	10,0	45.462	206,6
.022I	. 02210		. 00024		. 02210		45.256	204,7
. 0222	. 02220		. 00025		. 02220		45.052	202,9
. 0223	. 02230		. 00025		. 02230		44.850	201, I
. 0224	. 02240		. 00025		. 02240		44.650	199,3
0.0225	0.02250	10,0	1.00025	0,2	0.02250	10,0	44.452	197,5
. 0226	. 02260		. 00026		. 02260		44.255	195,7
. 0227	. 02270		. 00026		. 02270		44.060	194,0
. 0228	. 02280		. 00026		. 02280		43.867	192,3
. 0229	. 02290		. 00026		. 02290		43.676	190,7
0.0230	0.02300	10,0	1.00026	0,2	0.02300	10,0	43.486	189,0
.023I	.02310		. 00027		. 02310		43.298	187,4
. 0232	. 02320		. 00027		. 02320		43.11 1	185,8
. 0233	. 02330		. 00027		. 02330		42.926	184,2
. 0234	. 02340		. 00027		. 02340		42.743	182,6
0.0235	0.02350	10,0	1.00028	0,2	0.02350	10,0	42.56 I	181, 1
. 0236	. 02360		. 00028		. 02360		$42 \cdot 38 \mathrm{I}$	179,5
. 0237	. 02370		. 00028		. 02370		42.202	178,0
. 0238	.02380		. 00028		. 02380		42.025	176,5
. 0239	.023y0		. 00029		. 02390		41.849	175,0
0.0240	0.02400	10,0	1.00029	0,2	0.02400	10,0	41.675	173,6
.024I	.02410		. 00029		. 02410		41.502	172, 1
. 0242	. 02420		. 00029		. 02420		4 I .330	170,7
. 0243	. 02430		. 00030		. 02430		41.160	169,3
. 0244	. 02440		. 00030		. 02440		40.992	167,9
0.0245	0.02450	10,0	1.00030	0,2	0.02450	10,0	40.824	166,6
. 0246	. 02460		. 00030		. 02460		40.659	165,2
. 0247	. 02470		. 00031		. 02469		40.494	163,9
. 0248	. 02480		. 0003 I		. 02479		40.33 I	162,6
. 0249	. 02490		. 00031		. 02489		40.169	161,3
0.0250	0.02500	10,0	1.00031	0,3	0.02499	10,0	40.008	160,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

U	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\text { }}$	$\boldsymbol{t a n h} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0250	0.02500	10,0	1.00031	0,3	0.02499	10,0	40.008	160,0
.025I	. 02510		. 00032		. 02509		39.849	158,7
. 0252	. 02520		. 00032		.02519		39.691	157,4
. 0253	. 02530		. 00032		. 02529		39.534	156,2
. 0254	. 02540		. 00032		. 02539		39.379	155,0
0.0255	0.02550	10,0	1.00033	0,3	0.02549	10,0	39.224	I 53, 8
. 0256	. 02560		. 00033		. 02559		39.071	152,6
. 0257	. 02570		. 00033		. 02569		38.919	151,4
. 0258	. 02580		. 00033		. 02579		38.768	150,2
. 0259	. 02590		. 00034		. 02589		38.619	149,0
0.0260	0.02600	10,0	1.00034	0,3	0.02599	10,0	38.470	147,9
.026I	.02610		. 00034		. 02609		38.323	146,8
. 0262	. 02620		. 00034		. 02619		38.177	145,7
. 0263	. 02630		. 00035		. 02629		38.032	I44,5
. 0264	. 02640		. 00035		. 02639		37.888	143,4
0.0265	0.02650	10,0	1.00035	0,3	0.02649	10,0	37.745	142,4
. 0266	. 02660		. 00035		. 02659		37.603	I41,3
. 0257	. 02670		. 00036		. 02669		37.462	140,2
. 0268	. 02680		. 00036		. 02679		37.322	I39,2
. 0269	. 02690		-. 00036		. 02689		37.184	138,2
0.0270	0.02700	10,0	1.00036	0,3	0.02699	10,0	37.046	137, 1
. 0271	. .02710		. 00037		. 02709		36.909	136, I
. 0272	. 02720		. 00037		. 02719		36.774	I $35, \mathrm{I}$
. 0273	. 02730		. 00037		. 02729		36.639	134, I
. 0274	. 02740		. 00038		. 02739		36.505	133,2
0.0275	0.02750	10,0	1.00038	0,3	0.02749	10,0	36.373	132,2
. 0276	. 02760		. 00038		. 02759		36.24 I	131,2
. 0277	. 02770		. 00038		. 02769		36.110	130,3
. 0278	. 02780		. 00039		. 02779		35.980	129,4
. 0279	. 02790		. 00039		. 02789		35.852	128,4
0.0280	0.02800	10,0	1.00039	0,3	0.02799	10,0	35.724	127,5
.028I	.02810		. 00039		. 02809		35.597	126,6
. 0282	. 02820		. 00040		.02819		35.470	125,7
. 0283	.02830		. 00040		. 02829		35.345	124,8
. 0284	. 02840		. 00040		. 02839		35.22 I	124,0
0.0285	0.02850	10,0	1.00041	0,3	0.02849	10,0	35.097	123,2
. 0286	. 02860		. 0004 I		. 02859		34.975	122,2
. 0287	. 02870		. 0004 I		. 02859		34.853	121,4
. 0288	. 02880		. 00041		. 02879		34.732	120,5
. 0289	. 02890		. 00042		. 02889		34.612	1 19,7
0.0290	0.02900	10,0	1.00042	0,3	0.02899	10,0	34.492	1 18,9
.0291	. 02910		. 00042		. 02909		34.374	118, 1
. 0292	. 02920		. 00043		. 02919		34.256	117,2
. 0293	. 02930		. 00043		. 02929		34.139	116,4
. 0294	. 02940		. 00043		. 02939		34.023	II 5,7
0.0295	0.02950	10,0	1.00044	0,3	0.02949	10,0	33.908	II 4,9
. 0296	. 02960		. 00044		. 02959		33.794	II4, I
. 0297	. 02970		. 00014		. 02969		33.680	I 13,3
. 0298	. 02980		. 00044		. 02979		33.567	I I 2,6
. 0299	. 02990		. 00045		. 02989		33.455	I I I , 8
0.0300	0.03000	10,0	1. 00045	0,3	0.02999	10,0	33.343	I I I, I
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	$\cosh u$	$\omega \mathbf{F}_{0}{ }^{\text {g }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0300	0.03000	10,0	1.00045	0,3	0.02999	10,0	$33 \cdot 343$	III, I
. 0301	. 03010		. 00045		. 03009		33.233	1 10,3
. 0302	. 03020		. 00046		.03019		33.123	109,6
. 0303	. 03030		. 00046		. 03029		33.013	108,9
. 0304	. 03040		. 00046		. 03039		32.905	108,2
0.0305	0.03050	10,0	1.00047	0,3	0.03049	10,0	32.797	107,5
. 0306	. 03060		. 00047		. 03059		32.690	106,8
. 0307	. 03070		. 00047		. 03069		32.584	106, I
. 0308	. 03080		. 00047		. 03079		32.478	105,4
. 0309	. 03090		. 00048		. 03089		32.373	104,7
0.0310	0.03100	10,0	1.00048	0,3	0.03099	10,0	32.268	104,0
.03II	.031II		. 00048		.03109		32.165	103,4
. 0312	.03121		. 00049		.03119		32.062	102,7
.03I3	.0313I		. 00049		.03129		31.959	102,0
. 0314	.03I4I		. 00049		.03I39		31.858	1OI,4
0.0315	0.03151	10,0	1.00050	0,3	0.03149	10,0	31.757	100,7
. 0316	.0316I		. 00050		.03159		31.656	100, 1
.0317	.03171		. 00050		.03169		3 I .556	99,5
-.0318	.03181		.0005I		.03179		3 I .457	98,9
.0319	.0319I		. 00051		.03189		31.359	98,2
0.0320	0.03201	10,0	1.0005 1	0,3	0.03199	10,0	31.261	97,6
. 0321	. 03211		. 00052		. 03209		31.163	97,0
. 0322	. 03221		. 00052		.03219		31.067	96,4
. 0323	.0323I		. 00052		. 03229		30.971	95,8
. 0324	.0324I		. 00052		. 03239		30.875	95,2
0.0325	0.03251	10,0	1.00053	0,3	0.03249	10,0	30.780	94,6
. 0326	. 03261		. 00053		. 03259		30.686	94, I
. 0327	. 03271		. 00053		. 03269		30.592	93,5
. 0328	.0328I		. 00054		. 03279		30.499	92,9
. 0329	.03291		. 00054		. 03289		30.406	92,4
0.0330	0.03301	10,0	1.00054	0,3	0.03299	10,0	30.314	91,8
.033I	.033I I		. 00055		. 03309		30.223	91,2
. 0332	. 0332 I		. 00055		.03319		30.132	90,7
. 0333	. 0333 I		. 00055		. 03329		30.041	90, 1
. 0334	. 03341		. 00056		. 03339		29.95 I	89,6
0.0335	0.0335 I	10,0	1.00056	0,3	0.03349	10,0	29.862	89, I
. 0336	.0336I		. 00056		. 03359		29.773	88,5
. 0337	. 03371		. 00057		. 03369		29.685	88,0
. 0338	. 0338 I		. 00057		. 03379		29.597	87,5
. 0339	. 03391		. 00057		. 03389		29.510	87,0
0.0340	0.03401	10,0	1.00058	0,3	0.03399	10,0	29.423	86,6
. 0341	. 0341 I		. 00058		. 03409		29.337	86,0
. 0342	. 0342 I		. 00058		.03419		29.251	85,5
. 0343	. 0343 I		. 00059		. 03429		29.166	85,0
. 0344	.0344I		. 00059		. 03439		29.08I	84,5
0.0345	0.0345 I	10,0	1.00060	0,3	0.03449	10,0	28.997	84,0
. 0346	. 03461		. 00060		. 03459		28.913	83,5
. 0347	. 03471		. 00060		. 03469		28.830	83,0
. 0348	. 0348 I		. 00061		. 03479		28.747	82,5
. 0349	. 03491		.0006I		. 03489		28.665	82, I
0.0350	0.03501	10,0	1.0006I	0,4	0.03499	10,0	28.583	81,6
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\pm \mathrm{F}_{0}{ }^{\prime}$
0.0350	0.03501	10,0	1.0006I	0,4	0.03499	10,0	28.583	8I,6
.035I	.035II		. 00062		. 03509		28.502	$8 \mathrm{I}, \mathrm{I}$
. 0352	. 03521		. 00052		.03519		28.42 I	80,7
. 0353	.0353I		. 00062		. 03529		28.340	80,2
. 0354	. 0354 I		. 00063		. 03539		28.260	79,8
0.0355	0.0355 I	10,0	1.00053	0,4	0.03549	10,0	28.18I	79,3
. 0356	. 03561		. 00063		. 03558		28.102	78,9
. 0357	. 03571		. 00064		. 03568		28.023	78,4
. 0358	.0358I		.00054		. 03578		27.945	78,0
. 0359	.0359I		.00054		. 03583		27.857	77,6
0.0360	0.03601	10,0	1.00065	0,4	0.03598	10,0	27.790	77, 1
.0361	.036II		. 00065		. 03608		27.713	76,7
. 0362	. 03621		. 00055		. 03618		27.636	76,3
. 0363	. 0363 I		. 00056		. 03628		27.560	75,9
. 0364	.0364I		. 00056		. 03638		27.485	75,4
0.0365	0.03651	10,0	1.00057	0,4	0.03648	10,0	27.409	75,0
. 0366	. 03661		. 00067		. 03658		27.335	74,6
. 0367	. 03671		. 00057		. 03668		27.260	74,2
. 0368	.0368I		. 00068		. 03678		27.186	73,8
. 0369	.0369I		. 00068		. 03688		27.113	73,4
0.0370	0.03701	10,0	1.00058	0,4	0.03698	10,0	27.039	73,0
. 0371	. 03711		. 00069		. 03708		26.967	72,6
. 0372	. 0372 I		. 00069		. 03718		26.894	72,2
. 0373	.0373I	-	. 00070		. 03728		26.822	71,8
. 0374	.0374I		. 00070		. 03738		26.750	71,5
0.0375	0.0375 I	10,0	I. 00070	0,4	0.03748	10,0	26.679	71, 1
. 0376	.0376I	1	. 00071		. 03758		26.608	70,7
. 0377	. 03771		. 0007 I		. 03768		26.538	70,3
. 0378	.0378I		. 00071		. 03778		26.468	70,0
. 0379	.0379I		. 00072		. 03788		26.398	69,6
0.0380	0.03801	10,0	1.00072	0,4	0.03798	10,0	26.328	69,2
.038I	.038II		. 00073		. 03808		26.259	68,9
. 0382	.0382I		. 00073		.03818		26. 191	68,5
. 0383	.0383I		. 00073		. 03828		26.122	68, I
. 0384	. 0384 I		. 00074		. 03838		26.054	67,8
0.0385	0.0385 I	10,0	I. 00074	0,4	0.03848	IO,O	25.987	67,4
. 0385	. 0385 I		. 00075		. 03858		25.920	67, I
. 0387	. 03871		. 00075		. 03868		25.853	66,7
. 0388	.0388I		. 00075		. 03878		25.786	66,4
. 0389	.0389I		. 00076		. 03888		25.720	66, I
0.0390	0.03901	10,0	1.00076	0,4	0.03898	10,0	25.654	65,7
.0391	. 0391 I		. 00076		. 03908		25.588	65,4
. 0392	. 0392 I		. 00077		. 03918		25.523	64,0
. 0393	. 03931		. 00077		. 03928		25.458	64,7
. 0394	. 03941		. 00078		. 03938		25.394	64,4
0.0395	0.0395 I	10,0	1.00078	0,4	0.03948	10,0		
. 0396	. 03961		. 00078		. 03958		25.266	63,7
. 0397	. 03971		. 00079		. 03968		25.202	63,4
. 0398	. 03981		. 00079		. 03978		25.139	63,1
. 0399	. 03991		. 00080		. 03988		25.076	62,8
0.0400	0.04001	10,0	1.00080	0,4	0.03998	10,0	25.013	62,5
u	$\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0400	0.04001	10,0	1.00080	0,4	0.03998	10,0	25.013	62,5
. 0401	. 04011		. 00080		. 04008		24.951	62,2
. 0402	. 04021		.0008I		. 04018		24.889	6I,8
. 0403	. 0403 I		.0008I		. 04028		24.827	6I,5
. 0404	. 04041		. 00082		.04038		24.766	6I,2
0.0405	0.04051	10,0	1.00082	0,4	0.04048	10,0	24.705	60,8
. 0406	. 04061		. 00082		. 04058		24.644	60,6
. 0407	. 04071		. 00083		. 04058		24.584	60,3
. 0408	.0408I		. 00083		. 04078		24.523	60,0
. 0409	. 04091		. 00084		. 04088		24.464	59,7
0.0410	0.04101	10,0	1.00084	0,4	0.04098	10,0	24.404	59,5
.04II	. 04111		. 00084		.04108		24.345	59,2
.0412	. 04121		. 00085		.041 18		24.286	58,9
. 0413	.0413I		. 00085		.04128		24.227	58,7
. 0414	.04141		. 00086		.04138		24.168	58,3
0.0415	0.04151	10,0	1. 00086	0,4	0.04148	10,0	24. IIO	58,0
. 0416	. 04161		. 00087		. 04158		24.052	57,8
.0417	.04171		. 00087		. 04168		23.995	57,5
.0418	.04181		. 00087		.04178		23.937	57,2
.0419	.04191		. 00088		.04I88		23.880	56,9
0.0420	0.04201	10,0	1. 00088	0,4	0.04198	10,0	23.824	56,7
. 0421	. 04211		. 00089		. 04208		23.767	56,4
. 0422	. 0422 I		. 00089		. 04217		23.711	56, I
. 0423	.0423I		. 00089		. 04227		23.655	55,9
. 0424	. 0424 I		. 00090		. 04237		23.599	55,6
0.0425	0.04251	10,0	1.00090	0,4	0.04247	10,0		55,3
. 0426	. 0426 I		. 00091		. 04257		23.488	55, 1
. 0427	. 0427 I		.0009I		. 04267		23.433	54,8
. 0428	.0428I		. 00092		. 04277		23.379	54,6
. 0429	. 04291		. 00092		. 04287		23.324	54,3
0.0430	0.04301	10,0	1.00092	0,4	0.04297	10,0	23.270	54,0
. 0431	. 0431 I		. 00093		. 04307		23.216	53,8
. 0432	. 0432 I		. 00093		.04317		23.163	53,6
. 0433	. 0433 I	,	. 00094		. 04327		23.109	53,3
. 0434	. 04341		. 00094		. 04337		23.056	53, I
0.0435	0.0435 I	10,0	1.00095	0,4	0.04347	10,0	23.003	52,8
. 0436	. 04361		. 00095		. 04357		22.950	52,6
. 0437	. 04371		. 00095		. 04367		22.898	52,3
. 0438	.0438I		. 00096		. 04377		22.846	52, 1
. 0439	. 04391		. 00096		. 04387		22.794	51,9
0.0440	0.04401	10,0	1.00097	0,4	0.04397	10,0	22.742	51,6
. 0441	. 0441 I		. 00097		. 04407		22.690	5I,4
. 0442	. 04421		. 00098		. 04417		22.639	51,2
. 0443	. 0443 I		. 00098		. 04427		22.588	50,9
. 0444	. 04441		. 00099		. 04437		22.537	50,7
0.0445	0.04451	10,0	I. 00099	0,4	0.04447	10,0	22.487	50,5
. 0446	.0446I		. 00099		. 04457		22.436	50,2
. 0447	. 04471		. 00100		. 04467		22.386	50,0
. 0448	. 0448 I		. 00100		. 04477		22.336	49,8
. 0449	. 04492		.00101		. 04487		22.287	49,6
0.0450	0.04502	10,0	1.00101	0,5	0.04497	10,0	22.237	49,3
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	\sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0450	0.04502	10,0	1.00101	0,5	0.04497	10,0	22.237	49,3
.045I	. 04512		. 00102		. 04507		22.188	49, I
. 0452	. 04522		. 00102		. 04517		22.139	48,9
. 0453	. 04532		. 00103		. 04527		22.090	48,7
. 0454	. 04542		. 00103		. 04537		22.042	48,5
0.0455	0.04552	10,0	1.00104	0,5	0.04547	10,0	21. 993	48,3
. 0456	. 04562		. 00104		. 04557		21.945	48, I
. 0457	. 04572		. 00104		. 04567		21.897	47,8
. 0458	. 04582		. 00105		. 04577		21.849	47,6
. 0459	. 04592		. 00105		. 04587		21.802	47,4
0.0460	0.04602	10,0	1.00106	0,5	0.04597	10,0	21.754	47,2
.046I	. 04612		. 00106		. 04607		21.707	47,0
. 0462	. 04622		. 00107		.046I7		21.660	46,8
. 0463	. 04632		. 00107		. 04627		21.6I4	46,6
. 0464	. 04642		. 00108	。	. 04637		21.567	46,4
0.0465	0.04652	. 10,0	1.00108	0,5	0.04647	10,0	21.521	46,2
. 0466	. 04662		.00109		. 04657		21. 475	46,0
. 0467	. 04672		.00109		. 04667		21.429	45,8
. 0468	. 04682		. 00110		. 04677		21.383	45,6
. 0469	. 04692		.00110		. 04687		2I. 338	45,4
0.0470	0.04702	10,0	1.00110	0,5	0.04697	10,0	21.292	45,2
. 0471	. 04712		.001 II		. 04707		21.247	45,0
. 0472	. 04722		.001 II		. 04716		21. 202	44,9
. 0473	. 04732		.001 12		. 04726		21.157	44,7
. 0474	. 04742		.001 12		. 04736		21.113	44,5
0.0475	0.04752	10,0	I. 00113	0,5	0.04746	10,0	21. 068	44,3
. 0476	. 04762		.00113		. 04756		21.024	44, I
. 0477	. 04772		.00114		. 0.4766		20.980	43,9
. 0478	. 04782		.00114		. 04776		20.936	43,7
. 0479	. 04792		.00115		. 04786		20.893	43,6
0.0480	0.04802	10,0	1.00115	0,5	0.04796	10,0	20.849	43,4
.0481	.04812		.00116		. 04806		20.806	43,2
. 0482	. 04822		.00116		.048I6		20.763	43,0
. 0483	. 04832		.001 17		. 04826		20.720	42,8
. 0484	. 04842		.00117		. 04836		20.677	42,7
0.0485	0.04852	10,0	1.00118	0,5	0.04846	10,0	20.635	42,5
. 0486	. 04862		.00118		. 04856		20.592	42,3
.0487	. 04872		.00119		. 04866		20.550	42, I
. 0488	. 04882	.	. 00119		. 04876		20.508	42,0
. 0489	. 04892		. 00120		. 04886		20.466	4I,8
0.0490	0.04902	10,0	1.00120	0,5	0.04896	10,0	20.424	41,6
.049I	. 04912		. 00121		. 04906		20.383	4I,4
. 0492	. 04922		.0012I		. 04916		20.342	4I,3
. 0493	. 04932		. 00122		. 04926		20.300	41, I
. 0494	. 04942		. 00122		. 04936		20.259	40,9
0.0495	0.04952	10,0	1.00123	0,5	0.04946	10,0	20.219	40,8
. 0496	. 04952		. 00123		. 04956		20.178	40,6
. 0497	. 04972		. 00124		. 04966		20.137	40,5
. 0498	. 04982		. 00124		. 04976		20.097	40,3
. 0499	. 04992		. 00125		. 04985		20.057	40, I
0.0500	0.05002	10,0	1.00125	0,5	0.04996	10,0	20.017	40,0
U	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh 4$	$\omega \mathrm{F}_{0}{ }^{\text {g }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0500	0.05002	10,0	1.00125	0,5	0.04996	10,0	20.017	40,0
.0501	. 05012		.00126		. 05006		19.977	39,8
. 0502	. 05022		.00126		.05016		19.937	39,6
. 0503	. 05032		.00127		. 05026		19.897	39,5
. 0504	. 05042		. 00127		. 05036		19.858	39,3
0.0505	0.05052	10,0	I. 00128	0,5	0.05046	10,0	19.819	39,2
. 0506	. 05062		.00128		.05056		19.780	39,0
. 0507	. 05072		.00129		. 05066		19.741	38,9
. 0508	. 05082		.00129		. 05076		19.702	38,7
. 0509	. 05092		.00130		. 05086		19.663	38,6
0.0510	0.05102	10,0	1.00130	0,5	0.05096	10,0	19.625	38,4
.05II	.05112		.00131		.05106		19.587	38,3
. 0512	.05122		. OOI3I		.05116		19.548	38, 1
.0513	.05132		.00132		.05126		19.510	38,0
.0514	.05142		.00132		.05135		19.472	37,8
0.0515	0.05152	10,0	1.00133	0,5	0.05145	10,0	. 19.435	37,7
.0516	.05162		.00133		.05155		19.397	37,5
.0517	.05172		.00134		.05165		19.360	37,4
.0518	.05182		.00134		.05175		19.322	37,2
.0519	.05192		.00135		.05185		19.285	37, I
0.0520	0.05202	10,0	1.00135	0,5	0.05195	10,0	19.248	36,9
.0521	.05212		.00136		. 05205		19.211	36,8
. 0522	. 05222		.00136		.05215		19.174	36,7
. 0523	. 05232		.00137		. 05225		19.138	36,5
. 0524	. 05242		.00137		. 05235		19.101	36,4
0.0525	0.05252	10,0	1.00138	0,5	0.05245	10,0	19.065	36,2
. 0526	. 05262		.00138		. 05255		19.029	36, I
. 0527	. 05272		.00139		. 05265		18.993	36,0
. 0528	. 05282		.00139		. 05275		18.957	35,8
. 0529	. 05292		.00140		. 05285		18.92 I	35,7
0.0530	0.05302	10,0	1.00140	0,5	0.05295	10,0	18.886	35,6
. 0531	. 05312		.00141		. 05305		18.850	35,4
. 0532	. 05323		.00142		.05315		18.815	35,3
. 0533	. 05333		.00142		. 05325	,	18.779	35,2
. 0534	. 05343		.00143		. 05335		18.744	35.0
0.0535	0.05353	10,0	1.00143	0,5	0.05345	10,0	18.709	34,9
. 0536	. 05363		. 00144		. 05355		18.675	34,8
. 0537	. 05373		.00144		. 05365		18.640	34,6
. 0538	. 05383		.00145		. 05375		18.605	34,5
. 0539	. 05393		.00145		. 05385		18.57 I	34,4
0.0540	0.05403	10,0	1.00146	0,5	0.05395	10,0	18.537	34,3
.054I	.05413		. 00146		. 05405		18.502	34, I
. 0542	. 05423		.00147		. 05415		18.468	34,0
. 0543	. 05433		.00147		. 05425		18.434	33,9
. 0544	. 05443		. 00148		. 05435		18.400	33,8
0.0545	0.05453	10,0	1.00149	0,5	0.05445	10,0	18.367	33,6
. 0546	. 05463		.00149		. 05455		18.333	33,5
. 0547	. 05473		. 00150		. 05465		18.300	33,4
. 0548	. 05483		.00150		. 05475		18.266	33,3
. 0549	. 05493		.00151		. 05484		18.233	33, I
0.0550	0.05503	10,0	1.0015I	0,6	0.05494	10,0	18.200	33,0
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0550	0.05503	10,0	1.00151	0,6	0.05494	10,0	18.200	33,0
.055I	.05513		. 00152		. 05504		18.167	32,9
. 0552	. 05523		. 00152		.05514		18.134	32,8
. 0553	. 05533		.00153		. 05524		18.102	32,7
. 0554	. 05543		. 00153		. 05534		18.069	32,5
0.0555	0.05553	10,0	1.00154	0,6	0.05544	10,0	18.037	32,4
. 0556	. 05563		.00155		. 05554		18.004	32,3
. 0557	. 05573		. 00155		. 05564		17.972	32,2
. 0558	. 05583		. 00156		. 05574		17.940	32, I
. 0559	. 05593		. 00156		. 05584		17.908	32,0
0.0560	0.05603	10,0	1.00157	0,6	2.05594	10,0	17.876	31,9
.0561	.05613		. 00157		. 05604		17.844	31,7
. 0562	. 05623		. 00158		.05614		17.812	31,6
.0563	. 05633		.00159		. 05624		17.781	3I,5
. 0564	. 05643		. 00159		. 05634		17.749	31,4
0.0565	0.05653	10,0	1.00160	0,6	0.05644	10,0	17.718	31,3
. 0565	. 05663		. 00160		. 05654		17.687	$3 \mathrm{I}, 2$
. 0567	. 05673		.0016I		. 05664		17.656	$3 \mathrm{I}, \mathrm{I}$
. 0568	. 05683		.0016I		. 05674		17.625	$3 \mathrm{I}, 0$
.0569	. 05693		. 00162		. 05684		17. 594	30,9
0.0570	0.05703	10,0	1.00162	0,6	0.05694	10,0	17.563	30,7
.0571	. 05713		. 00163		. 05704		17.532	30,6
. 0572	. 05723		. 00164		. 05714		17.502	30,5
. 0573	. 05733		. 00164		. 05724		17.47 I	30,4
. 0574	. 05743		. 00165		. 05734		I7.44	30,3
0.0575	0.05753	10,0	1.00165	0,6	0.05744	10,0	17.410	30,2
. 0575	. 05763		.00166		. 05754		17.380	30,1
. 0577	. 05773		. 00167		. 05764		17.350	30,0
. 0578	.05783		. 00167		.05774		$17 \cdot 320$	29,9
. 0579	. 05793		. 00168		. 05784		17.290	29,8
0.0580	0.05803	10,0	1.00168	0,6	0.05794	10,0	17.26I	29,7
.0581	.05813		. 00169		.05803		17.23 I	29,6
. 0582	. 05823		.00169		.05813		17.202	29,5
. 0583	. 05833		.00170		. 05823		17.172	29,4
. 0584	. 05843		.00171		. 05833	-	17.143	29,3
0.0585	0.05853	10,0	1.00171	0,6	0.05843	10,0	17.114	29,2
. 0586	. 05863		.00172		. 05853		17.084	29, I
. 0587	.05873		.00172		. 05863		17.055	29,0
. 0588	.05883		.00173		.05873		17.026	28,9
. 0589	. 05893		.00174		. 05883		16.998	28,8
0.0590	0.05903	10,0	1.00174	0,6	0.05893	IO,O	16.969	28,7
.0591	. 05913		.00175		. 05903		16.940	28,6
. 0592	.05923		.00175		. 05913		16.912	28,5
. 0593	. 05933		.00176		. 05923		16.883	28,4
. 0594	. 05943		.00176		. 05933		16.855	28,3
0.0595	0.05954	10,0	1.00177	0,6	0.05943	10,0	16.827	28,2
. 0596	. 05964		.00178		. 05953		16.798	28, I
. 0597	. 05974		.00178		. 05963		16.770	28,0
. 0598	. 05984		.00179		. 05973		16.742	27,9
. 0599	. 05994		.00179		. 05983		16.714	27,8
0.0600	0.05004	10,0	1.00180	0,6	0.05993	10,0	16.687	27,7
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables.

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0600	0.06004	10,0	1.00180	0,6	0.05993	10,0	16.687	27,7
.0601	.06014		.00181		. 06003		16.659	27,7
. 0602	. 06024		.00181		. 06013		16.631	27,6
. 0603	. 06034		.00182		. 06023		16.604	27,5
. 0604	. 06044		.00182		. 06033		16.576	27,4
0.0605	0.06054	10,0	1.00183	0,6	0.06043	10,0	16. 549	27,3
. 0606	. 06064		.00184		. 06053		16.522	27,2
. 0607	. 06074		.00184		. 06063		16.495	27, I
. 0608	. 06084		.00185		. 06073		16.468	27.0
. 0609	. 06094		.00185		. 06082		16.44 I	26,9
0.0610	0.06104	10,0	1.00186	0,6	0.06092	10,0	16.414	26,8
.06II	.06II4		. 00187		.06102		16.387	26,8
.06I2	.06124		.00187		.06II2		16.360	26,7
.06I3	.06I34		. 00188		.06122		16.334	26,6
.06I4	.06I44		.00189		.06I32		16.307	26,5
0.0615	0.06154	10,0	1.00189	0,6	0.06142	10,0	16.28I	26,4
.0616	. 06164		. 00190		.06I52		16.254	26,3
.06I7	.06I74		.00190		.06162		16.228	26,2
.06I8	.06184		.00191		.06172		16.202	26, I
.06I9	.06194		.00192		.06182		16.176	26, I
0.0620	0.06204	10,0	1.00192	0,6	0.06192	10,0	16.150	26,0
. 0621	. 06214		. 00193		. 06202		16. 124	25,9
. 0622	. 06224		.00194		. 06212		16.098	25,8
. 0623	. 06234		.00194		. 06222		16.072	25,7
. 0624	. 06244		.00195		. 06232		16.046	25,6
0.0625	0.06254	10,0	1.00195	0,6	0.06242	10,0	16.021	25,6
. 0626	. 06264		. 00196		. 06252		15.995	25,5
. 0627	. 06274		.00197		. 06262		15.970	25,4
. 0628	. 06284		. 00197		. 06272		15.944	25,3
. 0629	. 06294		.00198		. 06282		15.919	25,2
0.0630	0.06304	10,0	1.00199	0,6	0.06292	10,0	15.894	25,2
. 0631	. 06314		. 00199		. 06302		15.869	25, I
. 0632	. 06324		. 00200		. 06312		15.844	25,0
. 0633	. 06334		. 00200		. 06322		15.819	24,9
. 0634	. 06344		. .00201		. 06332		15.794	24,8
0.0635	0.06354	10,0	1.00202	0,6	0.06342	10,0	15.769	24,8
. 0636	. 06364		. 00202		.0635I		15.744	24,7
. 0637	. 06374		. 00203		. 06361		15.720	24,6
. 0638	. 06384		. 00204		. 06371		15.695	24,5
. 0639	. 06394		. 00204		.0638I		15.67 I	24,5
0.0640	0.06404	10,0	1.00205	0,6	0.06391	10,0	15.646	24,4
.0641	.06414		. 00206		.0640I		15.622	24,3
. 0642	. 06424		. 00206		. 0641 I		15.598	24,2
. 0643	. 06434		. 00207		. 0642 I		15.574	24,2
. 0644	. 06444		. 00207		. 06431		15.549	24, I
0.0645	0.06454	10,0	1.00208	0,6	0.06441	10,0	15.525	24,0
. 0646	. 06464		. 00209		.06451		15.501	23,9
. 0647	. 06475		. 00209		. 066461		15.478	23,9
. 0648	. 06485		. 00210		. 06471		15.454	23,8
. 0649	. 06495		. 00211		.06481		15.430	23,7
0.0650	0.06505	10,0	I.002II	0,7	0.06491	10,0	15.406	23,6
4	$\boldsymbol{t a n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions

4	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h}{ }^{\circ}$	${ }^{3} \boldsymbol{\omega}, \mathbf{F}_{0}{ }^{\prime}{ }^{\circ}$	'coitr' ${ }^{\prime}$	$\omega^{\omega} F_{0}{ }^{\prime}$
0.0650	0.06505	10,0	1.00211	0,7	0.06491	10,0	15.406	23,6
. 0651	. 05515		.002I2		.06501		15.383	23,6
. 0652	. 06525		. 00213		. 0651 I		15.359	23,5
. 0653	. 06535		.00213		. 06521		15.336	23,4
. 0654	. 06545		.00214		.0653I		15.312	23,3
0.0655	0.06555	10,0	1.00215	0,7	0.06541	10,0	15.289	23,3
. 0656	. 06565		. 00215		.05551		15.266	23,2
. 0657	. 06575		. 00216		.06561		15.243	23, I
. 0658	. 06585		.00217		. 06571		15.219	23, I
. 0659	. 06595		.00217		. 06580		15.196	23,0
0.0660	0.06605	10,0	1.00218	0,7	0.06590	10,0	15.174	22,9
.066I	. 06615		.00219		. 06600		15.151	22,9
. 0662	. 06625		. 00219		. 06610		15.128	22,8
. 0663	. 06635		. 00220		. 06620		15.105	22,7
. 0664	. 06645		.0022I		. 06630		15.082	22,6
0.0665	0.06655	10,0	I. 0022 I	0,7	0.06640	10,0	15.060	22,6
. 0666	. 06665		. 00222		. 06650		15.037	22,5
. 0667	. 06675		. 00223		. 06660		15.015	22,4
. 0668	. 06685		. 00223		. 06670		14.992	22,4
. 0669	. 06695		. 00224		. 06680		14.970	22,3
0.0670	0.06705	10,0	1.00225	0,7	0.06690	10,0	14.948	22,2
. 0671	. 06715		. 00225		. 06700		14.925	22,2
. 0672	. 06725		. 00226		. 06710		14.903	22, I
. 0673	. 06735		. 00227		. 06720		14.88 I	22,0
. 0674	. 06745		. 00227		. 06730		14.859	22,0
0.0675	0.06755	10,0	1.00228	0,7	0.06740	10,0	14.837	21,9
. 0676	. 06765		. 00229		. 06750		14.815	21,8
. 0677	. 06775		. 00229		. 06760		14.794	2I,8
. 0678	. 06785		. 00230		. 06770		14.772	21,7
. 0679	. 06795		.0023I		. 06780		14.750	21,7
0.0680	0.06805	10,0	1.00231	0,7	0.05790	10,0	14.729	21,6
.068I	.068r5		. 00232		. 06799		14.707	21,5
. 0682	. 06825		. 00233		. 06809		14.685	2I,5
. 0683	. 06835		. 00233		.06819.		14.664	2I,4
. 0684	. 06845		. 00234		. 06829		14.643	2I,3
0.0685	0.06855	10,0	1.00235	0,7	0.05839	10,0	14.621	21,3
. 0686	. 06865		. 00235		. 06849		14.600	21,2
. 0687	. 06875		. 00236		. 06859		14.579	21,2
. 0688	. 06885		. 00237		. 06869		14.558	2I, I
. 0689	. 06895		. 00237		. 06879		14.537	21,0
0.0690	0.06905	10,0	1.00238	0,7	0.06889	10,0	14.516	21,0
. 0691	. 06916		. 00239		. 06899	.	14.495	20,9
. 0692	. 06926		. 00240		.06909		14.474	20,8
. 0693	. 06936		. 00240		. 06919		14.453	20,8
. 0694	. 06946		. 00241		. 06929		14.432	20,7
0.0695	0.06956	10,0	1.00242	0,7	0.06939	10,0	14.412	20,7
. 0696	. 06966		. 00242		. 06949		14.391	20,6
. 0697	. 06976		. 00243		. 06959		14.370	20,6
. 0698	. 06986		. 00244		. 06969		14.350	20,5
. 0699	. 06996		. 00244		. 06979		14.329	20,4
0.0700	0.07006	10,0	I. 00245	0,7	0.06989	10,0	14.309	20,4
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

U.:	"Sinh ${ }^{\text {a }}$:	-6. F_{0}	cosb. 4	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh u	$\omega^{\boldsymbol{N}} \mathrm{F}^{\prime}$	coth u	$\omega^{*} \mathrm{~F}^{\prime}{ }^{\prime}$
0.0700	0.07006	10,0	1. 00245	0,7	0.06989	10,0	14.309	20,4
. 0701	.07016		. 00246		. 06999		14.289	20,3
. 0702	. 07026		. 00247		. 07008		14.268	20,3
. 0703	. 07036		. 00247	-	. 07018		14.248	20,2
. 0704	. 07046		. 00248		. 07028		14.228	20,1
0.0705	0.07056	10,0	1.00249	0,7	0.07038	10,0	14.208	20,1
. 0706	. 07056		. 00249		. 07048		14.188	20,0
. 0707	. 07076		. 00250		. 07058		14.168	20,0
. 0708	. 07086		.0025I		. 07058		14. 148	19,9
. 0709	. 07096		.0025I		. 07078	9,9	14.128	19,9
0.0710	0.07106	10,0	1.00252	0,7	0.07088	9,9	14. 108	19,8
.071I	. 07116		. 00253		. 07098		14.088	19,7
. 0712	. 07126		. 00254		. 07108		14.069	19,7
. 0713	.07136		. 00254		. 07118		14.049	19,6
. 0714	. 07146		. 00255		. 07128		14.029	19,6
0.0715	0.07156	10,0	1.00256	0,7	0.07138	9,9	14.010	19,5
. 0716	. 07166		. 00256		. 07148		13.990	19,5
- .0717	. 07176		. 00257		. 07158		13.971	19,4
. 0718	. 07186		. 00258		. 07168		13.952	19,4
. 0719	. 07196		. 00259		. 07178		13.932	19,3
0.0720	0.07206	10,0	1. 00259	0,7	0.07188	9,9	13.913	19,3
. 0721	. 07216		. 00260		. 07198		13.894	19,2
. 0722	. 07226		.00261		. 07207		13.874	19,2
. 0723	. 07236		.00261		. 07217		13.855	19, I
. 0724	. 07246		. 00262		. 07227		13.836	19,0
0.0725	0.07256	10,0	1.00263	0,7	0.07237	9,9	13.817	19,0
. 0726	. 07266		. 00264		. 07247		13.798	18,9
. 0727	. 07276		. 00264		. 07257		13.779	18,9
. 0728	. 07286		. 00265		. 07267		13.761	18,8
. 0729	. 07296		. 00266		. 07277		13.742	18,8
0.0730	0.07306	10,0	1.00267	0,7	0.07287	9,9	13.723	18,7
.0731	. 07317		. 00267		. 07297		13.704	18,7
. 0732	. 07327		. 00268		. 07307		13.686	18,6
. 0733	. 07337		. 00269		. 07317		13.667	18,6
. 0734	. 07347		. 00269		. 07327		13.648	18,5
0.0735	0.07357	10,0	1.00270	0,7	0.07337	9,9	13.630	18,5
. 0736	. 07367		. 00271		. 07347		13.611	18,4
. 0737	. 07377		. 00272		. 07357		13.593	18,4
. 0738	. 07387		. 00272		. 07367		13.575	18,3
. 0739	. 07397		. 00273		. 07377		I3.556	18,3
0.0740	0.07407	10,0	1.00274	0,7	0.07387	9,9	13.538	18,2
. 0741	. 07417		. 00275		. 07396		13.520	18,2
. 0742	. 07427		. 00275		. 07406		13.502	18, 1
. 0743	. 07437		. 00276		. 07416		13.484	18, 1
. 0744	. 07447		. 00277		. 07426		13.466	18,0
0.0745	0.07457	10,0	1.00278	0,7	0.07436	9,9	13.448	18,0
. 0746	. 07467		. 00278		. 07446		13.430	17,9
. 0747	. 07477		. 00279		. 07456		13.412	17,9
. 0748	. 07487		. 00288		. 07466		13.394	17,8 178
. 0749	. 07497		.0028I		. 07476		13.376	17,8
0.0750	0.07507	10,0	1.00281	0,8	0.07486	9,9	13.358	17,7
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	sec gd u	$\omega \mathrm{Fo}^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	csc gd u	~ Fo^{\prime}

Natural Hyperbolic Functions.

u	sinh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\circ}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0750	0.07507	10,0	I.0028I	0,8	0.07486	9,9	13.358	17,7
. 0751	. 07517		. 00282		. 07496		I3.34I	17,7
. 0752	. 07527		. 00283		. 07506		13.323	17,7
. 0753	. 07537		. 00284		.07516		13.305	17,6
. 0754	. 07547		. 00284		. 07526		13.288	17,6
0.0755	0.07557	10,0	1.00285	0,8	0.07536	9,9	13.270	17,5
. 0756	. 07567		. 00286		. 07546		13.253	17,5
. 0757	. 07577		.00287		. 07556		13.235	17,4
. 0758	. 07587		. 00287		. 07566		13.218	I7,4
. 0759	. 07597		. 00288		. 07575		13.201	17,3
0.0760	0.07607	10,0	1.00289	0,8	0.07585	9,9	13.183	17,3
.0761	.07617		. 00290		. 07595		13.166	17,2
. 0762	. 07627		. 00290		. 07605		13.149	17,2
. 0763	. 07637		.0029I		.07615		13.132	17,I
. 0764	. 07647		. 00292		. 07625		13.114	17,I
0.0765	0.07657	10,0	1.00293	0,8	0.07635	9,9	13.097	17, 1
. 0766	. 07667		. 00294		. 07645		13.080	I7,0
. 0767	. 07678		. 00294		. 07655		13.063	17,0
. 0768	. 07688		. 00295		. 07665		13.046	16,9
. 0769	. 07698		. 00296		.07675		13.030	16,9
0.0770	0.07708	10,0	1.00297	0,8	0.07685	9,9	13.013	16,8
.0771	. 07718		. 00297		. 07695		12.996	16,8
. 0772	. 07728		. 00298		. 07705		12.979	16,7
. 0773	. 07738		. 00299		. 07715		12.962	16,7
. 0774	. 07748		. 00300		. 07725		12.946	16,7
0.0775	0.07758	10,0	1.00300	0,8	0.07735	9,9	12.929	16,6
. 0776	. 07768		.00301		. 07744		12.912	16,6
. 0777	. 07778		. 00302		. 07754		12.896	16,5
. 0778	. 07788		. 00303		. 07764		12.879	16,5
. 0779	. 07798		. 00304		. 07774		12.863	16,5
0.0780	0.07808	10,0	1.00304	0,8	0.07784	9,9	12.847	16,4
.0781	. 07818		. 00305		. 07794		12.830	16,4
. 0782	. 07828		. 00306		. 07804		12.814	16,3
. 0783	. 07838		. 00307		.07814		12.797	16,3
. 0784	. 07848		. 00307		. 07824		12.78 I	16,2
0.0785	0.07858	10,0	1.00308	0,8	0.07834	9,9	12.765	16,2
. 0786	. 07868		. 00309		. 07844		12.749	16,2
. 0787	. 07878		.00310		. 07854		12.733	16,1
. 0788	. 07888		.003II		. 07864		12.717	16,
. 0789	. 07898		.003II		. 07874		12.701	16,0
0.0790	0.07908	10,0	1.00312	0,8	0.07884	- 9,9	12.685	16,0
. 0791	. 07918		.00313		. 07894		12.669	15,9
. 0792	. 07928		.00314		. 07903		12.653	15,9
. 0793	. 07938		.00315		.079r3		12.637	I5,9
. 0794	. 07948		.00315		. 07923		12.621	I5,8
0.0795°	0.07958	10,0	1.00316	0,8	0.07933	9,9	12.605	I5,8
. 0796	. 07968		. 00317		. 07943		12.589	15,7
. 0797	. 07978		. 00318		. 07953		12.574	15,7
. 0798	. 07988		.00319		. 07963		12.558	15,7
. 0799	. 07999		.00319		. 07973		12.542	15,6
0.0800	0.08009	10,0	1.00320	0,8	0.07983	9,9	12.527	15,6
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h}$ u	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathbf{F o}^{\prime}$
0.0800	0.08009	10,0	1.00320	0,8	0.07983	9,9	12.527	15,6
.0801	. 08019		. 00321		. 07993		12.511	15,6
. 0802	. 08029		. 00322		. 08003		12.496	15,5
. 0803	. 08039		. 00323		. 08013		12.480	15,5
. 0804	. 08049		. 00323		. 08023		12.465	15,4
0.0805	0.08059	10,0	1.00324	0,8	0.08033	9,9	12.449	15,4
. 0806	. 08069		. 00325		. 08043		12.434	15,4
. 0807	. 08079		. 00326		. 08053		12.418	15,3
. 0808	. 08089		. 00327		. 08062		12.403	15,3
. 0809	. 08099		. 00327		. 08072		12.388	15,2
0.0810	0.08 r 09	10,0	1.00328	0,8	0.08082	9,9	12.373	15,2
.08II	.08119		. 00329		. 08092		12.357	15,2
.0812	. 08129		. 00330		.08102		12.342	15, I
.0813	.08139		.00331		.08112		12.327	15, 1
.0814	. 08149		. 00331		. 08122		12.312	15, 1
0.0815	0.08159	10,0	1.00332	0,8	0.08132	9,9	12.297	15,0
. 0816	. 08169		. 00333		.08142		12.282	15,0
.0817	.08179		. 00333		. 08152		12.267	I4,9
.0818	. 08189		. 00335		. 08162		12.252	14,9
.0819	.08199		. 00336		. 08172		12.237	14,9
0.0820	0.08209	10,0	1.00336	0,8	0.08182	9,9	12.222	14,8
.0821	. 08219		. 00337		.08192		12.208	14,8
. 0822	. 08229		. 00338		. 08202		12.193	14,8
. 0823	. 08239		. 00339		. 08211		12.178	14,7
. 0824	. 08249		. 00340		.0822I		12.163	14,7
0.0825	0.08259	10,0	1.00341	0,8		9,9		
. 0826	. 08269		. 00341		. 08241		12.134	14,6
. 0827	. 08279		. 00342		.08251		12.119	14,6
. 0828	. 08289		. 00343		. 08261		12. 105	14,6
. 0829	. 08299		. 00344		. 08271		12.090	14,5
0.0830	0.08310	10,0	1.00345	0,8	0.08281	9,9	12.076	14,5
. 0831	. 08320		. 00345		.08291		12.061	14,4
. 0832	. 08330		. 00346		.08301		12.047	14,4
. 0833	. 08340		. 00347		.083II		12.033	14,4
. 0834	. 08350		. 00348		.08321		12.018	14,3
0.0835	0.08360	10,0	1.00349	0,8	0.08331	9,9	12.004	14,3
. 0836	. 08370		. 00350		. 08341		11.990	14,3
. 0837	. 08380		. 00350		.08351		11.975	14,2
. 0838	. 08390		.00351		. 08360		11.961	14,2
. 0839	. 08400		. 00352		. 08370		11.947	14,2
0.0840	0.08410	10,0	1.00353	0,8	0.08380	9,9	11.933	14,1
. 0841	. 08420		. 00354		. 08390		11.919	I4, I
. 0842	. 08430		. 00355		. 08400		11.905	14, 1
. 0843	. 08440		. 00356		.08410		11.890	14,0
. 0844	. 08450		. 00356		. 08420		11.876	14,0
0.0845	0.08460	10,0	1.00357	0,8	0.08430	9,9	11.852	14,0
. 0846	. 08470		. 00358		. 08440		11.849	13,9
. 0847	. 08480		. 00359		. 08450		11.835	13,9
. 0848	. 08490		. 00360		. 08460		11.821	13,9
. 0849	. 08500		.00361	0,9	. 08470		11.807	:3,8
0.0850	0.08510	10,0	1.00361	0,9	0.08480	9,9	11.793	13,8
4	$\boldsymbol{\operatorname { t a n }} \mathrm{od} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec od u	$\omega \mathrm{Fo}_{0}$	$\boldsymbol{s i n}$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc od u	$\omega \mathrm{Fo}^{\prime}$

Smithbonian Tables

Natural Hypsrbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0850	0.08510	10,0	1.00361	0,9	0.08480	9,9	I 1.793	13,8
. 0851	. 08520		. 00362		. 08490		11.779	I 3,8
. 0852	. 08530		. 00363		. 08499		11.765	13,7
. 0853	. 08540		. 00364		. 08509	-	11.752	13,7
. 0854	. 08550		. 00365		.08519		11.738	I 3,7
0.0855	0.08560	10,0	1.00366	0,9	0.08529	9,9	II. 724	13,6
. 0856	. 08570		. 00367		. 08539		II.711	13,6
. 0857	. 08580		. 00367		. 08549		11.697	13,6
. 0858	. 08591		. 00368		. 08559		I I . 684	13,6
.0859	.08601		. 00369		. 08569		II. 670	13,5
0.0860	0.086 II	10,0	1.00370	0,9	0.08579	9,9	11.657	13,5
. 0861	. 08621		. 00371		. 08589		11.643	13,5
. 0862	. 08631		. 00372		. 08599		11.630	I3,4
. 0863	. 08641		. 00373		. 08609		II. 616	I 3,4
. 0864	.0865I		. 00373		.08619		11.603	13,4
0.0865	0.08661	10,0	1.00374	0,9	0.08528	9,9	II .590	13,3
. 0856	. 08671		. 00375		. 08638		I I. 576	I3,3
. 0867	.08681		. 00376		. 08648		II. 563	I3,3
. 0868	.08691		. 00377		. 08658		II. 550	I3,2
. 0869	. 08701		. 00378		. 08668		11.536	13,2
0.0870	0.08711	10,0	1.00379	0,9	0.08678	9,9	11.523	I3,2
. 0871	.08721		. 00380		. 08688		II. 510	I3, I
. 0872	.08731		. 00380		. 08698		11.497	I3, I
. 0873	. 08741		. 0038 I		.08708		II . 484	I3, I
. 0874	.08751		. 00382		. 08718		II. 471	I3, I
0.0875	0.08761	10,0	1.00383	0,9	0.08728	9,9	II. 458	13,0
. 0876	. 08771		. 00384		. 08738		II. 445	I3,0
. 0877	.08781		. 00385	,	. 08748		11.432	I3,0
. 0878	.08791		. 00386		. 08758		II. 419	12,9
. 0879	.0880I		. 00387		. 08767		II. 406	12,9
0.0880	0.088 II	10,0	1.00387	0,9	0.08777	9,9	II. 393	12,9
.0881	. 0882 I		. 00388		. 08787		11.380	12,8
. 0882	.0883I		. 00389		. 08797		II. 367	12,8
. 0883	.08841		. 00390		. 08807		II. 354	12,8
. 0884	. 08852		. 00391		.08817		II. 342	I2,8
0.0885	0.08862	10,0	1.00392	0,9	0.08827	9,9	II. 329	12,7
. 0886	. 08872		. 00393		. 08837		II. 316	12,7
. 0887	. 08882		. 00394		. 08847		II. 304	12,7
. 0888	. 08892		. 00395		. 08857		II. 291	12,6
. 0889	. 08902		. 00395		. 08867		II. 278	12,6
0.0890	0.08912	10,0	1.00396	0,9	0.08877	9,9	I 1. 266	12,6
. 0891	. 08922		. 00397		. 08886		II . 253	12,6
. 0892	. 08932		. 00398		. 08895		II. 240	12,5
. 0893	. 08942		. 00399		.08906		II . 228	12,5
. 0894	. 08952		. 00400		. 08916		II. 215	12,5
0.0895	0.08962	10,0	1.00401	0,9	0.08926	9,9	11.203	12,5
. 0896	. 08972		. 00402		. 08936		II. 191	12,4
. 0897	. 08982		. 00403		. 08946		II. 178	I2,4
. 0898	. 08992		. 00403		. 08956		II. 166	12,4
. 0899	. 09002		. 00404		. 08966		II. 153	12,3
0.0900	0.09012	10,0	1.00405	0,9	0.08976	9,9	II.I4I	12,3
u	$\boldsymbol{t a n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text {g }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0900	0.09012	10,0	1.00405	0,9	0.08976	9,9	II. 141	12,3
.0901	. 09022		. 00406		. 08986		II. 129	12,3
. 0902	. 09032		. 00407		. 08996		II. II7	12,3
. 0903	. 09042		. 00408		. 09006		II. 104	12,2
. 0904	. 09052		. 00409		.09015		11.092	12,2
0.0905	0.09062	10,0	1.00410	0,9	0.09025	9,9	11.080	12,2
. 0906	. 09072		.004II		. 09035		11.068	12, 1
. 0907	. 09082		.00412		. 09045		11.056	12, I
. 0908	. 09092		.00413		. 09055		11.043	12, I
. 0909	. 09103		.004I3		. 09065		11.031	12, 1
0.0910	0.09113	10,0	1.00414	0,9	0.09075	9,9	11.019	12,0
.09II	.09123		. 00415		. 09085		11.007	12,0
. 0912	.09133		.00416		. 09095		10.995	12,0
.0913	.09143		. 00417		. 09105		10.983	12,0
.0914	.09153		. 00418		.091 15		10.971	II,9
0.0915	0.09163	10,0	1.00419	0,9	0.09125	9,9	10.959	I 1,9
.0916	.09173		. 00420		.09I34		10.948	I I,9
.0917	.09183		.0042I		.09144		10.936	I I,9
. 0918	. 09193		. 00422		.09I54		10.924	II,8
. 0919	. 09203		. 00423		.09164		10.912	II,8
0.0920	0.09213	10,0	1.00423	0,9	0.09174	9,9	10.900	II, 8
. 0921	. 09223		. 00424		. 09184		10.888	II,8
. 0922	. 09233		. 00425		. 09194		10.877	I 1,7
. 0923	. 09243		. 00426		. 09204		10.865	II,7
. 0924	. 09253		. 00427		. 09214		10.853	I 1,7
0.0925	0.09263	10,0	1. 00428	0,9	0.09224	9,9	10.842	I I,7
. 0926	. 09273		. 00429		. 09234		10.830	I 1,6
. 0927	. 09283		. 00430		. 09244		10.818	11,6
. 0928	. 09293		.0043I		. 09253		10.807	I 1,6
. 0929	. 09303		. 00432		. 09263		10.795	I I, 6
0.0930	0.09313	10,0	1.00433	0,9	0.09273	9,9	10.784	II,5
.093I	. 09323		. 00434		. 09283		10.772	II,5
. 0932	. 09333		. 00435		. 09293		10.761	II,5
. 0933	. 09344		. 00436		. 09303		10.749	I I,5
. 0934	. 09354		. 00436		. 09313		10.738	II,4
0.0935	0.09364	10,0	1.00437	0,9	0.09323	9,9	10.726	II,4
. 0936	. 09374		. 00438		. 09333		10.715	I I, 4
. 0937	. 09384		. 00439		. 09343		10.704	II,4
. 0938	. 09394		. 00440		. 09353		10.692	II,3
. 0939	. 09404		. 00441		. 09362		10.68 I	II,3
0.0940	0.09414	10,0	1.00442	0,9	0.09372	9,9	10.670	II,3
. 0941	. 09424		. 00443		. 09382		10.658	II,3
. 0942	. 09434		. 00444		. 09392		10.647	II,2
. 0943	. 09444		. 00445		. 09402		10.636	II,2
. 0944	. 09454		. 00446		. 09412		10.625	11,2
0.0945	0.09464	10,0	1.00447	0,9	0.09422	9,9	10.613	II,2
. 0946	. 09474		. 00448		. 09432		10.602	II, I
. 09.47	. 09484		. 00449		. 09442		10.591	II, I
. 0948	. 09494		. 00450	0,9	. 09452		10.580	II, I
. 0949	. 09504		. 0045 I	I,0	. 09462		10.569	II, I
0.0950	0.09514	10,0	1.00452	1,0	0.09472	9,9	10.558	11,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0950	0.09514	10,0	1.00452	1,0	0.09472	9,9	10. 558	II,O
.095I	. 09524		. 00453		.0948I		10.547	I I,O
. 0952	. 09534		. 00453		. 09491		10.536	I I,O
. 0953	. 09544		. 00454		.09501		10.525	I I,O
. 0954	. 09554		. 00455		. 09511		10.514	I I,O
0.0955	0.09565	10,0	1.00456	1,0	0.09521	9,9	10.503	10,9
. 0956	. 09575		. 00457		.0953I		10.492	10,9
. 0957	. 09585		. 00458		. 09541		10.481	10,9
. 0958	. 09595		. 00459		. 09551		10.470	10,9
. 0959	. 09605		. 00460		. 09561		10.459	10,8
0.0960	0.09615	10,0	1.00461	1,0	0.09571	9,9	10.449	10,8
.0961	. 09625		. 00462		.0958I		10.438	10,8
. 0962	. 09635		. 00463		. 09590		10.427	10,8
. 0963	. 09645		. 00464		. 09600		10.416	10,7
. 0964	. 09655		. 00465		. 09610		10.406	10,7
0.0965	0.09665	10,0	1.00466	1,0	0.09620	9,9	10.395	10,7
. 0966	. 09675		. 00467		. 09630		10.384	10,7
. 0967	. 09685		. 00468		. 09640		10.373	10,7
. 0968	. 09695		. 00469		. 09650		10.363	10,6
. 0969	. 09705		. 00470		. 09660		10.352	10,6
0.0970	0.09715	10,0	1.00471	1,0	0.09670	9,9	10.342	10,6
. 0971	. 09725		. 00472		. 09680		10.331	10,6
. 0972	. 09735		. 00473		. 09689		10.320	10,6
. 0.0973	. 09745		. 00474		. 09699		10.310	10,5
. 0974	. 09755		. 00475		. 09709		10.299	10,5
0.0975	0.09765	10,0	1.00476	1,0	0.09719	9,9	10.289	10,5
. 0976	. 09776		. 00477		. 09729		10.278	10,5
. 0977	. 09786		. 00478		. 09739		10.268	10,4
. 0978	. 09796		. 00479		. 09749		10.258	10,4
. 0979	. 09806		. 00480		. 09759		10.247	10,4
0.0980	0.09816	10,0	I. 0048 I	1,0	0.09769	9,9	10.237	10,4
. 0981	. 09882		. 00482		. 09779		10.226	10,4
. 0982	. 09836		.00483		. 09788		10.216	10,3
. 0983	. 09846		. 00484		. 09798		10.206	10,3
. 0984	. 09856		. 00485		. 09808		10. 195	10,3
0.0985	0.09866	10,0	1.00486	1,0	0.09818	9,9	10.185	10,3
. 0986	. 09876		. 00486		. 09828		10.175	10,3
. 0987	. 09886		. 00487		. 09838		10.165	10,2
. 0988	. 09896		. 00488		. 09848		10. I54	10,2
. 0989	. 09906		. 00489		. 09858		10.144	10,2
0.0990	0.09916	10,0	1.00490	1,0	0.09868	9,9	10. 134	10,2
. 0991	. 09926		.00491		. 09878		10.124	IO, I
. 0992	. 09936		. 00492		. 09888		10. 114	IO, I
. 0993	. 09946		. 00493		. 09897		10.104	10, I
. 0994	. 09956		. 00494		. 09907		10.093	10, I
0.0995	0.09966	10,0	1.00495	I,O	0.09917	9,9	10.083	IO,I
. 0996	. 09976		. 00496		. 09927		10.073	10,0
. 0997	. 09987		. 00497		. 09937		10.063	10,0
. 0998	. 09997		. 00498		. 09947		10.053	10,0
. 0999	. 10007		. 00499		. 09957		10.043	10,0
0.1000	0.10017	10,I	1.00500	I,O	0.09967	9,9	10.033	10,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0:100	0.10017	100,5	1.00500	10,0	0.09967	99,0	10.0333	996,7
. IOI	. 10117	100,5	.00510	10, 1	. 10066	99,0	9.9346	977,0
. 102	. 10218	100,5	.0052I	10,2	. 10165	99,0	. 8379	957,9
. 103	. 10318	100,5	. 0053 I	10,3	. 10264	98,9	. 7430	939,3
. 104	. 10419	100,5	. 0054 I	10,4	. 10363	98,9	. 6500	921,2
0.105	0.10519	100,6	1.00552	10,5	0. 10462	98,9	9.5588	903,7
. 106	. 10620	100,6	. 00562	10,6	. 10560	98,9	. 4693	886,7
. 107	. 10720	100,6	. 00573	10,7	. 10659	98,9	. 3814	870, I
. 108	. 1082 I	100,6	. 00584	10,8	. 10758	98,8	. 2952	854,0
. 109	. 10922	100,6	. 00595	10,9	. 10857	98,8	. 2106	838,4
0.110	0.11022	100,6	1.00606	II,O	0. 10956	98,8	9.1275	823, 1
. III	. III23	100,6	.00617	II, I	. 11055	98,8	. 0460	808,3
. II2	. II223	100,6	. 00628	II,2	. III53	98,8	8.9659	793,9
. 113	. II324	100,6	. 00639	II,3	. II252	98,7	. 8872	779,8
. 114	. II425	100,7	. 00651	II,4	. II351	98,7	. 8099	766,
0.115	0.11525	100,7	1.00662	II,5	0.11450	98,7	8.7340	752,8
. 116	. 11626	100,7	. 00674	II,6	. II548	98,7	. 6593	739,8
. 117	. II727	100,7	. 00685	II,7	. 11647	98,6	. 5860	727,2
. 118	. 11827	100,7	. 00697	II,8	. II746	98,6	. 5139	714,9
. 119	. 11928	100,7	. 00709	II,9	. I 1844	98,6	. 4430	702,8
0.120	0.12029	100,7	1.00721	12,0	0.11943	98,6	8.3733	691, 1
. 121	. 12130	100,7	. 00733	12,I	. 12041	98,6	. 3048	679,7
. 122	. 12230	100,7	. 00745	12,2	. 12140	98,5	. 2373	668,5
. 123	. I233I	100,8	. 00757	12,3	. 12238	98,5	. 1710	657,7
. 124	. 12432	100,8	. 00770	12,4	. 12337	98,5	. 1058	647,0
0. 125	0. 12533	100,8	1.00782	12,5	0. 12435	98,5	8.0416	636,7
. 126	. 12633	100,8	. 00795	12,6	. I2534	98,4	7.9785	626,6
. 127	. 12734	100,8	. 00808	12,7	. 12632	98,4	. 9163	616,7
. 128	. 12835	100,8	. 00820	12,8	. 12731	98,4	.8551	607,0
. 129	. 12936	100,8	. 00833	12,9	. 12829	98,4	. 7949	597,6
0.130	0. 13037	100,8	1.00846	13,0	0.12927	98,3	7.7356	588,4
. 131	. I3I38	100,9	. 00859	13, I	. I3026	c8,3	. 6772	579,4
. I32	. 13238	100,9	. 00872	I3,2	. 13124	c8,3	. 6197	570,6
. I33	. 13339	100,9	. 00886	13,3	. I3222	98,3	. 563 I	562,0
. I34	. 13440	100,9	. 00899	13,4	. 13320.	98,2	. 5073	553,6
0. I35	0. I354I	100,9	1.00913	13,5	0.13419	98,2	7.4524	545,4
. 136	. 13642	100,9	. 00926	13,6	. 13517	98,2	. 3982	537,3
. 137	. 13743	100,9	. 00940	13,7	. 13615	98,	- 3449	529,5
. I38	. 13844	IOI, 0	. 00954	13,8	. 13713	98, I	. 2923	521,8
. I39	. I 3945	101,0	. 00968	13,9	. 13811	98, I	. 2405	514,3
0.140	0.14046	101,0	1.00982	14,0	0. I3909	98, 1	7.1895	506,9
. 141	. 14147	101,0	. 00996	I4, I	. 14007	98,0	. 1391	499,7
. 142	. I4248	101,0	. 01010	14,2	. 14105	98,0	. 0895	492,6
. I43	. I4349	IOI, 0	. 01024	14,3	. 14203	98,0	. 0406	485,7
. 144	. 14450	IOI, 0	. 01039	14,4	. 14301	98,0	6.9924	478,9
0. 145	0.14551	IOI, 1	1.01053	14,6	0. 14399	97,9	6.9448	472,3
. I46	. 14652	IOI, I	. 01068	14,7	. I4497.	97,9	. 8979	465,8
. 147	. 14753	IOI, I	. 01082	14,8	. I4595	97,9	. 8517	459,5
. 148	. 14854	IOI, I	. 01097	14,9	. I4693	97,8	. 8060	453,2
. 149	. 14955	101, I	. O1\% 12	15,0	. 14791	97,8	. 7610	447, 1
0.150	0. 15056	IOI,I	1.01127	15, I	0.14889	97,8	6.7166	441, I
U	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	C: $F_{0}{ }^{\prime}$
0.150	0.15056	IOI, I	1.01127	15,1	0.14889	97,8	6.7166	441, I
. 151	. 15157	IOI, I	. OII 42	15,2	. 14986	97,8	. 6728	435,3
. 152	. 15259	IOI, 2	.OII57	15,3	. 15084	97,7	. 6295	429,5
. 153	. 15360	IOI, 2	. O1173	I5,4	. 15182	97,7	. 5869	423,9
. 154	. 1546 I	101,2	. 01188	15,5	. 15279	97,7	. 5448	418,3
0.155	0.15562	101,2	1.01204	15,6	0. 15377	97,6	6.5032	412,9
. 156	. 15663	101, 2	. 01219	15,7	. 15475	97,6	. 4622	407,6
. 157	. 15765	101,2	. 01235	15,8	. 15572	97,6	. 4217	402,4
. I58	. 15866	IOI,3	. OI 251	15,9	. 15670	97,5	.3817	397,3
. 159	. 15967	IOI,3	. 01267	16,0	. 15767	97,5	- 3422	392,2
0.160	0.16068	101,3	1.01283	16,1	0.15865	97,5	6.3032	387,3
.161	. 16I70	101,3	. 01299	16,2	. 15952	97,5	. 2648	382,5
. 162	. 16271	IOI,3	.OI3I5	16,3	. 16060	97,4	. 2267	377,7
. 163	. 16372	101,3	.01331	16,4	. 16157	97,4	. 1892	373, 1
. 164	. 16474	101,3	. OI348	16,5	. 16254	97,4	. 1521	368,5
0. 165	0.16575	IOI, 4	I. 01364	16,6	0.16352	97,3	6.1155	364,0
. 166	. 16676	10I,4	.0138I	16,7	. 16449	97,3	. 0793	359,6
. 167	. 16778	IOI,4	. OI 398	16,8	. 16546	97,3	. 0436	355,2
. 168	. 16879	IOI, 4	.OI4I5	16,9	. 16644	97,2	. 0083	351,0
. 169	. 16981	IOI,4	. 0143 I	17,0	. I674I	97,2	5.9734	346,8
0.170	0.17082	101,4	I. 01448	17,I	0. 16838	97,2	5.9389	342,7
.171	. 17183	IOI,5	. 01466	17,2	. 16935	97, I	. 9048	338,7
. 172	. 17285	IOI,5	. OI483	17,3	.17032	97, I	. 8712	334,7
.173	. 17386	1OI,5	. 01500	17,4	. 17129	97, I	. 8379	330,8
. 174	. 17488	IOI,5	. 01518	17,5	. 17226	97,0	. 8050	327,0
0.175	0.17589	101,5	I. 01535	17,6	0.17324	97,0	5.7725	323,2
. 176	. 17691	101,6	. OI 553	17,7	. 17420	97,0	. 7404	319,5
. 177	. 17793	IOI,6	. O1571	17,8	. 17517	96,9	. 7086	315,9
.178	. 17894	IOI,6	.OI588	I7,9	.176I4	96,9	. 6772	312,3
. 179	. 17996	101,6	.01606	18,0	.177II	96,9	. 6461	308,8
0.180	0.18097	101,6	1.01624	I8,1	0. 17808	96.8	5.6154	305,3
.181	.18199	IOI,6	. 01643	18,2	. I7905	96,8	. 585 I	301,9
. 182	. 18301	101,7	.0166I	18,3	. 18002	96,8	. 5550	298,6
.183	. 18402	IOI,7	.01679	18,4	. 18098	96,7	. 5253	295,3
. 184	. 18504	101,7	.01698	18,5	.18I95	96,7	. 4960	292, I
0. 185	0.18606	101,7	1.01716	18,6	0.18292	96,7	5.4669	288,9
. 186	. 18707	101,7	. OI735	18,7	. 18388	96,6	. 4382	285,8
. 187	. 18809	IOI, 8	. OI754	18,8	. 18485	96,6	. 4098	282,7
. 188	. 1891 I	IOI, 8	. 01772	18,9	. 18582	96,5	. 3817	279,6
. 189	. 19013	IOI,8	.01791	19,0	. 18678	96,5	. 3539	276,6
0.190	-.1915	IOI, 8	I. 01810	19,I	0. 18775	96,5	$5 \cdot 3263$	
. 191	. 19216	IOI,8	. 01830	19,2	. 18871	96,4	. 2991	270,8
. 192	. 19318	IOI,8	. 01849	19,3	. 18967	96,4	. 2722	268,0
. I93	. 19420 .19522	IOI,9	. 01868	19,4	. 19064	96,4	. 2455	265,2
. 194	. 19522	101,9	. 01888	19,5	. 19160	96,3	.2191	262,4
0.195	0.19624	101,9	I. 01907	19,6	0. 19257	96,3	5.1930	259,7
. 196	. 19726	IOI,9	. 01927	19,7	. 19353	96,3	. 1672	257,0
. 197	. 19828	101,9	. 01947	19,8	. 19449	96,2	. I416	254,4
.198 .199	. 19930	102,0 102,0	. 01967	19,9	. 19545	96,2	. II63	251,8
- 199	. 20032	102,0	. 01987	20,0	. 1964 I	96, I	. 0913	249,2
0.200	0.20134	102,0	1.02007	20, I	0. 19738	96, 1	5.0665	246,7
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.200	0.20134	102,0	1.02007	20,1	0. 19738	96, I	5.0665	246,7
. 201	. 20236	102,0	. 02027	20,2	. 19834	96, 1	.0419	244,2
. 202	. 20338	102,0	. 02047	20,3	. 19930	96,0	.0176	241,8
. 203	. 20440	102,I	. 02068	20,4	. 20026	96,0	4.9936	239,4
. 204	. 20542	102, I	. 02088	20,5	. 20122	96,0	. 9698	237,0
0.205	0.20644	102, 1	1.02109	20,6	0.20218	95,9	4.9462	234,6
. 206	. 20746	102,I	. 02129	20,7	.20313	95,9	. 9228	232,3
. 207	. 20848	102,2	.02150	20,8	. 20409	95,8	. 8997	230,1
. 208	. 20950	102,2	.02171	21,0	. 20505	95,8	. 8768	227,8
. 209	. 21052	102,2	.02192	2I, I	.2060I	95,8	. 8542	225,6
0.210	0.21155	102,2	I. 02213	21,2	0.20697	95,7	4.8317	223,5
. 211	. 21257	102,2	. 02234	21,3	. 20792	95,7	. 8095	221,3
. 212	. 21359	102,3	. 02256	21,4	. 20888	95,6	. 7874	219,2
. 213	. 21461	102,3	. 02277	21,5	. 20984	95,6	. 7656	217,I
. 214	. 21564	102,3	. 02299	21,6	. 21079	95,6	. 7440	215,I
0.215	0.21666	102,3	1.02320	21,7	0.21175	95,5	4.7226	213,0
. 216	.21768	102,3	. 02342	21,8	. 21270	95,5	. 7014	211,0
. 217	. 21871	102,4	. 02364	21,9	. 21366	95,4	. 6804	209,1
. 218	. 21973	102,4	. 02386	22,0	. 21461	95,4	. 6596	207, I
. 219	. 22075	102,4	. 02408	22, I	. 21556	95,4	. 6390	205,2
0.220	0.22178	102,4	I. 02430	22,2	0.21652	95,3	4.6186	203,3
. 221	. 22280	102,5	. 02452	22,3	. 21747	95,3	. 5983	201,4
. 222	. 22383	102,5	. 02474	22,4	. 21842	95,2	. 5783	199,6
. 223	. 22485	102,5	. 02497	22,5	. 21938	95,2	. 5584	197,8
. 224	. 22588	102,5	.02519	22,6	. 22033	95, I	. 5387	196,0
0.225	0.22690	102,5	1.02542	22,7	0.22128	95, I	$4 \cdot 5192$	194,2
. 226	. 22793	102,6	. 02565	22,8	. 22223	95, I	. 4999	192,5
. 227	. 22895	102,6	. 02588	22,9	. 223 I8	95,0	. 4807	190,8
. 228	. 22998	102,6	.02610	23,0	. 22413	95,0	.46I7	189, 1
. 229	.23IOI	102,6	. 02634	23,1	. 22508	94,9	. 4429	187,4
0.230	0.23203	102,7	1.02657	23,2	0.22603	94.9	4.4242	185,7
. 231	. 23306	102,7	. 02680	23,3	. 22698	94,8	. 4057	184 , I
. 232	. 23409	102,7	. 02703	23,4	. 22793	94,8	. 3874	182,5
. 233	.235II	102,7	. 02727	23,5	. 22887	94,8	. 3692	180,9
. 234	. 23614	102,8	. 02750	23,6	. 22982	94,7	. 3512	179,3
0.235	0.23717	102,8	1.02774	23,7	0.23077	94,7	4.3334	477,8
. 236	. 23820	I02,8	. 02798	23,8	. 23171	94,6	. 3157	176,2
. 237	. 23922	I02,8	. 02822	23,9	. 23266	94,6	.298I	174,7
. 238	. 24025	102,8	. 02846	24,0	. 2336 I	94,5	. 2807	173,2
. 239	. 24128	102,9	.02870	24, I	. 23455	94,5	. 2635	I71,8
0.240	0.2423 I	102,9	1.02894	24,2	0.23550	94,5	4.2464	I70,3
. 241	. 24334	102,9	. 02918	24,3	. 23644	94,4	. 2294	168,9
. 242	. 24437	I02,9	. 02943	24,4	. 23738	94,4	. 2126	167,5
. 243	. 24540	103,0	. 02967	24,5	. 23833	94,3	. 1959	166, I
. 244	. 24643	103,0	. 02992	24,6	. 23927	94,3	. 1794	164,7
	0.24746	103,0	1.03016		0.24021	94,2	4.1630	
. 246	. 24849	103,0	.03041	24,8	. 24115	94,2	. 1467	162,0
. 247	. 24952	103, I	. 03066	25,0	. 24210	94, I	. 1306	160,6
. 248	. 25055	103, I	.03091	25, I	. 24304	94, 1	. II46	I 59,3
. 249	. 25158	103, I	.03II6	25,2	. 24398	94,0	.0987	158,0
0.250	0.25261	103, 1	1.0314	25,3	0.24492	94,0	4.0830	156,7
U	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$
0.250	0.25261	103, I	1,03I4I	25,3	0.24492	94,0	4.0830	156,7
. 251	. 25364	103,2	.03167	25,4	. 24585	94,0	. 0674	155,4
. 252	. 25468	103,2	.03192	25,5	. 24680	93,9	. 0519	154,2
. 253	. 25571	103,2	.03218	25,6	. 24774	93,9	. 0365	152,9
. 254	. 25674	103,2	. 03243	25,7	. 24867	93,8	. 0213	151,7
0.255	0.25777	103,3	1.03269	25,8	0.2496 I	93,8	4.0062	150,5
. 256	. 2588 I	103,3	. 03295	25,9	. 25055	93,7	3.9912	I49,3
. 257	. 25984	103,3	.0332I	26,0	. 25149	93,7	. 9763	I48.1
. 258	. 26087	103,3	. 03347	26,1	. 25242	93,6	. 9616	146,9
. 259	.26191	103,4	. 03373	26,2	. 25336	93,6	. 9470	145,8
0.260	0.26294	103,4	1.03399	26,3	0.25430	93,5	3.9324	144,6
. 261	. 26397	103,4	. 03425	26,4	. 25523	93,5	. 9180	I43,5
. 262	. 26501	103,5	. 03452	26,5	. 25617	93,4	. 9037	142,4
.263	. 26604	103,5	. 03478	26,6	. 25710	93,4	. 8895	141,3
. 264	. 26708	103,5	. 03505	26,7	. 25803	93,3	. 8755	140,2
0.265	0.268II	103,5	1.03532	26,8	0.25897	93,3	3.8615	I 39, 1
. 266	. 26915	103,6	. 03559	26,9	. 25990	93,2	. 8476	138,0
. 267	. 27018	103,6	. 03586	27,0	. 26083	93,2	.8339	137,0
. 268	. 27122	103,6	.03613	27,1	.26176	93, 1	. 8203	135,9
. 269	. 27226	103,6	. 03640	27,2	. 26269	93, 1	. 8067	134,9
0.270	0.27329	103,7	1.03667	27,3	0.26362	93, I	3.7933	133,9
. 271	. 27433	103,7	. 03695	27,4	. 26456	93,0	. 7799	I32,9
. 272	. 27537	103,7	. 03722	27,5	. 26548	93,0	. 7667	131,9
. 273	. 27640	103,7	. 03750	27,6	. 26641	92,9	. 7536	I 30,9
. 274	. 27744	103,8	. 03777	27,7	. 26734	92,9	.7405	I29,9
0.275	0.27848	103,8	1.03805	27,8	0.26827	92,8	3.7276	128,9
. 276	. 27952	103,8	. 03833	28,0	. 26920	92,8	. 7147	128,0
	. 28056	103,9	. 0386 I	28,1	. 27013	92,7	. 7020	127,0
. 278	.28159	103,9	. 03889	28,2	. 27105	92,7	. 6893	126, 1
. 279	. 28263	103,9	.03917	28,3	. 27198	92,6	. 6768	125,2
0.280	0.28367	103,9	1.03946	28,4	0.27291	92,6	3.6643	124,3
. 281	. 28471	104,0	. 03974	28,5	. 27383	92,5	. 6519	123,4
. 282	. 28575	104,0	. 04003	28,6	. 27476	92,5	. 6396	122,5
. 283	. 28679	104,0	. 04031	28,7 ${ }^{\circ}$. 27568	92,4	. 6274	I21,6
. 284	.28783	104, 1	. 04060	28,8	. 27660	Q2,4	.6153	120,7
0.285	0.28887	104, 1	1.04089	28,9	0.27753	92,3	3.6033	I 19,8
. 286	. 28991	104, 1	. 04118	29,0	. 27845	92,2	. 5913	I 19,0
. 287	. 29096	104, I	. 04147	29, I	. 27937	92,2	. 5795	I 18, 1
. 288	. 29200	104,2	.04176	29,2	. 28029	92,I	. 5677	117,3
. 289	. 29304	104,2	. 04205	29,3	.28121	92,I	. 5560	I16,5
0.290	0.29408	104,2	1.04235	29,4	0.28213	92,0	3.5444	115,6
. 291	. 29512	104,3	. 04264	29,5	. 28305	92,0	. 5329	II 4,8
. 292	. 29617	104,3	. 04294	29,6	. 28397	91,9	. 5214	I I4, 0
. 293	. 2972 I	104,3	. 04323	29,7	. 28489	91,9	. 5101	II3,2
. 294	. 29825	104,4	. 04353	29,8	.28581	91,8	. 4988	II2,4
0.295	0.29930	104,4	1. 04383	29,9	0.28673	91,8	3.4876	III, 6
. 296	. 30034	104,4	. 04413	30,0	.28765	91,7	. 4765	1 10,9
. 297	. 30139	104,4	. 04443	30, I	. 28856	91,7	. 4654	I 10, 1
. 298	. 30243	104,5	. 04473	30,2	. 28948	91,6	. 4545	109,3
. 299	. 30348	104,5	. 04503	30,3	. 29040	91,6	. 4436	108,6
0.300	0.30452	104,5	1.04534	30,5	0.29131	91,5	3.4327	107,8
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c}$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh u	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	coth u	$\omega^{*} \mathrm{Fo}^{\prime}$
0.300	0.30452	104,5	1.04534	30,5	0.29131	- 91,5	3.4327	107,8
. 301	. 30557	104,6	. 04564	30,6	. 29223	91,5	. 4220	107, 1
. 302	- 30661	104,6	. 04595	30,7	. 29314	9I,4	.4113	106,4
- 303	- 30766	104,6	. 04626	30,8	. 29406	91,4	. 4007	105,6
- 304	- 30870	104,7	. 04656	30,9	. 29497	91,3	. 3902	104,9
0.305	0.30975	104,7	1.04687	31,0	0.29588	91,2	3.3797	104,2
. 306	. 31080	104,7	. 04718	31,I	. 29679	91,2	. 3693	103,5
- 307	- 31185	104,7	. 04750	31,2	. 29771	91, I	. 3590	102,8
. 308	-31289	104,8	.04781	31,3	. 29862	91, I	. 3488	102, 1
-309	- 31394	104,8	.04812	31,4	. 29953	91,0	. 3386	101,5
0.310	0.31499	104,8	1.04844	31,5	0.30044	91,0	3.3285	100,8
. 311	. 31604	104,9	. 04875	31,6	. 30135	90,9	. 3184	100, 1
-312	- 31709	104,9	. 04907	31,7	. 30225	90,9	. 3085	99,5
. 313	- 31814	104,9	. 04939	3I,8	. 30316	90,8	. 2985	98,8
. 314	-31919	105,0	. 04970	31,9	. 30407	90,8	. 2887	98,2
0.315	0.32024	105,0	1.05002	32,0	0.30498	90,7	3.2789	97,5
. 316	. 32129	105,0	. 05034	32,1	. 30589	90,6	. 2692	96,9
-317	. 32234	105, I	. 05067	32,2	- 30679	90,6	. 2595	96,2
-318	. 32339	105, I	. 05099	32,3	- 30770	90,5	. 2499	95,6
-319	. 32444	105, 1	.05131	32,4	. 30860	90,5	. 2404	95,0
0.320	0.32549	105,2	1.05164	32,5	0.30951	90,4	3.2309	94,4
. 321	- 32654	105,2	. 05196	32,7	.3104I	90,4	. 2215	93,8
- 322	. 32759	105,2	. 05229	32,8	. 31131	90,3	. 2122	93,2
. 323	- 32865	105,3	. 05262	32,9	. 31222	90,3	. 2029	92,6
-324	- 32970	105,3	. 05295	33,0	. 31312	90,2	. 1937	92,0
0.325	0.33075	105,3	1.05328	33, 1	0.31402	90, I	3.1845	91,4
. 326	-33181	105,4	.05361	33,2	. 31492	90, I	. 1754	90,8
. 327	. 33285	105,4	. 05394	33,3	. 31582	90,0	. 1663	90,3
- 328	-33391	105,4	. 05428	33,4	- 31672	90,0	. 1573	89,7
- 329	- 33497	105,5	.0546I	33,5	. 31762	89,9	. 1484	89, I
0.330	0.33602	105,5	1. 05495	33,6	0.31852		3.1395	88,6
. 331	- 33708	105,5	. 05528	33,7	. 31942	89,8	. 1307	88,0
. 332	. 33813	105,6	. 05562	33,8	- 32032	89,7	. 1219	87,5
. 333	- 33919	105,6	. 05596	33,9	-32121	89,7	. 1132	86,9
- 334	- 34024	105,6	. 05630	34,0	-32211	89,6	. 1045	86,4
- 0.335	0.34130	105,7	1.05664	34, I	0.32301	89,6	3.0959	85,8
. 336	. 34236	105,7	. 05698	34,2	. 32390	89,5	. 0874	85,3
- 337	- 34342	105,7	. 05732	34,3	- 32480	89,5	. 0789	84,8
- 338	- 34447	105,8	. 05767	34,4	- 32569	89,4	. 0704	84,3
. 339	- 34553	105,8	.05801	34,6	- 32658	89,3	. 0620	83,8
0.340	0.34659	105,8	1.05836	34,7	0.32748	89,3	3.0536	83,2
. 341	- 34765	105,9	.05871	34,8	. 32837	89,2	. 0453	82,7
. 342	- 34871	105,9	. 05905	34,9	. 32926	89,2	.0371	82,2
- 343	- 34977	105,9	. 05940	35,0	- 33015	89,1	. 0289	$8 \mathrm{I}, 7$
-344	- 35082	106,0	. 05975	35, 1	. 33104	89,0	. 0207	81,2
0.345	0.35188	106,0	1.06011	35,2	0.33193	89,0	3.0126	80,8
. 346	. 35295	106,0	. 06046	35,3	. 33282	88,9	. 0046	80,3
- 347	- 35401	106,1	.0608I	35,4	. 33371	88,9	2.9966	79,8
-348	- 35507	106, 1	. 066117	35,5	. 33460	88,8	. 9886	79,3
-349	-35613	106,2	. 06152	35,6	- 33549	88,7	. 9807	78,8
0.350	0.35719	106,2	1.06188	35,7	0.33638	88,7	2.9729	78,4
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathbf{s e c}$ gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n}$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{Fo}^{\prime}$
0.350	0.35719	106,2	1.06188	35,7	0.33638	88,7	2.9729	78,4
. 351	. 35825	106,2	. 06224	35,8	. 33726	88,6	. 9651	77,9
- 352	- 3593I	106,3	. 06259	35,9	-33815	88,6	. 9573	77,5
- 353	. 36038	106,3	. 06295	36,0	- 33903	88,5	. 9496	77,0
- 354	. 36144	106,3	. 06332	36,1	-33992	88,4	.9419	76,5
0.355	0.36250	106,4	1.06368	36,3	0.34080	88,4	2.9343	76, r
. 356	. 36357	106,4	. 06404	36,4	. 34169	88,3	. 9267	75,7
- 357	. 36463	106,4	. 06440	36,5.	- 34257	88,3	.9191	75,2
. 358	- 36570	106,5	. 06477	36,6	- 34345	88,2	.9116	74,8
- 359	. 36676	106,5	. 06514	36,7	- 34433	88, 1	. 9042	74,3
0.360	0.36783	106,6	1. 06550	36,8	0.34521	88,1	2.8968	73,9
. 361	. 36889	106,6	. 06587	36,9	- 34609	88,0	. 8894	73,5
- 362	. 36996	106,6	. 06624	37,0	- 34697	88,0	. 8821	73, 1
. 363	-37102	106,7	. 06661	37,I	- 34785	87,9	. 8748	72,6
- 364	. 37209	106,7	. 06698	37,2	- 34873	87,8	. 8675	72,2
0. 365	0.37316	106,7	1. 06736	37,3	0.34961	87,8	2.8603	71,8
. 366	. 37423	106,8	. 06773	37,4	- 35049	87,7	. 8532	71,4
- 367	- 37529	106,8	.06810	37,5	- 35136	87,7	. 8460	71,0
- 368	-37635	106,8	. 06848	37,6	- 35224	87,6	. 8390	70,6
. 369	- 37743	106,9	. 06886	37,7	-35312	87,5	.8319	70,2
0.370	0.37850	106,9	1. 06923	37,9	0.35399	87,5	2.8249	69,8
. 371	. 37957	107,0	. 06961	38,0	. 35487	87,4	. 8180	69,4
. 372	. 38064	107,0	. 06999	38,1	. 35574	87,3	.8110	69,0
- 373	-38171	107,0	. 07037	38,2	- 35661	87,3	. 8042	68,6
- 374	-38278	107, I	. 07076	38,3	- 35749	87,2	. 7973	68,2
0.375	0.38385	107, 1	1.07114	38,4	0.35836	87,2	2.7905	67,9
. 376	-38492	107,2	. 07152	38,5	- 35923	87, 1	. 7837	67,5
- 377	- 38599	107,2	.07191	38,6	- 36010	87,0	. 7770	67, 1
-378	-38707	107,2	. 07230	38,7 38	- 36007	87,0	. 7703	66,7
-379	-388I4	107,3	. 07268	38,8	- 36184	86,9	.7637	66,4
0.380	0.38921	107,3	1. 07307	38,9	0.36271	86,8	2.7570	66,0
. 381	. 39028	107,3	. 07346	39,0	. 36358	86,8	. 7505	65,7
- 382	- 39136	107,4	. 07385	39, I	- 36444	86,7	. 7439	65,3
- 383	- 39243	107,4	. 07425	39,2	-3653I	86,7	. 7374	64,9
-384	-3935	107,5	. 07464	39,4	. 36618	86,6	. 7309	64,6
0.385	0.39458	107,5	1.07503	39,5	0.36704	86,5	2.7245	64,2
. 386	- 39566	107,5	. 07543	39,6	. 36791	86,5	.718I	63,9
- 387	. 39673	107,6	. 07582	39,7	. 36877	86,4	. 7117	63,5
- 388	- 39781	107,6	. 07622	39,8	- 36963	86,3	. 7054	63,2
- 389	- 39889	107,7	. 07662	39,9	- 37050	86,3	. 6991	62,8
0.390	0.39996	107,7	1.07702	40,0	0.37136	86,2	2.6928	62,5
-391	. 40102	107,7	. 07742	40, 1	- 37222	86, I	. 6866	62,2
- 392	. 40212	107,8	. 07782	40,2	- 37308	86, I	. 6804	61,8
- 393	. 40319	107,8	. 07822	40,3	- 37394	86,0	. 6742	61,5
- 394	. 40427	107,9	. 07863	40,4	- 37480	86,0	.6681	61,2
0.395	0.40535	107,9	1.07903	40,5	0.37566	85,9	2.6620	60,9
. 396	. 40643	107,9	. 07944	40,6	. 37652	85,8	. 6559	60,5
- 397	. 40751	108,0	. 07984	40,8	. 37738	85,8	. 6499	60,2
- 398	. 40859	108,0	. 08025	40,9	-37824	85,7	. 6438	59,9
-399	. 40967	108, 1	. 08066	41,0	-37909	85,6	. 6379	59,6
0.400	0.41075	108,1	1.08107	41,1	0.37995	85,6	2.6319	59,3
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd}{ }^{\circ} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{FO}^{\prime}$

Natural Hyperbolic Functions.

0	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.400	0.41075	108, 1	1.08107	41,I	0.37995	85,6	2.6319	59,3
. 401	. 41183	108, 1	.08148	41,2	. 38080	85,5	. 6260	59,0
. 402	. 41292	108,2	.08190	41,3	. 38166	85,4	. 6201	58,7
. 403	. 41400	108,2	.0823I	4I,4	. 38251	85,4	. 6143	58,3
. 404	. 41508	108,3	. 08272	41,5	. 38337	85,3	.6085	58,0
0.405	0.41616	108,3	1.08314	41,6	0.38422	85,2	2.6027	57,7
. 406	. 41725	108,4	. 08356	41,7	. 38507	85,2	. 5969	57,4
. 407	.41833	108,4	. 08397	4I,8	-38592	85,1	. 5912	57, I
. 408	. 41941	108,4	. 08439	41,9	. 38677	85,0	. 5855	56,8
. 409	. 42050	108,5	.0848I	42,0	. 38762	85,0	. 5798	56,6
0.410	0.42158	108,5	1. 08523	42,2	0.38847	84,9	2.5742	56,3
.4II	. 42267	108,6	. 08566	42,3	. 38932	84,8	. 5686	56,0
. 412	. 42376	108,6	. 08608	42,4	. 39017	84,8	. 5630	55,7
. 413	. 42484	108,7	. 08650	42,5	. 39102	84,7	. 5574	55,4
. 414	. 42593	108,7	. 08693	42,6	-39186	84,6	. 5519	55, 1
0.415	0.42702	108,7	1. 08736	42,7	0.39271	84,6	2.5464	54,8
. 416	. 42810	108,8	. 08778	42,8	. 39356	84,5	. 5409	54,6
.417	. 42919	108,8	. 08821	42,9	. 39440	84,4	. 5355	54,3
-. 418	. 43028	108,9	. 08864	43,0	. 39524	84,4	. 5301	54,0
. 419	. 43 I 37	108,9	. 08907	43,I	- 39609	84,3	. 5247	53,7
0.420	0.43246	109,0	1. 08950	43,2	0.39693	84,2	2.5193	53,5
. 421	. 43355	109,0	. 08994	43,4	. 39777	84,2	. 5140	53,2
. 422	. 43464	109,0	. 09037	43,5	. 3986 I	84, I	. 5087	52,9
. 423	. 43573	109, I	.0908I	43,6	- 39945	84,0	. 5034	52,7
. 424	- 43682	109, I	.09124	43,7	. 40029	84,0	. 4982	52,4
0.425	0.43791	109,2	1. 09168	43,8	0.40113	83,9	2.4929	52,2
. 426	. 43900	109,2	. 09212	43,9	. 40197	83,8	. 4877	51,9
. 427	. 44009	109,3	. 09256	44,0	. 4028 I	83,8	. 4826	51,6
. 428	. 44119	109,3	. 09300	44, 1	. 40365	83,7	. 4774	5I,4
. 429	. 44228	109,3	. 09344	44,2	. 40449	83,6	. 4723	5I, I
0.430	0.44337	109,4	1. 09388	44,3	0.40532	83,6	2.4672	50,9
.43I	. 44447	109,4	. 09433	44,4	. 40616	83,5	. 4621	50,6
. 432	. 44556	109,5	. 09477	44,6	. 40699	83,4	. 4571	50,4
. 433	. 44666	109,5	. 09522	44,7	. 40783	83,4	. 4520	50, I
. 434	. 44775	109,6	. 09567	44,8	. 40866	83,3	. 4470	49,9
0.435	0.44885	109,6	1.096II	44,9	0.40949	83,2	2.4421	49,6
. 436	. 44995	109,7	. 09656	45,0	.41032	83,2	. 4371	49,4
. 437	. 45104	109,7	.09701	45, I	-4III5	83,1	. 4322	49,2
. 438	. 45214	109,7	. 09747	45,2	-41199	83,0	. 4273	48,9
. 439	. 45324	109,8	. 09792	45,3	. 41282	83,0	. 4224	48,7
0.440	0.45434	109,8	1. 09837	45,4	0.41364	82,9	2.4175	48,4
. 441	. 45543	109,9	. 09883	45,5	. 41447	82,8	. 4127	48,2
. 442	. 45653	109,9	. 09928	45,7	. 41530	- 82,8	. 4079	48,0
. 443	. 45763	I 10,0	. 09974	45,8	.416I3	82,7	. 4031	47,7
. 444	. 45873	I 10,0	. 10020	45,9	. 41695	82,6	. 3983	47,5
0.445	0.45983	IIO, I	1. 10066	46,0	0.41778	82,5	2.3936	47,3
. . 446	. 46093	110,1	. 10112	46,1	. 41861	82,5	. 3889	47, 1
. 447	. 46204	I 10,2	. 10158	46,2	. 41943	82,4	. 3842	46,8
. 448	. 46314	110,2 110,3	.10204 .10251	46,3 46,4	. 42025	82,3 82,3	. 3795	46,6
. 449	. 46424	110,3	. 10251	46,4	. 42108	82,3	- 3749	46,4
0.450	0.46534	1 10,3	I. 10297	46,5	0.42190	82,2	2.3702	46,2
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\infty \mathrm{FO}_{0}{ }^{\prime}$
0.450	0.46534	I 10,3	I. 10297	46,5	0.42190	82,2	2.3702	46,2
. 45 I	. 46645	I 10,3	. 10344	46,6	. 42272	82,I	. 3656	46,0
. 452	. 46755	I 10,4	. 10390	46,8	. 42354	82,I	-3610	45,7
. 453	. 46865	I 10,4	. 10437	46,9	. 42436	82,0	- 3565	45,5
. 454	. 46976	I 10,5	. 10484	47,0	.42518	8I,9	. 3519	45,3
0.455	0.47086	I 10,5	I. $1053 \mathrm{I}^{\prime}$	47,1	0.42600	81,9	2.3474	45, I
. 456	. 47197	I 10,6	. 10578	47,2	. 42682	81,8	. 3429	44,9
. 457	. 47307	I 10,6	. 10625	47,3	. 42764	81,7	- 3384	44,7
. 458	. 47418	110,7	. 10673	47,4	. 42845	81,6	- 3340	44,5
. 459	. 47529	I 10,7	. 10720	47,5	. 42927	8ı,6	- 3295	44,3
0.460	0.47640	I Io,8	1. 10768	47,6	0.43008	$8 \mathrm{I}, 5$	2.325 I	44, I
. 46 I	. 47750	I 10,8	. 10816	47,8	. 43090	8r,4	. 3207	43,9
. 462	. 47861	I 10,9	. 10863	47,9	. 43171	81,4	- 3164	43,7
. 463	. 47972	I IO,9	. 1091 I	48,0	. 43253	8.r,3	. 3120	43,5
. 464	. 48083	I I I, 0	. 10959	48, I	. 43334	81,2	- 3077	43,3
0.465	0.48194	I I 1,0	I. 11007	48,2	0.43415	81,2	2.3033	43, I
. 466	. 48305	III, I	. 11056	48,3	. 43496	$8 \mathrm{I}, \mathrm{I}$. 2991	42,9
. 467	. 48416	III, I	. IIIO4	48,4	. 43577	81,0	. 2948	42,7
. 468	. 48527	III, 2	. III53	48,5	. 43658	80,9	. 2905	42,5
.469	. 48638	III,2	. II201	48,6	. 43739	80,9	. 2863	42,3
0.470	0.48750	III,2	I. II250	48,7	0.43820	80,8	2.2821	42, I
. 471	. 48861	III, 3	. I I299	48,9	. 43901	80,7	. 2779	41,9
. 472	. 48972	I II, 3	. II 348	49,0	. 43981	80,7	. 2737	41,7
. 473	. 49084	III, 4	. II 397	49, I	. 44062	80,6	. 2695	4I,5
. 474	. 49195	III, 4	. I 1446	49,2	. 44143	80,5	. 2654	4I,3
0.475	0.49306	II I, 5	I. I I495	49,3	0.44223	80,4	2.2613	4I, I
. 476	. 49418	III,5	. II 544	49,4	. 44303	80,4	. 2572	40,9
. 477	. 49530	III, 6	. I I 594	49,5	. 44384	80,3	. 253 I	40,8
. 478	. 49641	III, 6	. II643	49,6	. 44464	80,2	. 2490	40,6
. 479	. 49753	I I I,7	. I I693	49,8	. 44544	80,2	. 2450	40,4
0.480	0.49865	III,7	I. II743	49,9	0.44624	80,1	2.2409	40,2
.48I	. 49976	III, 8	. II793	50,0	. 44704	80,0	. 2369	40,0
. 482	. 50088	I I I , 8	. I I843	50,1	. 44784	79,9	. 2329	39,9
. 483	. 50200	II I, 9	. 11893	50,2	. 44864	79,9	. 2289	39,7
. 484	. 50312	II I,9	. 11943	50,3	. 44944	79,8	. 2250	39,5
0.485	0.50424	I 12,0	I. 11994	50,4	0.45024	79,7	2.2210	39,3
. 486	. 50536	I 12,0	. 12044	50,5	.45104	79,7	. 2171	39,2
. 487	. 50648	I12, 1	. 12095	50,6	. 45183	79,6	. 2132	39,0
. 488	. 50760	112,1	. 12145	50,8	.45263	79,5	. 2093	38,8
.489	. 50872	I 12,2	. 12196	50,9	. 45342	79,4	. 2054	38,6
0.490	0.50984	I 1 2,2	I. I2247	51,0	0.45422	79,4	2.2016	38,5
. 49 I	. 51097	1 12,3	. 12298	5I, I	. 45501	79,3	. 1978	38,3
. 492	. 51209	112,3	. 12349	51,2	. 45580	79,2	. 1939	38,
. 493	. 51321	I 12,4	. 12401	51,3	. 45659	79,2	. 1901	38,0
. 494	. 51434	I 12,5	. 12452	5I,4	. 45739	79, I	. 1863	37,8
0.495	0.51546	I I2,5	I. 12503	51,5	0.45818	79,0	2. 1826	37,6
. 495	. 51659	I 12,6	. 12555	51,7	. 45897	78,9	. I788	37,5
. 497	.51771	I I 2,6	. 12607	51,8	. 45975	78,9	. I7,5I	37,3
. 498	. 51884	I12,7	. 12659	51,9	. 46054	78,8	. 1714	37, I
. 499	. 51997	I 12,7	. 127 II	52,0	.46133	78,7	. 1676	37,0
0.500	0.52110	I 12,8	1. 12763	52, I	0.46212	78,6	2.1640	36,8
	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.500	0.52110	I I 2,8	1. 12763	52,I	0.46212	78,6	2.1640	36,8
. 501	. 52222	I I2,8	. 12815	52,2	. 46290	78,6	. 1603	36,7
. 502	. 52335	I I2,9	. 12867	52,3	. 46369	78,5	. 1566	36,5
. 503	. 52448	I I2,9	. 12919	52,4	. 46447	78,4	. 1530	36,4
. 504	. 5256 I	I I3,0	. 12972	52,6	. 46526	78,4	. I493	36,2
0.505	0.52674	II3,0	I.I3025	52,7	0.46604	78,3	2. 1457	36,0
. 506	. 52787	II3, I	. 13077	52,8	. 46682	78,2	. 1421	35,9
. 507	. 52900	II3, I	. 13130	52,9	. 46760	78, I	. 1386	35,7
. 508	. 53013	II3,2	.13183	53,0	. 46839	78,	. 1350	35,6
. 509	. 53127	II3,2	. 13236	53, I	. 46917	78,0	.13I4	35,4
0.510	0.53240	113,3	I. 13289	53,2	0.46995	77,9	2. 1279	35,3
. 5II	. 53353	II3,3	. I3343	53,4	. 47072	77,9	. 1244	35, I
. 512	. 53466	II3,4	. 13396	53,5	. 47150	77,8	. 1209	35,0
. 513	. 53580	II3,4	. I3450	53,6	. 47228	77,7	. II74	34,8
. 514	. 53693	I 1 3,5	. 13503	53,7	. 47306	77,6	. II39	34,7
0.515	0.53807	I 13,6	I. I3557	53,8	0.47383	77,5	2.1105	34,5
.516	. 53920	II3,6	. 13611	53,9	. 47461	77,5	. 1070	34,4
. 517	. 54034	I 13,7	. I3665	54,0	. 47538	77,4	. 1036	34,3
. 518	. 54148	I 13,7	. 13719	54, I	. 47615	77,3	. 1002	34,1
. 519	. 54262	I I 3,8	. 13773	54,3	. 47693	77,3	. 0968	34,0
0.520	0.54375	113,8	I. 13827	54,4	0.47770	77,2	2.0934	33,8
. 52 I	. 54489	I 13,9	. 13882	54,5	. 47847	77, 1	. 0900	33.7
. 522	. 54603	I 1 3,9	. I3936	54,6	. 47924	77,0	. 0866	33,5
. 523	. 54717	I I4, 0	. I3991	54,7	. 48001	77,0	. 0833	33,4
. 524	. 54831	I 14,0	. 14046	54,8	. 48078	76,9	. 0799	33,3
0.52 .5	0.54945	II4, I	1.14101	54,9	0.48155	76,8	2.0766	33, I
. 526	. 55059	II 4,2	. 14156	55, I	. 48232	26,7	. 0733	33,0
. 527	. 55173	I I 4,2	. 14211	55,2	. 48308	76,7	. 0700	32,9
. 528	. 55288	II4,3	. I4266	55,3	. 48385	76,6	. 0668	32,7
. 529	. 55402	II4,3	. I432I	55,4	. 48462	76,5	. 0635	32,6
0.530	0.55516	II4,4	I. 14377	55,5	0.48538	76,4	2.0602	32,4
. 53 I	. 5563 I	II 4,4	. 14432	55,6	. 48615	76,4	. 0570	32,3
. 532	. 55745	II4,5	. 14488	55,7	. 48691	76,3	. 0538	32,2
. 533	. 55860	II 4,5	. 14544	55,9	. 48767	76,2	. 0506	32,0
. 534	. 55974	I 14,6	. 14600	56,0	. 48843	76, 1	. 0474	31,9
0.535	0.56089	I 14,7	1. 14656	56, I	0.48919	76,	2.0442	31,8
. 536	. 56204	114,7	. 14712	56,2	. 48995	76,0	. 0410	$3 \mathrm{I}, 7$
. 537	. 56318	I 14,8	. 14768	56,3	. 49071	75,9	. 0378	3I,5
. 538	. 56433	I I 4,8	. 14825	56,4	. 49147	75,8	. 0347	$3 \mathrm{I}, 4$
. 539	. 56548	I I4,9	. 1488 I	56,5	. 49223	75,8	. 0316	3I,3
0.540	0.56663	I I4,9	I. 14938	56,7	0.49299	75,7	2.0284	3I, 1
. 541	. 56778	I I 5,0	. 14994	56,8	. 49374	75,6	. 0253	$3 \mathrm{I}, 0$
. 542	. 56893	II5, I	. 15051	56,9	. 49450	75,5	. 0222	30,9
. 543	. 57008	II5, I	. 15108	57,0	. 49526	75,5	. 0192	30,8
. 544	. 57123	II 5,2	. 15165	57, I	. 49601	75,4	. 0161	30,6
0.545	0.57238	I 15,2	I. I5223	57,2	0.49676	75,3	2.0130	30,5
. 546	. 57354	I I 5,3	. 15280	57,4	. 49752	75,2	. 0100	30,4
. 547	. 57469	II 5,3	. 15337	57,5	. 49827	75,2	. 0070	30,3
- 548	. 57584	I I 5,4	. 15395	57,6	. 49902	75, 1	. 0039	30,2
. 549	. 57700	I 15,5	. 15452	57,7	. 49977	75,0	. 0009	30,0
0.550	0.578I5	I 15,5	I. 15510	57,8	0.50052	74,9	1. 9979	29,9
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	ω Fo'

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	$\boldsymbol{t a n h} u$	a $\mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.550	0.57815	II5,5	I. 15510	57,8	0.50052	74,9	1. 9979	29,9
. 551	. 57931	I I 5,6	. 15568	57,9	. 50127	74,9	. 9949	29,8
. 552	. 58046	I I 5,6	. 15626	58,0	. 50202	74,8	. 9920	29,7
. 553	. 58162	I 15,7	. 15684	58,2	. 50277	74,7	. 9890	29,6
. 554	. 58278	II5,7	. 15742	58,3	. 5035 I	74,6	. 9860	29,4
0.555	0.58393	II 5,8	I. 15801	58,4	0.50426	74,6	r.983I	29,3
. 556	. 58509	I 15,9	. 15859	58,5	. 50500	74,5	. 9802	29,2
. 557	. 58625	I 15,9	. 15918	58,6	. 50575	74,4	. 9773	29, I
. 558	. 58741	I 16,0	. 15976	58,7	. 50649	74,3	. 9744	29,0
. 559	. 58857	I 16,0	. 16035	58,9	. 50724	74,3	.9715	28,9
0.560	0.58973	116, 1	1. 16094	59,0	0.50798	74,2	1.9686	28,8
. 561	. 59089	II6,2	. 16I53	59, I	. 50872	74, I	. 9657	28,6
. 562	. 59205	I 16,2	. 16.212	59,2	. 50946	74,0	. 9629	28,5
. 563	. 59322	1 16,3	. 16272	59,3	. 51020	74,0	. 9600	28,4
. 564	. 59438	116,3	. 1633 I	59,4	. 5 Ir994	73,9	. 9572	28,3
0.565	0.59554	II6,4	1. 16390	59,6	0.51168	73,8	I. 9544	28,2
. 566	. 59671	116,5	. 16450	59,7	. 51242	73,7	. 9515	28, I
. 567	. 59787	I 16,5	. 16510	59,8	. 51315	73,7	. 9487	28,0
. 568	. 59904	I 16,6	. 16570	59,9	. 51389	73,6	. 9459	27,9
. 569	. 60020	I 16,6	. 16630	60,0	. 51462	73,5	. 9432	27,8
0.570	0.60137	1 16,7	1. 16690	60, 1	0.51536	73,4	1.9404	27,7
. 571	. 60254	116,7	. 16750	60,3	. 51609	73,4	. 9376	27,5
. 572	. 60371	I 16,8	. 16810	60,4	. 51683	73,3	. 9349	27,4
. 573	. 60487	1 16,9	. 16871	60,5	. 51756	73,2	.932I	27,3
. 574	. 60604	116,9	. 16931	60,6	. 51829	73, 1	. 9294	27,2
0.575	0.60721	II7,0	1. 16992	60,7	0.51902	73,1	I. 9267	27, I
. 576	. 60838	II7, I	. 17053	60,8	. 51975	73,0	. 9240	27,0
. 577	. 60955	II7, I	. I7113	6I,O	. 52048	72,9	.9213	26,9
. 578	. 61073	II7,2	.17174	6I, I	. 52121	72,8	. 9186	26,8
. 579	.6ı190	II7,2	. 17236	61,2	. 52194	72,8	.9159	26,7
0.580	0.61307	117,3	1. 17297	6I,3	0.52267	72,7	I.9133	26,6
. 58 I	.6I424	II7,4	. 17358	6I,4	. 52339	72,6	.9106	26,5
. 582	. 61542	II7,4	. 17420	6I,5	. 52412	72,5	. 9080	26,4
. 583	. 61659	II7,5	. 17481	61,7	. 52484	72,5	. 9053	26,3
. 584	.61777	I 77.5	. 17543	6r,8	. 52557	72,4	. 9027	26,2
0.585	0.61894	117,6	1. 17605.	6I,9	0.52629	72,3	1.900I	26, I
. 586	. 62012	II7,7	. I7667	62,0	. 52701	72,2	. 8975	26,0
. 587	. 62130	117,7	. 17729	62,1	. 52773	72,2	. 8949	25,9
. 588	. 62247	I I 7,8	. 17791	62,2	. 52846	72,1	. 8923	25,8
. 589	. 62365	I 17,9	. 17853	62,4	. 52918	72,0	. 8897	25,7
0.590	0.62483	I 17,9	1.17916	62,5	0.52990	71,9	1. 8872	25,6
. 591	. 62601	1 18,0	. 17978	62,6	. 53051	71,8	. 8846	25,5
. 592	. 62719	I 18,0	. 18041	62,7	. 53133	71,8	.882I	25,4
. 593	. 62837	I I8, I	. 18104	62,8	. 53205	71,7	. 8795	25,3
. 594	. 62955	II8,2	. 18167	63,0	. 53277	71,6	. 8770	25,2
0.595	0.63073	118,2	I. 18230	63,1	0.53348	71,5	1. 8745	25, I
. 596	. 63192	I 18,3	. 18293	63,2	. 53420	71,5	. 8720	25,0
. 597	. 63310	II8,4	. 18356	63,3	. 53491	71,4	. 8695	24,9
. 598	. 63428	I 18,4	. 18419	63,4	. 53562	71,3	. 8670	24,9
. 599	. 63547	I 18,5	. 18483	63,5	. 53634	71,2	. 8645	24,8
0.600	0.63665	I 18,5	I. 18547	63,7	0.53705	71,2	1. 8620	24,7
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n}$ gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\text {d }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{Fo}_{0}{ }^{\prime}$
0.600	0.63665	I18,5	I. 18547	63,7	0.53705	71,2	1.8620	24,7
. 601	. 63784	118,6	. 18610	63,8	. 53776	71,1	. 8596	24,6
. 602	. 63903	118,7	. 18674	63,9	. 53847	71,0	. 8571	24,5
. 603	. 64021	118,7	. 18738	64,0	. 53918	70,9	. 8547	24,4
. 604	. 64140	II8,8	. 18802	64, I	. 53989	70,9	. 8522	24,3
0.605	0.64259	118,9	1. 18866	64,3	0. 54060	70,8	1.8498	24,2
. 606	. 64378	118,9	. 18931	64,4	. 5413 I	70,7	. 8474	24,1
. 607	. 64497	119,0	. 18995	64,5	. 54201	70,6	. 8450	24,0
. 608	. 64616	119, I	. 19060	64,6	. 54272	70,5	. 8426	24,0
. 609	. 64735	II9, I	. 19124	64,7	- 54342	70,5	. 8402	23,9
0.610	0.64854	119,2	1. 19189	64,9	0.54413	70,4	1.8378	23,8
. 611	. 64973	119,3	. 19254	65,0	. 54483	70,3	. 8354	23,7
. 612	. 65093	119,3	. 19319	65,1	. 54553	70,2	. 833 I	23,6
. 613	. 65212	119,4	. 19384	65,2	- 54624	70,2	. 8307	23,5
. 614	. 65331	119,4	. 19449	65,3	. 54694	70,1	. 8284	23,4
0.615	0.65451	119,5	1. 19515	65,5	0. 54764	70,0	1.8260	23,3
. 616	. 65570	119,6	. 19580	65,6	. 54834	69,9	. 8237	23,3
. 617	. 65690	119,6	. 19646	65,7	. 54904	69,9	. 8214	23,2
. 618	.65810	119,7	. 19712	65,8	. 54973	69,8	.8191	23,1
. 619	. 65929	119,8	. 19778	65,9	- 55043	69,7	.8168	23,0
0.620	0.66049	119,8	I. 19844	66,0	0.55113	69,6	1.8145	22,9
. 621	. 66169	119,9	. 19910	66,2	. 55182	69,5	.8122	22,8
. 622	. 66289	120,0	. 19976	66,3	. 55252	69,5	. 8099	22,8
. 623	. 66409	120,0	. 20042	66,4	. 55321	69,4	. 8076	22,7
. 624	. 66529	120,1	. 20109	66,5	. 55391	69,3	. 8054	22,6
0.625	0.66649	120,2	1.20175	66,6	0.55460	69,2	1.8031	22,5
. 626	. 66769	120,2	. 20242	66,8	. 55529	69,2	. 8009	22,4
. 627	. 66890	120,3	. 20309	66,9	. 55598	69,1	. 7986	22,4
. 628	. 67010	120,4	. 20376	67,0	. 55667	69,0 68,0	. 7964	22,3
. 629	. 67130	120,4	. 20443	67,I	. 55736	68,9	. 7942	22,2
0.630	0.67251	120,5	1. 20510	67,3	0.55805	68,9	1.7919	22,1
. 631	. 67371	120,6	. 20577	67,4	. 55874	68,8	. 7897	22,0
. 632	. 67492	120,6	. 20645	67,5	. 55943	68,7	. 7875	22,0
. 633	. 67613	120,7	. 20712	67,6	. 56011	68,6	. 7853	21,9
. 634	. 67734	120,8	. 20780	67,7	. 56080	68,6	. 7832	21,8
0.635	0.67854	120,8	1. 20848	67,9	0. 56149	68,5	1.7810	21,7
. 636	. 67975	120,9	. 20916	68,0	. 56217	68,4	. 7788	21,6
. 637	. 68096	121,0	. 20984	68,1	. 56285	68,3	. 7767	21,6
. 638	. 68217	121,1	. 21052	68,2	. 56354	68,2	.7745	21,5
. 639	. 68338	121,1	. 21120	68,3	. 56422	68,2	. 7724	21,4
0.640	0.68459	121,2	1. 21189	68,5	0. 56490	68,1	1.7702	21,3
. 641	. 6858 I	121,3	. 21257	68,6	. 56558	68,0	.7681	21,3
. 642	. 68702	121,3	. 21326	68,7	. 56626	67,9	. 7660	21,2
. 643	. 68823	121,4	. 21395	68,8	. 56694	67,9	. 7639	21,1
. 644	. 68945	121,5	. 21463	68,9	. 56762	67,8	.7618	21,0
0.645	0.69066	121,5	I. 21532	69,1	0.56829	67,7	1.7597	21,0
. 646	. 69188	121,6	. 21602	69,2	. 56897	67,6	. 7576	20,9
. 647	. 69309	121,7	. 21671	69,3	. 56965	67,6	. 7555	20,8
. 648	. 69431	121,7	. 21740	69,4	. 57032	67,5	. 7534	20,7
. 649	. 69553	121,8	. 21810	69,6	. 57100	67,4	.7513	20,7
0.650	0.69675	121,9	1.21879	69,7	0.57167	67,3	1.7493	20,6
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega^{\text {F }}{ }_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	csc gd u.	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\text {g }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.650	0.69675	121,9	1. 21879	69,7	0.57167	67,3	1.7493	20,6
.65I	. 69797	121,9	. 21949	69,8	. 57234	67,2	. 7472	20,5
. 652	. 69919	122,0	. 22019	69,9	. 57301	67,2	. 7452	20,5
. 653	. 7004 I	122, I	. 22089	70,0	. 57369	67, 1	. 7431	20,4
. 654	. 70163	122,2	. 22159	70,2	. 57436	67,0	.74II	20,3
0.655	0.70285	122,2	I. 22229	70,3	0.57503	66,9	I. 7391	20,2
. 656	. 70407	122,3	. 22300	70,4	. 57570	66,9	. 7370	20,2
. 657	. 70530	I22,4	. 22370	70,5	. 57636	66,8	. 7350	20,1
. 658	. 70652	122,4	. 22441	70,7	. 57703	66,7	. 7330	20,0
. 659	. 70775	I22,5	. 225 II	70,8	. 57770	66,6	. 7310	20,0
0.660	0.70897	122,6	1.22582	70,9	0.57836	66,5	1.7290	19,9
. 661	. 71020	122,7	. 22653	71,0	. 57903	66,5	. 7270	19,8
. 662	.71142	122,7	. 22724	71,1	. 57969	66,4	. 7251	19,8
. 663	. 71265	122,8	. 22795	71,3	. 58036	66,3	. 723 I	19,7
. 664	. 71388	122,9	. 22867	71,4	. 58102	66,2	.72II	19,6
0.665	0.71511	122,9	1.22938	71,5	0.58168	66,2	1.7192	19,6
. 666	. 71634	I23,0	. 23010	71,6	. 58234	66,1	. 7172	19,5
. 667	. 71757	I23, I	. 2308 I	71,8	. 58300	66,0	. 7153	19,4
. 668	. 71880	123,2	. 23153	71,9	. 58366	65,9	. 7133	19,4
. 669	. 72003	123,2	. 23225	72,0	. 58432	65,9	.7114	19,3
0.670	0.72126	123,3	1. 23297	72,I	0.58498	65,8	1. 7095	19,2
.671	. 72250	123,4	. 23369	72,2	. 58564	65,7	. 7075	19,2
. 672	. 72373	123,4	. 23442	72,4	. 58629	65,6	. 7056	19, I
. 673	. 72497	123,5	. 23514	72,5	. 58695	65,5	. 7037	19,0
. 674	. 72620	123,6	. 23587	72,6	. 58760	65,5	. 7018	19,0
0.675	0.72744	123,7	I. 23659	72,7	0.58826	65,4	1. 6999	18,9
. 676	. 72868	123,7	. 23732	72,9	. 5889 I	65,3	. 6980	18,8
. 677	. 72991	123,8	. 23805	73,0	. 58957	65,2	. 6962	18,8
. 678	.73115	123,9	. 23878	73, I	. 59022	65,2	. 6943	18,7
. 679	. 73239	124,0	. 23951	73,2	. 59087	65, 1	. 6924	18,6
0.680	0.73363	124,0	I. 24025	73,4	0.59152	65,0	1. 6906	18,6
.681	. 73487	124, I	. 24098	73,5	. 59217	64,9	. 6887	18,5
. 682	. 73611	I24,2	. 24172	73,6	. 59282	64,9	. 6869	18,5
. 683	. 73735	I24,2	. 24245	73,7	. 59347	64,8	. 6850	18,4
. 684	. 73860	I24,3	. 24319	73,9	. 594 II	64,7	. 6832	18,3
0.685	0.73984	124,4	I. 24393	74,0	0.59476	64,6	I. 6813	18,3
. 686	.74109	124,5	. 24467	74, I	. 5954 I	64,5	. 6795	18,2
. 687	. 74233	124,5	. 2454 I	74,2	. 59605	64,5	. 6777	18, 1
. 688	. 74358	124,6	. 24616	74,4	. 59670	64,4	. 6759	18, 1
. 689	. 74482	124,7	. 24690	74,5	. 59734	64,3	. 6741	18,0
0.690	0.74607	124,8	1.24765	74,6	0.59798	64,2	1.6723	18,0
. 691	. 74732	124,8	. 24839	74,7	. 59862	64,2	. 6705	17,9
. 692	. 74857	124,9	. 24914	74,9	. 59927	64,1	. 6687	I7,8
. 693	. 74982	125,0	. 24989	75,0	. 5999 I	64,0	. 6669	I7,8
. 694	. 75107	I25, I	. 25064	75, 1	.60055	63,9	. 6652	17,7
0.695	0.75232	125, I	1.25139	75,2	0.60118	63,9	I. 6634	17,7
. 696	. 75357	125,2	. 25214	75,4	. 60182	63,8	. 6616	17,6
. 697	. 75482	125,3	. 25290	75,5	. 60246	63,7	. 6599	17,6
. 698	. 75607	I25,4	. 25365	75,6	.60310	63,6	.6581	I7,5
. 699	. 75733	125,4	. 2544 I	75,7	. 60373	63,6	. 6564	17,4
0.700	0.75858	125,5	1.25517	75,9	0.60437	63,5	I. 6546	17,4
4	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$
0.700	0.75858	125,5	1.25517	75,9	0.60437	63,5	1. 6546	17,4
.701	. 75984	125,6	. 25593	76,0	. 60500	63,4	. 6529	17,3
. 702	.76i 10	125,7	. 25669	76,1	. 60.564	63,3	. 6512	17,3
. 703	. 76235	125,7	. 25745	76,2	. 60627	63,2	. 6494	17,2
. 704	. 76361	125,8	. 2582 I	76,4	. 60690	63,2	. 6477	I7,1
0.705	0.76487	125,9	1. 25898	76,5	0.60753	63,1	1.6460	17,I
. 706	.766I3	126,0	. 25974	76,6	. 60816	63,0	. 6443	17,0
. 707	.76739	126, I	. 26051	76,7	. 60879	62,9	. 6426	17,0
. 708	. 76855	126,1	. 26128	76,9	. 60942	62,9	. 6409	16,9
. 709	. 76991	126,2	. 26205	77,0	. 61005	62,8	. 6392	16,9
0.710	0.77117	126,3	1. 26282	77,I	0.61068	62,7	1. 6375	16,8
. 711	. 77244	126,4	. 206359	77,2	.61130	62,6	. 6358	16,8
. 712	. 77370	126,4	. 26436	77,4	.61193	62,6	. 6342	16,7
. 713	. 77497	126,5	. 26514	77,5	. 61255	62,5	. 6325	16,7
. 714	. 77623	126,6	. 26591	77,6	. 61318	62,4	. 6308	16,6
0.715	0.77750	126,7	1. 26669	77,7	0.61380	62,3	1. 6292	16,5
. 716	. 77876	126,7	. 26747	77,9	.61443	62,2	. 6275	16,5
. 717	. 78003	126,8	. 26825	78,0	. 61505	62,2	. 6259	16,4
. 718	.78130	126,9	. 26903	78, 1	. 61567	62,1	. 6242	16,4
. 719	. 78257	127,0	. 26981	78,3	. 61629	62,0	. 6226	16,3
0.720	0.78384	127, I	1.27059	78,4	0.61691	6I,9	1.6210	16,3
. 721	. 78511	127, I	. 27138	78,5	. 61753	61,9	.6194	16,2
. 722	. 78538	127,2	. 27216	78,6	.61815	6I,8	. 6177	16,2
. 723	. 78766	127,3	. 27295	78,8	. 61876	6I,7	. 6161	16,
. 724	. 78893	127,4	. 27374	78,9	.6I938	6I,6	. 6145	16, 1
0.725	0.79020	127,5	1. 27453	79,0	0.62000	6I,6	1.6129	16,0
. 726	. 79148	127,5	. 27532	79, 1	.6206r	6r,5	.6Ir3	16,0
. 727	. 79275	127,6	.276II	79,3	. 62123	6I,4	.6097	15,9
. 728	. 79403	127,7	. 27690	79,4	. 62184	6I,3	. 608I	15,9
. 729	.79531	127,8	. 27770	79,5	. 62245	61,3	. 6065	15,8
0.730	0.79659	127,8	1.27849	79,7	0.62307	61,2	1. 6050	15,8
.73I	. 79786	127,9	. 27929	79,8	. 62368	6I,	. 6034	15,7
. 732	. 79914	128,0	. 28009	79,9	. 62429	61,0	. 6018	15,7
. 733	. 80042	128, I	. 28089	80,0	. 62.490	61,0	. 6003	15,6
. 734	. 80171	128,2	.28169	80,2	. 6255 I	60,9	. 5987	15,6
0.735	0.80299	128,2	I. 28249	80,3	0.626 II	60,8	1.5972	15,5
. 736	. 80.427	128,3	. 28330	80,4	. 62672	60,7	. 5956	15,5
. 737	. 80555	128,4	.28410	80,6	. 62733	60,6	. 5941	15,4
. 738	. 80684	128.5	.28491	80,7	. 62794	60,6	. 5925	15,4
. 739	.80812	128,6	. 28572	80,8	.62854	60,5	. 5910	15,3
0.740	0.80941	128,7	I. 28652	80,9	0.62915	60,4	1. 5895	15,3
. 741	.81070	128,7	. 28733	81, 1	. 62975	60,3	. 5879	15,2
. 742	.81 199	128,8	. 28815	$8 \mathrm{I}, 2$. 63035	60,3	. 5864	15,2
. 743	.81327	128,9	. 28896	8I,3	. 63095	60,2	. 5849	15, I
. 744	.81456	129,0	. 28977	8I,5	. 63156	60, 1	. 5834	15, 1
0.745	0.8 I 585	129, I	1.29059	8r,6	0.63216	60,0	1.5819	15,0
.746	.8i7I4	129, I	. 29140	81,7	. 63276	60,0	. 5804	15,0
.747	.81844	129,2	. 29222	8r,8	. 63336	59,9	. 5789	14,9
. 748	. 81973	129,3	. 29304	82,0	. 63395	59,8	. 5774	14,9
. 749	. 82102	129,4	. 29386	82,I	. 63455	59,7	. 5759	14,8
0.750	0.82232	129,5	1.29468	82.2	0.63515	59,7	I. 5744	14,8
u	$\boldsymbol{t a n} \mathbf{g d} \mathbf{u}$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.750	0.82232	129,5	I. 29468	82,2	0.63515	59,7	I. 5744	14,8
.751	. 82361	129,6	. 29551	82,4	. 63575	59,6	. 5730	14,7
. 752	. 8249 I	129,6	. 29633	82,5	. 63634	59,5	. 5715	14,7
. 753	. 82620	129,7	. 29716	82,6	. 63694	59,4	. 5700	14,6
. 754	. 82750	129,8	. 29798	82,8	. 63753	59,4	. 5686	14,6
0.755	0.82880	129,9	I. 2988I	82,9	0.638 I 2	59,3	I. 567 I	14,6
. 756	. 83010	130,0	. 29964	83,0	. 63871	59,2	. 5656	14,5
. 757	. 83140	I30,0	. 30047	83, 1	. 6393 I	59, 1	. 5642	14,5
. 758	. 83270	130, 1	. 30130	83,3	. 63990	59, I	. 5628	14,4
. 759	. 83400	130,2	. 30214	83,4	. 64049	59,0	. 5613	I4,4
0.760	0.83530	130,3	1.30297	83,5	0.64108	58,9	I. 5599	14,3
.76I	. 83661	130,4	. 30381	83,7	. 64167	58,8	. 5584	14,3
. 762	. 83791	I30,5	. 30464	83,8	. 64225	58,8	. 5570	14,2
. 763.	. 83922	130,5	. 30548	83,9	. 64284	58,7	. 5556	14,2
.764	. 84052	I30,6	. 30632	84, I	. 64343	58,6	. 5542	14,2
0.765	0.84183	130,7	1. 30716	84,2	0.64401	58,5	I. 5528	I4,I
. 766	. 84314	I 30,8	. 30801	84,3	. 64460	58,4	. 5514	I4,I
. 767	. 84445	130,9	. 30885	84,4	. 64518	58,4	. 5500	14,0
. 768	. 84576	I3I,0	. 30970	84,6	. 64576	58,3	. 5486	14,0
. 769	. 84707	I3I, I	. 31054	84,7	. 64635	58,2	. 5472	13,9
0.770	0.84838	131,1	I.3II39	84,8	0.64693	58, I	I. 5458	13,9
. 771	. 84969	I31,2	. 31224	85,0	. 6475 I	58, I	. 5444	I 3,9
. 772	. 85100	I3I,3	- 31309	85,1	. 64809	58,0	. 5430	I3,8
. 773	. 85231	I3I,4	. 31394	85,2	. 64867	57,9	. 5416	13,8
. 774	. 85363	I3I,5	-31479	85,4	. 64925	57,8	. 5402	13,7
0.775	0.85494	I3I,6	I. 31565	85,5	0.64983	57,8	1.5389	13,7
. 776	. 85626	131,7	. 31650	85,6	. 65040	57,7	. 5375	13,6
. 777	. 85758	131,7	. 31736	85,8	. 65098	57,6	. 5361	I3,6
. 778	. 85889	131,8	. 31822	85,9	. 65156	57,5	. 5348	13,6
. 779	. 8602 I	I3I,9	. 31908	86,0	. 652 I 3	57,5	. 5334	13,5
0.780	0.86 I 53	132,0	I. 31994	86,2	0.65271	57,4	I. 532 I	I3,5
. 78 I	. 86285	I 32, 1	. 32080	86,3	. 65328	57,3	. 5307	I3,4
. 782	. 86417	132,2	. 32166	86,4	. 65385	57,2	. 5294	13,4
.783	. 86550	I 32,3	. 32253	86,5	. 65443	57,2	. 5281	I3,3
.784	. 86682	I 32,3	. 32340	86,7	. 65500	57, I	. 5267	13,3
0.785	0.86814	132,4	I. 32426	86,8	0.65557	57,0	I. 5254	13,3
- 786	. 86947	I 32,5	. 32513	86,9	. 65614	56,9	. 5241	13,2
.787	. 87079	132,6	. 32600	87,I	. 65671	56,9	. 5228	13,2
. 788	. 87212	132,7	. 32687	87,2	. 65727	56,8	. 5214	I3, 1
.789	. 87345	I 32,8	. 32775	87,3	. 65784	56,7	. 5201	I3, I
0.790	0.87478	132,9	I. 32862	87,5	0.65841	56,6	1. 5188	I3,I
. 791	. 87610	132,9	. 32950	87,6	. 65898	56,6	. 5175	13,0
. 792	. 87743	133,0	. 33037	87,7	. 65954	56,5	. 5162	13,0
. 793	. 87877	I33, I	. 33125	87,9	. 66011	56,4	. 5149	12,9
. 794	.88010	133,2	. 33213	88,0	. 66067	56,4	. 5136	12,9
0.795	0.88 I 43	133,3	1.33301	88, I	0.66123	56,3	1.5123	12,9
. 796	. 88276	I33,4	. 33389	88,3	. 66179	56,2	. 5110	12,8
. 797	$\bigcirc .88410$	133,5	- 33478	88,4	. 66236	56,	. 5098	12,8
. 798	. 88543	I 33,6	- 33566	88,5	. 66292	56,	. 5085	12,8
. 799	. 88677	133,7	. 33655	88,7	. 66348	56,0	. 5072	12,7
0.800	0.888II	133,7	I. 33743	88,8	0.66404	55,9	I. 5059	12,7
U	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.800	0.888I I	133,7	I. 33743	88,8	0.66404	55,9	I. 5059	12,7
. 801	. 88944	133,8	. 33832	88,9	. 66460	55,8	. 5047	12,6
. 802	. 89078	133,9	. 3392 I	89, I	. 65515	55,8	. 5034	12,6
. 803	. 89212	134,0	.3401 I	89,2	. 66571	55,7	. 5022	12,6
. 804	. 89346	I34, I	. 34100	89,3	. 66627	55,6	. 5009	12,5
0.805	0.89480	134,2	1.34189	89,5	0.66682	55,5	1. 4996	12,5
. 806	. 89615	134,3	. 34279	89,6	. 66738	55,5	. 4984	12,5
. 807	. 89749	134,4	. 34368	89,7	. 56793	55,4	. 4972	12,4
. 808	. 89883	I 34,5	. 34458	89,9	. 66849	55,3	. 4959	12,4
. 809	. 90018	I 34,5	- 34548	90,0	. 66904	55,2	. 4947	12,3
0.810	0.90152	134,6	I. 34638	90,2	0.66959	55,2	I. 4935	12,3
.8II	. 90287	134,7	. 34729	90,3	. 67014	55, I	. 4922	12,3
.812	. 90422	134,8	.34819	90,4	. 67059	55,0	. 4910	12,2
.813	. 90557	I 34,9	. 34909	90,6	. 67124	54,9	. 4898	12,2
.814	. 90692	135,0	. 35000	90,7	. 67179	54,9	. 4886	12,2
0.815	0.90827	I35, I	I.35091	90,8	0.67234	54,8	1. 4873	12,I
.816	. 90962	135,2	. 35182	91,0	. 67289	54,7	. 4861	12, I
.8I7	. 91097	I 35, 3	. 35273	91, 1	. 67343	54,6	. 4849	12,0
.818	. 91232	135,4	. 35364	91,2	. 67398	54,6	. 4837	12,0
.819	.91368	135,5	. 35455	9I,4	. 67453	54,5	. 4825	12,0
0.820	0.91503	1 35,5	I. 35547	91,5	0.67507	54,4	1.48I3	I I,9
.821	. 91639	I 35,6	. 35638	91,6	. 67561	54,4	. 4801	II,9
. 822	. 91775	1 35,7	. 35730	91,8	. 67616	54,3	. 4789	II,9
. 823	. 91910	135,8	. 35822	91,9	. 67670	54,2	. 4778	I I, 8
. 824	.92046	135,9	. 35914	92,0	. 67724	54, I	. 4766	I I, 8
0.825	0.92182	136,0	1. 36006	92,2	0.67778	54, I	I. 4754	11,8
. 826	. 92318	I36,1	. 36098	92,3	. 67832	54,0	. 4742	I I,7
. 827	. 92454	136,2	. 36190	92,5	. 67886	53,9	. 4731	11,7
. 828	.92591	136,3	. 36283	92,6	. 67940	53,8	. 4719	II,7
. 829	. 92727	136,4	. 36376	92,7	. 67994	53,8	. 4707	I I,6
0.830	0.92863	136,5	1. 36468	92,9	0.68048	53,7	1. 4696	I I, 6
. 831	. 93000	136,6	. 36561	93,0	.68ioi	53,6	. 4684	I I, 6
. 832	. 93137	136,7	. 36654	93, I	.68155	53,5	. 4672	II,5
. 833	. 93273	I36,7	. 36748	93,3	. 68208	53,5	. 4661	II,5
. 834	. 93410	136,8	. 36841	93,4	. 68262	53,4	. 4649	I I, 5
0.835	0.93547	136,9	1. 36934	93,5	0.68315	53,3	1. 4638	II,4
. 836	. 93684	137,0	. 37028	93,7	. 68368	53,3	. 4627	I I, 4
. 837	.9382I	I37, 1	. 37122	93,8	. 68422	53,2	. 4615	II, 4
. 838	. 93958	137,2	. 37216	94,0	. 68475	53, I	. 4604	II,3
. 839	. 94095	137,3	. 37310	94,	. 68528	53,0	. 4593	II, 3
0.840	0.94233	137,4	I . 37404	94,2	0.68581	53,0	I. 458 I	II,3
. 841	. 94370	1 37,5	. 37498	94,4	. 68634	52,9	. 4570	II,2
. 842	. 94508	137,6	. 37593	94,5	. 68687	52,8	. 4559	II,2
. 843	. 94645	${ }^{1} 37,7$. 37687	94,6	. 68739	52,7	. 4548	II,2
. 844	. 94783	137,8	. 37782	94,8	. 68792	52,7	. 4537	I I, I
0.845	0.9492 I	1 37,9	I. 37877	94,9	0.68845	52,6	I. 4525	I I, I
. 846	. 95059	138,0	. 37972	95, I	. 68897	52,5	. 4514	I I, I
. 847	. 95197	138,1	. 38067	95,2	. 68950	52,5	. 4503	II,O
. 848	. 95335	138,2	. 38162	95,3	. 69002	52,4	. 4492	II,O
. 949	. 95473	I 38,3	. 38258	95,5	. 69055	52,3	.448I	11,0
0.850	0.95612	1 38,4	1. 38353	95,6	0.69107	52,2	1. 4470	10,9
4	$\boldsymbol{t a n g d} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathbf{s e c} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.850	0.95612	138,4	1.383,53	95,6	0.69107	52,2	1.4470	10,9
. 851	. 95750	138,4	. 38449	95,7	. 69159	52,2	. 4459	10,9
. 852	. 95888	138,5	. 38545	95,9	. 692 I I	52, I	. 4449	10,9
. 853	. 96027	138,6	. 38641	96,0	. 69253	52,0	. 4438	10,8
. 854	. 96166	I 38,7	. 38737	96,2	. 69315	52,0	. 4427	10,8
0.855	0.96305	I 38,8	I. 38833	96,3	0.69367	51,9	1.4416	10,8
. 856	. 96443	138,9	. 38929	96,4	. 69419	$5 \mathrm{I}, 8$. 4405	I0,8
. 857	. 96582	I 39,0	. 39026	96,6	. 69471	51,7	. 4395	10,7
. 858	. 9672 I	I39, I	. 39122	96,7	.69523	51,7	. 4384	10,7
. 859	.9686I	139,2	. 39219	96,9	. 69574	51,6	. 4373	10,7
0.860	0.97000	I 39,3	1.39316	97,0	0.69626	51,5	I. 4362	10,6
. 86 I	.97139	1 39,4	. 39413	97, 1	. 69677	51,5	. 4352	10,6
. 862	. 97279	I 39,5	. 39510	97,3	. 69729	5I,4	. 434 I	10,6
. 863	. 97418	I 39,6	. 39608	97,4	. 69780	5I,3	. 433 I	10,5
. 864	. 97558	139,7	- 39705	97,6	. 69831	51,2	. 4320	10,5
0.865	0.97698	I39,8	1. 39803	97,7	0.69882	51,2	I. 4310	10,5
. 866	. 97838	1 39,9	. 39901	97,8	. 69934	$5 \mathrm{I}, \mathrm{I}$. 4299	10,4
. 867	. 97978	I40,0	- 39999	98,0	. 69985	51,0	. 4289	10,4
. 868	.98118	140, I	.40097	98, I	. 70036	51,0	. 4278	10,4
. 869	. 98258	140,2	. 40195	98,3	. 70087	50,9	. 4268	10,4
0.870	0.98398	140,3	1. 40293	98,4	0.70137	50,8	1. 4258	10,3
. 871	. 98538	140,4	. 40392	98,5	. 70188	50,7	. 4247	10,3
. 872	. 98679	140,5	. 40490	98,7	. 70239	50,7	. 4237	10,3
. 873	.98819	140,6	. 40589	98,8	. 70290	50,6	. 4227	10,2
. 874	. 98960	140,7	. 40688	99,0	. 70340	50,5	. 4217	10,2
0.875	0.99 IOI	140,8	1.40787	99, I	0.70391	50,5	1. 4206	10,2
. 876	. 99241	140,9	. 40886	99,2	. 70441	50,4	. 4196	10,2
. 877	. 99382	I41,0	. 40985	99,4	. 70491	50,3	. 4186	10, I
. 878	. 99523	I4I, I	. 41085	99,5	. 70542	50,2	. 4176	10, I
. 879	. 99665	141,2	.41184	99,7	. 70592	50,2	. 4166	10, I
0.880	0.99806	141,3	I. 41284	99,8	0.70642	50, I	I. 4156	10,0
. 88 I	. 99947	141,4	. 41384	99,9	:70692	50,0	. 4146	10,0
. 882	1.00089	141,5	. 41484	100, I	. 70742	50,0	. 4136	10,0
. 883	. 00230	141,6	. 41584	100,2	. 70792	49,9	. 4126	10,0
. 884	. 00372	141,7	. 41684	100,4	.70842	49,8	. 4116	9,9
0.885	1.00514	141,8	1.41785	100,5	0.70892	49,7	I. 4106	9,9
. 885	. 00655	141,9	. 41886	100,7	. 70941	49,7	. 4096	9,9
. 887	. 00797	142,0	.41986	100,8	. 70991	49,6	. 4086	9,8
. 888	. 00939	142, 1	. 42087	100,9	. 71040	49,5	. 4076	9,8
. 889	. 01081	142,2	. 42188	IOI, I	.71090	49,5	. 4067	9,8
0.890	1.01224	142,3	I. 42289	IOI, 2	0.71139	49,4	I. 4057	9,8
. 891	. 01366	142,4	. 42391	IOI, 4	. 71189	49,3	. 4047	9,7
. 892	. 01508	142,5	. 42492	IOI,5	-71238	49,3	. 4037	9,7
. 893	. 01651	142,6	. 42594	IOI, 7	. 71287	49,2	. 4028	9,7
. 894	. 01794	142,7	. 42695	IOI,8	. 71336	49, I	. 4018	9,7
0.895	1.01936	142,8	I. 42797	101,9	0.71385	49,0	I. 4008	9,6
. 896	. 02079	142,9	. 42899	102, I	. 71434	49,0	. 3999	9,6
. 897	. 02222	143,0	. 43001	102,2	. 71483	48,9	. 3989	9,6
. 898	. 02365	143, I	.43104	102,4	. 71532	48,8	. 3980	9,5
. 899	. 02508	I 43, 2	. 43206	102,5	.7158I	48,8	- 3970	9,5
0.900	1.02652	I43,3	1. 43309	102,7	0.71630	48,7	I. 396 I	9,5
4	$\tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sec gd u	$\omega F_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.900	1. 02652	143	1. 43309	103	0.71630	48,7	I. 3961	9,5
.901	. 02795	143	. 4341 I	103	. 71678	48,6	. 3951	9,5
. 902	. 02938	144	. 43514	103	.71727	48,6	. 3942	9,4
. 903	. 03082	144	. 43617	103	. 71776	48,5	. 3932	9,4
. 904	. 03226	144	. 43720	103	.71824	48,4	. 3923	9,4
0.905	1.03370	144	1.43824	103	0.71872	48,3	I. 3914	9,4
. 906	. 03513	144	. 43927	104	. 71921	48,3	. 3904	9,3
. 907	. 03657	144	. 4403 I	104	. 71969	48,2	. 3895	9,3
. 908	. 03801	144	.44134	104	. 72017	48,1	. 3886	9,3
. 909	. 03946	144	. 44238	104	. 72065	48,1	. 3876	9,3
0.910	1. 04090	144	I. 44342	104	0.72113	48,0	I. 3867	9,2
.9II	. 04234	144	. 44446	104	.72161	47,9	. 3858	9,2
.912	. 04379	145	. 44551	104	. 72209	47,9	- 3849	9,2
.913	. 04523	145	. 44655	105	. 72257	47,8	-3840	9,2
. 914	. 04668	145	. 44760	105	. 72305	47,7	.3830	9, I
0.915	1.04813	145	1. 44865	105	0.72352	47,7	I. 3821	9, I
. 916	. 04958	145	. 44969	105	. 72400	47,6	. 3812	9, I
.917	. 05103	145	. 45075	105	. 72448	47,5	. 3803	9,1
.918	. 05248	145	. 45180	105	. 72495	47,4	. 3794	9,0
. 919	. 05393	145	. 45285	105	. 72542	47,4	. 3785	9,0
0.920	1.05539	145	I. 45390	106	0.72590	47,3	1.3776	9,0
.92I	. 05684	145	. 45496	106	. 72637	47,2	. 3767	9,0
. 922	.05830	146	- . 45602	106	. 72684	47,2	. 3758	8,9
. 923	. 05975	146	. 45708	106	. 72731	47, I	. 3749	8,9
. 924	.06121	146	. 45814	106	. 72778	47,0	. 3740	8,9
0.925	1. 06267	146	1. 45920	106	0.72825	47,0	I. 3731	8,9
. 926	. 06413	146	. 46026	106	. 72872	46,9	. 3723	8,8
. 927	. 06559	146	. 46133	107	. 72919	46,8	. 3714	8,8
. 928	.06705	146	. 46239	107	. 72966	46,8	. 3705	8,8
. 929	.0685I	146	. 46346	107	.73013	46,7	. 3696	8,8
0.930	1.06998	146	1. 46453	107	0.73059	46,6	1.3687	8,7
.93I	. 07144	147	. 46560	107	.73106	46,6	. 3679	8,7
. 932	.07291	147	. 46667	107	.73153	46,5	. 3670	8,7
. 933	. 07438	147	. 46775	107	. 73199	46,4	. 3661	8,7
. 934	. 07584	147	. 46882	108	. 73245	46,4	. 3653	8,6
0.935	1.0773I	147	1.46590	108	0.73292	46,3	1. 3644	8,6
. 936	. 07878	147	. 47098	108	. 73338	46,2	. 3636	8,6
. 937	.08025	147	. 47.206	108	. 73384	46, I	. 3627	8,6
. 938	.08173	147	. 47314	108	. 73430	46,	. 3618	8,5
. 939	. 08320	147	. 47422	108	. 73476	46,0	. 3610	8,5
0.940	1.08468	148	1.47530	108	0.73522	45,9	1.3601	8,5
. 941	.08615	148	. 47639	109	. 73568	45,9	. 3593	8,5
. 942	. 08863	148	. 47748	109	. 73614	45,8	. 3584	8,5
. 943	.0891 1	148	. 47857	109	. 73660	45,7	- 3576	8,4
. 944	. 09059	148	. 47966	109	. 73705	45,7	. 3568	8,4
0.945	1.09207	148	1.48075	109	0.73751	45,6	I. 3559	8,4
. 946	. 09355	148	. 48184	109	. 73797	45,5	. 3551	8,4
. 947	. 09503	148	. 48293	110	. 73842	45,5	- 3542	8,3
. 948	.09651	148	.48403	110	. 73888	45,4	. 3534	8,3
. 949	. 09800	149	. 48513	110	. 73933	45,3	. 3526	8,3
0.950	1. 09948	149	1.48623	110	0.73978	45,3	I. 3517	8,3
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc od u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{v^{\prime}}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.950	1.09948	149	1.48623	110	0.73978	45,3	1.3517	8,3
.95I	. 10097	149	. 48733	110	. 74024	45,2	. 3509	8,2
. 952	. 10246	149	. 48843	110	. 74069	45, 1	. 3501	8,2
. 953	. 10395	149	. 48953	110	.74114	45, I	- 3493	8,2
. 954	. 10544	149	. 49064	III	.74159	45,0	. 3485	8,2
0.955	I. 10693	149	1.49174	III	0.74204	44,9	1. 3476	8,2
. 956	. 10842	149	. 49285	III	. 74249	44,9	. 3468	8,1
. 957	. 10991	149	. 49396	III	.74294	44,8	. 3460	8, I
. 958	. III4I	150	. 49507	III	. 74338	44,7	. 3452	8, I
. 959	. I I29I	150	. 49618	III	. 74383	44,7	. 3444	8,I
0.960	I. II440	150	1. 49729	III	0.74428	44,6	1. 3436	8,I
.96I	. II 590	150	. 4984 I	112	. 74472	44,5	. 3428	8,o
. 962	. II740	150	. 49953	112	. 74517	44,5	. 3420	8,0
. 963	. 11890	150	. 50064	112	.74561	44,4	. 3412	8,0
. 964	. 12040	150	. 50176	112	.74606	44,3	- 3404	8,0
0.965	1.12190	150	1.50289	112	0.74650	44,3	1. 3396	7,9
. 956	. 12341	150	. 50401	II2	. 74694	44,2	. 3388	7,9
. 967	. 12491	151	. 50513	II2	. 74738	44, I	- 3380	7,9
. 968	. 12642	151	. 50526	II3	. 74782	44, I	. 3372	7.9
. 969	. 12792	151	. 50739	II3	. 74826	44,0	. 3364	77
0.970	I. 12943	151	I. $5085 \mathrm{I}^{\prime}$	II3	0.74870	43,9	I. 3356	7,8
. 971	. 13094	15 I	. 50964	II3	.74914	43,9	. 3349	7,8
. 972	. 13245	151	. 51078	II3	. 74958	43,8	. 334 I	7,8
. 973	. I3396	151	. 51191	II3	. 75002	43,7	- 3333	7,8
. 974	. 13547	15 I	.51304	II4	. 75046	43,7	- 3325	7,8
0.975	1. 13699	151	1.51418	II4	0.75089	43,6	I.33I7	7,7
. 976	. 13850	152	. 51532	II4	. 75133	43,6	. 3310	7,7
. 977	. 14002	152	. 51646	II4	.75176	43,5	. 3302	7,7
. 978	. 14154	152	. 51760	II4	. 75220	43,4	. 3294	7,7
. 979	. I4305	152	. 51874	II4	. 75263	43,4	. 3287	7,7
0.980	I. I4457	152	1. 51988	144	0.75307	43,3	I. 3279	7,6
.98I	. I4609	152	. 52103	II5	. 75350	43,2	. 327 I	7,6
. 982	. 14761	152	. 52218	II5	. 75393	43,2	. 3264	7,6
.983	. 14914	152	. 52332	II 5	. 75436	43, I	. 3256	7,6
. 984	. 15066	152	. 52447	II5	. 75479	43,0	. 3249	7,6
0.985	1. 15219	153	1. 52563	115	0.75522	43,0	I. 324 I	7,5
. 986	. 15371	153	. 52678	II5	. 75565	42,9	. 3234	7,5
. 987	. 15524	I53	. 52793	116	. 75608	42,8	. 3226	7,5
. 988	. 15677	I53	. 52909	1 I 6	. 75651	42,8	. 3219	7,5
. 989	. 15830	153	. 53025	I 16	. 75694	42,7	. 3211	7,5
0.990	1. 15983	153	1.53141	II6	0.75736	42,6	I. 3204	7,4
. 991	. 16I36	153	. 53257	116	. 75779	42,6	. 3196	7,4
. 992	. 16289	153	. 53373	I 16	. 75821	42,5	. 3189	7,4
. 993	. 16443	153	. 53489	116	. 75864	42,4	. 3182	7,4
. 994	. 16596	154	. 53606	117	. 75906	42,4	-3174	7,4
	I. 16750	154	1. 53722	117	0.75949	42,3	1.3167	7,3
. 996	. 16904	154	. 53839	117	. 75991	42,3	-3I59	7,3
. 997	. 17058	154	. 53956	II7	. 76033	42,2	. 3152	7.3
. 998	. 17212	154	. 54073	II7	. 76075	42, I	.3I45	7,3
. 999	. 17366	154	. 5419 I	117	.76117	42, I	. 3138	7,3
1.000	I. 17520	154	I. 54308	118	0.76159	42,0	1.3130	7,2
u	$\boldsymbol{t a n g d} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n g d u}$	$\omega F_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.000	I. I7520	154	1.54308	118	0.76159	42,0	1.3130	7,2
. 001	. 17674	154	. 54426	118	. 76201	41,9	. 3123	7,2
. 002	. 17829	155	. 54543	II8	. 76243	41,9	. 3116	7,2
. 003	. 17984	155	. 5466 I	118	. 76285	41,8	. 3109	7,2
. 004	. 18138	155	. 54779	118	. 76327	41,7	.3102	7,2
1.005	I. 18293	155	1. 54898	118	0.76369	41,7	I. 3094	7,I
. 006	. 18448	155	. 55016	118	. 76410	41,6	. 3087	7, 1
. 007	. 18603	155	. 55134	119	. 76452	41,6	. 3080	7, I
. 008	. 18758	155	. 55253	119	. 76493	4I,5	. 3073	7, I
. 009	. 18914	155	- 55372	119	. 76535	4I,4	. 3066	7,1
1.010	1. 19069	155	I. 55491	119	0.76576	41,4	1. 3059	7,1
. OII	. 19225	156	. 55610	119	. 76618	4I,3	. 3052	7,0
. OI 2	. 19380	156	. 55729	119	. 76659	41,2	. 3045	7,0
. 013	. 19536	156	. 55849	120	. 76700	41,2	. 3038	7,0
. 014	. 19692	156	. 55969	120	. 76741	4I, I	. 3031	7,0
1.015	1. 19848	156	1. 56088	120	0.76782	41,0	1.3024	7,0
. 016	. 20004	156	. 56208	120	. 76823	41,0	. 3017	6,9
. 017	. 20160	156	. 56328	120	. 76864	40,9	. 3010	6,9
. 018	. 20317	156	. 56449	120	. 76905	40,9	. 3003	6,9
. 019	. 20473	157	. 56569	120	. 76946	40,8	. 2996	6,9
1.020	1.20630	157	1. 56689	12 I	0.76987	40,7	1. 2989	6,9
.02I	. 20787	157	. 56810	121	. 77027	40,7	. 2982	6,9
. 022	. 20944	157	. 56931	12 I	. 77068	40,6	. 2976	6,8
. 023	. 21IOI	157	. 57052	12 I	. 77109	40,5	. 2969	6,8
. 024	. 21258	157	. 57173	12 I	. 77149	40,5	. 2962	6,8
1.025	1.21415	157	I. 57295	121	0.77190	40,4	I. 2955	6,8
. 026	. 21572	157	. 57416	122	. 77230	40,4	. 2948	6,8
. 027	. 21730	158	. 57538	122	. 77270	40,3	. 2942	6,7
. 028	. 21887	158	. 57660	122	. 77310	40,2	. 2935	6,7
. 029	. 22045	158	. 57782	122	.77351	40,2	. 2928	6,7
1.030	1.22203	158	1. 57904	122	0.7739 I	40, I	I. 2921	6,7
.03I	. 22361	158	. 58026	122	.77431	40,0	. 2915	6,7
. 032	. 22519	158	-58148	123	. 7747 I	40,0	. 2908	6,7
. 033	. 22677	158	. 58271	123	. 77511	39,9	. 2901	6,6
. 034	. 22836	158	. 58394	123	.7755I	39,9	. 2895	6,6
1.035	I. 22994	159	1. 58517	123	0.77591	39,8	I. 2888	6,6
. 036	. 23I53	159	. 58640	123	. 77630	39,7	. 2882	6,6
. 037	. 23311	159	. 58763	123	. 77670	39,7	. 2875	6,6
.038	. 23470	159	. 58886	123	. 77710	39,6	. 2868	6,6
. 039	. 23629	159	. 59010	124	. 77749	39,6	. 2862	6,5
1.040	I. 23788	159	I. 59134	124	0.77789	39,5	1. 2855	6,5
. 041	. 23947	159	. 59257	124	. 77828	39,4	. 2849	6,5
. 042	. 24107	159	. 5938 I	124	. 77868	39,4	. 2842	6,5
. 043	. 24266	160	. 59506	124.	. 77907	39,3	. 2836	6,5
. 044	. 24426	160	. 59630	124	. 77946	39,2	. 2829	6,5
1.045	I. 24585	160	I. 59755	125	0.77985	39,2	1.2823	6,4
. 046	. 24745	160	. 59879	125	. 78025	39, 1	.2816	6,4
. 047	. 24905	160	. 60004	125	. 78064	39, 1	.2810	6,4
. 048	.25065	160	. 60129	125	.78103	39,0	. 2804	6,4
. 049	. 25225	160	. 60254	125	.78142	38,9	. 2797	6,4
1.050	1. 25386	160	1.60379	125	0.7818I	38,9	I. 279I	6,4
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n g d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega F_{0}{ }^{\text {d }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.050	1.25386	160	1. 60379	125	0.78181	38,9	1.2791	6,4
. 051	. 25546	161	. 60505	126	. 78219	38,8	. 2785	6,3
. 052	. 25707	I6I	. 60531	126	. 78258	38,8	. 2778	6,3
. 053	. 25857	16 I	. 60756	126	. 78297	38,7	. 2772	6,3
. 054	. 26028	I6I	. 60882	126	. 78336	38,6	.2766	6,3
1.055	I. 26189	161	1. 61008	126	0.78374	38,6	1.2759	6,3
. 056	. 26350	161	. 61135	126	.78413	38,5	. 2753	6,3
. 057	. 2651 I	161	.61251	127	. 78451	38,4	. 2747	6,2
. 058	. 26673	161	. 61388	127	.78450	38,4	. 2741	6,2
. 059	. 26834	162	.6I5I4	127	. 78528	38,3	. 2734	6,2
1.060	1. 26996	162	1.61641	127	0.78556	38,3	1.2728	6,2
.06I	. 27157	162	. 61768	127	. 78605	38,2	. 2722	6,2
. 062	. 27319	162	. 61896	127	. 78643	38,2	. 2716	6,2
. 063	. 2748 I	162	. 62023	127	. 7868 I	38,1	. 2710	6,2
. 064	. 27643	162	. 6215 I	128	. 78719	38,0	.2703	6,1
1.065	1.27806	162	1. 62278	128	0.78757	38,0	1. 2697	6,1
. 065	. 27968	162	. 62406	128	. 78795	37,9	. 2691	6,1
. 067	. 28130	163	. 62534	128	. 78833	37,9	. 2685	6,1
. 068	. 28293	163	. 62562	128	. 78871	37,8	. 2679	6, I
. 069	. 28456	163	.62791	128	.78¢08	37,7	. 2673	6,1
1.070	1.28519	163	1.62919	129	0.78946	37,7	1.2667	6,0
. 071	. 28782	163	. 63048	129	. 78984	37,6	. 2661	6,0
. 072	. 28945	163	. 63177	129	. 79021	37,6	. 2655	6,0
. 073	. 29108	163	. 63306	129	. 79059	37,5	. 2649	6,0
. 074	. 2927 I	163	. 63435	129	. 79096	37,4	. 2643	6,0
1.075	I. 29435	164	1. 63565	129	0.79134	37,4	1.2637	6,0
. 076	. 29598	164	. 63694	130	. 79171	37,3	. 2631	6,0
. 077	. 29762	164	. 63824	130	. 79208	37,3	. 2625	5,9
. 078	. 29926	164	. 63954	130	. 79246	37,2	. 2619	5,9
. 079	. 30090	164	. 64084	130	. 79283	37, 1	. 2613	5,9
1.080	I. 30254	164	1. 64214	130	0.79320	37,1	1. 2607	5,9
. .081	. 30418	164	. 64344	130	. 79357	37,0	. 2601	5,9
- . 082	. 30583	164	. 64475	13 I	. 79394	37,0	. 2595	5,9
. 083	. 30747	165	.64605	131	. 7943 I	36,9	. 2590	5,8
. 084	. 30912	165	. 64736	131	. 79468	36,8	. 2584	5,8
1.085	1.31077	165	1. 64867	131	0.79505	36,8	I. 2578	5,8
. 086	. 31242	165	. 64998	13 I	. 79541	36,7	. 2572	5,8
. 087	-31407	165	. 65130	131	. 79578	36,7	. 2566	5,8
. 088	-31572	165	. 65261	132	.79615	36,6	. 2560	5,8
. 089	. 31737	165	. 65393	132	.7955I	36,6	. 2555	5,8
1.090	1.31903	166	1.65525	132	0.79688	36,5	1. 2549	5,7
.091	. 32068	166	. 65657	132	. 79724	36,4	. 2543	5,7
. 092	. 32234	166	. 65789	132	.7976I	36,4	. 2538	5,7
. 093	. 32400	166	. 65921	132	. 79797	36,3	. 2532	5,7
. 094	. 32566	166	. 66053	133	. 79833	36,3	. 2526	5,7
1.095	1. 32732	166	1. 66186	133	0.79870	36,2	1.2520	5,7
. 096	. 32898	166	. 66319	133	. 79906	36,2	. 2515	5,7
. 097	. 33065	166	. 66452	133	. 79942	36,	. 2509	5,6
. 098	. 3323 I	167	. 66585	133	. 79978	36,0	. 2503	5,6
. 099	- 33398	167	. 66718	133	.80014	36,0	. 2498.	5,6
I. 100	1. 33565	167	1.66852	I34	0.80050	35,9	I. 2492	5,6
u	$\boldsymbol{t a n g d} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\csc \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\operatorname{coth} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$
I. 100	I. 33565	167	1. 66852	I34	0.80050	35,9	I. 2492	5,6
. IOI	. 33732	167	. 66986	I 34	. 80085	35,9	. 2487	5,6
. 102	. 33899	167	. 67119	134	. 80122	35,8	. 248I	5,6
. 103	- 34066	167	. 67253	I 34	. 80157	35,7	. 2475	5,6
. 104	. 34233	167	. 67387	I 34	. 80193	35,7	. 2470	5,5
I. 105	I. 34401	168	1. 67522	I34	0.80229	35,6	I. 2464	5,5
. 106	. 34568	168	. 67656	135	. 80264	35,6	. 2459	5,5
. 107	. 34736	168	. 67791	I 35	. 80300	35,5	. 2453	5,5
. 108	. 34904	168	. 67926	I35	. 80335	35,5	. 2448	5,5
. 109	. 35072	168	.6806I	135	. 8037 I	35,4	. 2442	5,5
I. IIO	I. 35240	168	1.68196	135	0.80406	35,3	I. 2437	5,5
. III	. 35408	168	. 68331	135	. 80442	35,3	. 2431	5,5
. II2	. 35577	168	. 68467	136	. 80477	35,2	. 2426	5,4
. II 3	. 35745	169	. 68602	I36	. 80512	35,2	. 242 I	5,4
. II4	. 35914	169	. 68738	I 36	. 80547	35, I	. 2415	5,4
I.II5	1. 36083	169	1. 68874	I36	0.80582	35, 1	1. 2410	5,4
. 116	. 36252	169	. 69010	136	. 80617	35,0	. 2404	5,4
. II7	. 3642 I	169	. 69147	I36	. 80652	35,0	. 2399	5,4
. 118	. 36590	169	. 69283	137	. 80687	34,9	. 2394	5,4
. II9	. 36759	169	. 69420	137	. 80722	34,8	. 2388	5,3
${ }^{\text {r. }} 120$	1. 36929	170	I. 69557	137	0.80757	34,8	I. 2383	5,3
- -1	. 37098	170	. 69694	137	. 80792	34,7	. 2378	5,3
. 122	. 37268	170	. 69831	137	. 80826	34,7	. 2372	5,3
. 123	. 37438	170	. 69968	137	. 8085 I	34,6	. 2367	5,3
. 124	. 37608	170	. 70106	I38	. 80896	34,6	. 2362	5,3
I. 125	1. 37778	170	1.70243	138	0.80930	34,5	I. 2356	5,3
. 125	. 37949	170	. 70381	138	. 80965	34,4	. 2351	5,3
.127	.38119	171	. 70519	138	. 80999	34,4	. 2346	5,2
. 128	. 38290	171	. 70658	138	. 81033	34,3	. 2341	5,2
. 129	. 38460	171	.70796	138	.81068	34,3	. 2335	5,2
I. I30	1. 38531	171	1.70934	139	0.81102	34,2	I. 2330	5,2
. I3I	. 38802	171	. 71073	139	.8is 36	34,2	. 2325	5,2
. 132	- 38973	171	. 71212	139	.8il70	$34, \mathrm{I}$. 2320	5,2
. 133	. 39145	I7 I	.71351	139	. 81204	34, I	.2315	5,2
. 134	. 39316	171	. 71490	139	.81238	34,0	. 2309	5,2
I. 135	I. 39488	172	1.71630	I39	0.81272	33,9	I. 2304	5, I
. 136	. 39559	172	. 71769	140	.81306	33,9	. 2299	5, I
. 137	. 39831	172	. 71909	140	. SI 340	33,8	. 2294	5, I
. 138	. 40003	172	. 72049	140	. 81374	33,8	. 2289	5,I
. 139	. 40175	172	. 72189	140	.8I408	33,7	. 2284	5, I
I. 140	I. 40347	172	1.72329	140	0.81441	33,7	1. 2279	5, I
. 141	. 40520	172	. 72470	141	.81475	33,6	. 2274	5, I
. 142	. 40692	173	. 72610	I4I	.81509	33,6	. 2269	5, I
. I43	. 40855	173	. 72751	141	. 81542	33,5	. 2264	5,0
. 144	. 41038	173	. 72892	14 I	.81576	33,5	. 2259	5,0
I. I45	I.412II	173	I. 73033	141	0.81609	33,4	1. 2254	5,0
. 146	. 41384	173	. 73175	141	. 81642	33,3	. 2249	5,0
. 147	. 41557	173	. 73316	142	. 81676	33,3	. 2244	5,0
. 148	.4173I	173	. 73458	142	. 81709	33,2	. 2239	5,0
. 149	. 41904	174	. 73599	142	.81742	33,2	. 2234	5,0
I. 150	I. 42078	I74	I.7374I	142	0.81775	33,1	I .2229	5,0
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\csc \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 150	I. 42078	174	1.73741	- 142	0.81775	33, I	I. 2229	5,0
. 151	. 42252	174	. 73884	142	.81809	33,I	. 2224	4,9
. 152	. 42426	174	. 74026	142	.81842	33,0	. 2219	4,9
. 153	. 42600	174	.74168	143	.81875	33,0	. 2214	4,9
. 154	. 42774	174	. 74311	143	.81907	32,9	. 2209	4,9
1. 155	1. 42948	174	I. 74454	143	0.81940	32,9	1.2204	4,9
. 156	. 43123	175	. 74597	143	. 81973	32,8	. 2199	4,9
. 157	. 43297	175	. 74740	143	. 82006	32,8	. 2194	4,9
. 158	. 43472	175	. 74884	143	. 82039	32,7	. 2189	4,9
. 159	. 43647	175	. 75027	144	. 82071	32,6	. 2185	4,8
I. 160	I. 43822	I75	I.75171	144	0.82104	32,6	1.2180	4,8
.16I	. 43998	175	. 75315	144	.82137	32,5	. 2175	4,8
. 162	. 44173	175	. 75459	144	. 82169	32,5	. 2170	4,8
. 163	. 44349	176	. 75603	144	. 82202	32,4	. 2165	4,8
. 164	. 44524	176	. 75748	145	. 82234	32,4	. 2160	4,8
1. 165	I. 44700	176	1.75892	145	0.82266	32,3	I. 2156	4,8
. 166	. 44876	176	. 76037	145	. 82299	32,3	. 2151	4,8
. 167	. 45052	176	. 76182	145	. 82331	32,2	. 2146	4,8
. 168	. 45228	176	. 76327	145	. 82363	32,2	.2141	4,7
. 169	. 45405	176	. 76472	145	. 82395	32,I	. 2137	4,7
1.170	I.4558I	177	1.76618	146	0.82427	32,I	I. 2132	4,7
-171	. 45758	177	. 76764	146	. 82459	32,0	. 2127	4,7
. 172	. 45935	177	. 76909	146	. 82491	32,0	. 2123	4,7
. 173	.461 12	177	. 77056	146	. 82523	$3 \mathrm{I}, 9$. 21 I8	4,7
. 174	. 46289	177	. 77202	146	. 82555	31,8	. 2113	4,7
I. 175	I. 46466	177	1. 77348	146	0.82587 .	31,8	1. 2108	4,7
. 176	. 46644	177	. 77495	147	. 82619	$3 \mathrm{I}, 7$. 2104	4,7
. 177	. 46821	178	. 77641	147	. 82650	31,7	. 2099	4,6
. 178	. 46999	178	. 77788	147	. 82682	31,6	. 2095	4,6
. 179	. 47 I 77	178	. 77935	147	.82714	31,6	. 2090	4,6
1.180	1. 47355	178	1.78083	147	0.82745	31,5	I. 2085	4,6
. 18 I	. 47533	178	. 78230	148	. 82777	31,5	.208I	4,6
. 182	.4771	178	. 78378	148	. 82808	3I,4	. 2076	4,6
.183	. 47890	179	. 78525	148	. 82840	$3 \mathrm{I}, 4$.2072	4,6
. 184	. 48068	179	. 78673	148	.82871	31,3	. 2067	4,6
I. 185	I. 48247	179	1.78822	148	0.82902	3I,3	1. 2062	4,6
. 186	. 48426	179	. 78970	148	. 82933	$3 \mathrm{I}, 2$. 2058	4,5
. 187	. 48605	179	. 79119	149	. 82965	$3 \mathrm{I}, 2$. 2053	4,5
. 188	. 48784	179	. 79267	149	. 82996	$3 \mathrm{I}, \mathrm{I}$. 2049	4,5
. 189	. 48964	179	.79416	149	.83027	3I, I	. 2044	4,5
1. 190	I. 49143	180	1.79565	149	0.83058	31,0	1. 2040	4,5
. 191	. 49323	180	. 79714	149	. 83089	31,0	. 2035	4,5
. 192	. 49502	180	. 79864	150	. 83120	30,9	. 2031	4,5
. 193	. 49682	180	. 80013	150	.8315I	30,9	. 2026	4.5
. 194	. 49862	180	. 80163	150	. 83182	30,8	. 2022	4,5
I. 195	1.50043	180	1.80313	150	0.83212	30,8	1.2017	4,4
. 196	. 50223	180	. 80463	150	. 83243	30,7	. 2013	4,4
. 197	. 50404	18 I	. 80614	150	. 83274	30,7	. 2009	4,4
. 198	. 50584	18 I	. 80764	151	. 83304	30,6	. 2004	4,4
. 199	. 50765	181	. 80915	151	. 83335	30,6	. 2000	4,4
1.200	I. 50946	181	1.81066	151	0.83365	30,5	I. 1995	4,4
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.200	1. 50946	181	1.81066	15 I	0.83355	30,5	I. 1995	4,4
. 201	. 51127	I8I	. 812 I 7	151	. 83396	30,5	. 1991	4,4
. 202	. 51309	181	.81368	151	. 83426	30,4	. 1987	4,4
. 203	. 51490	182	.81519	151	. 83457	30,3	. 1982	4,4
. 204	. 51672	182	.81671	152	. 83487	30,3	. 1978	4,3
1.205	1. 51853	182	1.81823	152	0.83517	30,2	I. 1974	4,3
. 206	. 52035	182	.81974	152	. 83548	30,2	. 1969	4,3
. 207	. 52217	182	. 82127	152	. 83578	30,1	. 1965	4,3
. 208	. 52400	182	. 82279	152	. 83608	30,1	. 1961	4,3
. 209	. 52582	182	. 8243 I	153	. 83538	30,0	. 1956	4,3
1.210	1. 52764	183	1.82584	153	0.83668	30,0	I. 1952	4,3
. 211	. 52947	183	. 82737	${ }^{1} 53$. 83698	29,9	. 1948	4,3
. 212	. 53130	183	. 82890	153	. 83728	29,9	. 1943	4,3
.213	. 53313	183	. 83043	153	. 83758	29,8	. 1939	4,3
. 214	. 53496	183	. 83197	153	. 83788	29,8	. 1935	4,2
1.215	1. 53679	183	1.83350	154	0.83817	29,7	I. 193I	4,2
. 216	. 53863	184	. 83504	154	. 83847	29,7	. 1926	4,2
. 217	. 54046	184	. 83658	154	. 83877	29,6	. 1922	4,2
. 218	. 54230	184	. 83812	154	. 83906	29,6	. 1918	4,2
. 219	. 54414	184	. 83966	154	. 83936	29,5	. 1914	4,2
1.220	I. 54598	184	I. 8412 I	155	0.83965	29,5	I. 1910	4,2
. 22 I	. 54782	184	. 84276	155	. 83995	29,4	. 1905	-4,2
. 222	. 54966	184	. 84430	155	. 84024	29,4	. 1901	4,2
.223	. 55151	185	. 84586	155	. 84054	29,3	. 1897	4,2
. 224	. 55336	185	. 84741	155	. 84083	29,3	. 1893	4, I
I. 225	I. 55520	185	1. 84896	156	0.84112	29,3	I. 1889	4,I
. 226	. 55705	185	. 85052	156	. 84142	29,2	. 1885	4, I
. 227	. 55891	185	. 85208	156	.84I7I	29,2	. I88I	4, I
. 228	. 56076	185	. 85364	156	. 84200	29, I	. 1877	4, I
. 229	. 5626 I	186	. 85520	156	. 84229	29,1	. 1872	4, I
I. 230	I. 56447	186	I. 85676	156	0.84258	29,0	I. 1868	4, I
. 231	. 56633	186	. 85833	157	. 84287	29,0	. 1864	4, I
. 232	. 568 I9	186	. 85989	157	. 84316	28,9	. 1860	4, I
. 233	. 57005	186	. 86146	157	. 84345	28,9	. 1856	4, I
. 234	. 57191	186	. 86303	157	. 84374	28,8	. 1852	4, I
I. 235	1. 57377	186	I. 86461	157	0.84402	28,8	I. 1848	4,0
. 236	. 57564	187	. 86618	158	. 84431	28,7	. I844	4,0
.237	. 57750	187	. 86776	158	. 84460	28,7	. 1840	4,0
. 238	. 57937	187	. 86934	158	. 84488	28,6	. 1836	4,0
. 239	. 58124	187	. 87092	158	. 84517	28,6	. 1832	4,0
I. 240	I. 583 II	187	1. 87250	158	0.84546	28,5	I. 1828	4,0
. 241	. 58499	187	. 87408	158	. 84574	28,5	. 1824	4,0
. 242	. 58686	188	. 87567	159	. 84602	28,4	. 1820	4,0
.243	. 58874	188	. 87726	159	. 84631	28,4	. 1816	4,0
. 244	. 59062	188	. 87885	159	. 84659	28,3	. 1812	4,0
I. 245	I. 59250	188	1. 88044	159	0.84688	28,3	1. 1808	3,9
. 246	. 59438	188	. 88203	159	. 84716	28,2	. 1804	3,9
. 247	. 59626	188	. 88363	160	. 84744	28,2	. 1800	3,9
. 248	. 59815	189	. 88522	160	. 84772	28, 1	. 1796	3,9
. 249	. 60003	189	. 88682	160	. 84800	28, I	. 1792	3,9
I 250	1.60192	189	1.88842	160	0.84828	28,0	1.1789	3,9
u	$\boldsymbol{t a n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}$.	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 250	1.60192	189	1. 88842	160	0.84828	28,0	I. 1789	3,9
.25I	.6038I	189	. 89003	160	. 84856	28,0	. 1785	3,9
. 252	. 60570	189	. 89163	161	. 84884	27,9	. 1781	3,9
. 253	. 60759	189	. 89324	161	. 84912	27,9	. 1777	3,9
. 254	. 60949	189	. 89485	161	. 84940	27,9	. 1773	3,9
I. 255	1.61138	190	1.89646	161	0.84968	27,8	1. 1769	3,9
. 256	. 61328	190	. 89807	161	. 84996	27,8	. 1765	3,8
. 257	. 61518	190	. 89968	162	. 85023	27,7	. 1761	3,8
. 258	.61708	190	.90130	162	. 85051	27,7	. 1758	3,8
. 259	. 61898	190	. 90292	162	. 85079	27,6	. I754	3,8
1. 260	1.62088	190	I. 90454	162	0.85106	27,6	I. 1750	3,8
. 261	. 62279	I9I	. 90616	162	. 85134	27,5	. 1746	3,8
. 262	. 62470	I9I	. 90778	162	.85161	27,5	. 1742	3,8
. 263	. 6266 I	I9I	.9094I	163	. 85189	27,4	. I739	3,8
. 264	. 62851	19I	.91104	163	. 85216	27,4	. I735	3,8
1. 265	1.63043	191	1.91267	163	0.85244	27,3	1.173I	3,8
. 266	. 63234	191	. 91430	163	.8527I	27,3	.1727	3,8
. 267	. 63426	192	.91593	163	. 85298	27,2	. 1724	3,7
. 268	. 63617	192	.91757	164	. 85325	27,2	. I720	3,7
. 269	. 63809	192	. 91920	164	. 85353	27, I	. 1716	3,7
1.270	1.64001	192	1.92084	164	0.85380	27,I	I. I7I2	3,7
. 27 I	. 64193	192	. 92248	164	. 85407	27,I	. I709	3,7
. 272	. 64386	192	.92413	164	. 85434	27,0	. 1705	3,7
. 273	. 64578	193	. 92577	165	.8546I	27,0	. 1701	3,7
. 274	. 64771	193	. 92742	165	. 85488	26,9	. 1698	3,7
1.275	I. 64964	193	I. 92907	165	0.85515	26,9	I. 1694	3,7
. 276	. 65157	193	. 93072	165	. 85542	26,8	. 1690	3,7
. 277	. 65350	193	. 93237	165	. 85568	26,8	. 1687	3,7
. 278	. 65543	193	. 93402	166	. 85595	26,7	. 1683	3,6
. 279	. 65736	194	. 93568	166	. 85622	26,7	. 1679	3,6
1.280	1. 65930	194	I. 93734	166	0.85648	26,6	1. 1676	3,6
.28I	. 66124	194	. 93900	166	. 85675	26,6	. 1672	3,6
. 282	.66318	194	. 94066	166	. 85702	26,6	. 1568	3,6
.283	. 66512	194	. 94233	167	. 85728	26,5	. 1665	3,6
. 284	. 66706	194	. 94399	167	. 85755	26,5	. 1661	3,6
I. 285	1.66901	195	1.94566	167	0.8578 I	26,4	1. 1658	3,6
. 286	. 67096	195	. 94733	167	. 85808	26,4	. 1654	3,6
. 287	. 67290	195	. 94900	167	. 85834	26,3	. 1650	3,6
. 288	.67485	195	. 95068	167	. 85860	26,3	. 1647	3,6
. 289	. 67680	195	. 95235	168	. 85886	26,2	. 1643	3,6
1.290	1.67876	195	1.95403	168	0.85913	26,2	I. 1640	3,5
. 291	. 68071	196	. 95571	168	. 85939	26,1	. 1636	3,5
. 292	. 68267	196	. 95739	168	. 85965	26,1	. I633	3,5
. 293	. 68463	196	. 95907	168	. 85991	26,1	. 1629	3,5
. 294	. 68659	196	. 96076	169	.86017	26,0	. 1626	3,5
	1. 68855	196	1.96245	169	0.86043	26,0	1. 1622	3,5
. 296	. 69051	196	. 96414	169	. 86069	25,9	. 1619	3,5
. 297	. 69248	197	.96583	169	. 86095	25,9	. I6I5	3,5
. 298	. 69444	197	. 96752	169	.86I2I	25,8	. 1612	3,5
. 299	. 69641	197	. 96922	170	. 86147	25,8	. 1608	3,5
1.300	I. 69838	197	1.97091	170	0.86172	25,7	1.1005	3,5
u	$\boldsymbol{t a n} \mathrm{g} \mathrm{d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{c s c} \boldsymbol{g d} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.300	I. 69838	197	1.97091	170	0.86172	25,7	1.1605	3,5
. 301	. 70035	197	.9726I	170	.85i98	25,7	. Ifoi	3,5
- 302	. 70233	197	.9743I	170	. 86224	25,7	. 1598	3,5
. 303	. 70430	198	. 97602	170	. 86249	25,6	. I594	3,4
. 304	. 70628	198	. 97772	171	. 86275	25,6	. I59I	3,4
1.305	I. 70826	198	I. 97943	171	0.86300	25,5	1. 1587	3,4
. 306	. 71024	198	.98II4	171	. 86326	25,5	. 1584	3,4
. 307	. 71222	198	. 98285	171	.8635I	25,4	. 158 I	3,4
. 308	. 71420	198	. 98456	171	. 86377	25,4	. 1577	3,4
. 309	.71619	199	. 98628	172	. 86402	25,3	. 1574	3,4
1.310	1.718I8	199	1.98800	172	0.86428	25,3	I. 1570	3,4
. 311	. 72017	199	. 98972	172	. 86453	25,3	. 1567	3,4
. 312	. 72216	199	.99I44	172	. 86478	25,2	. 1564	3,4
. 313	. 72415	199	. 99316	172	. 85503	25,2	. 1560	3,4
. 314	. 72614	199	. 99489	173	. 86528	25, I	. 1557	3,4
1.315	1.72814	200	I.9966I	173	0.86554	25, I	I. 1554	3,3
. 316	. 73014	200	. 99834	173	. 86579	25,0	. 1550	3,3
. 317	. 73214	200	2.00007	173	. 86604	25,0	. 1547	3,3
. 318	.73414	200	.0018I	173	. 86629	25,0	. 1544	3,3
. 319	.73614	200	. 00354	174	. 86653	24,9	. I540	3,3
1.320	1.73814	201	2.00528	174	0.85578	24,9	I. 1537	3,3
. 321	. 74015	201	. 00702	174	. 85703	24,8	. I534	3,3
. 322	. 74216	201	. 00876	174	. 85728	24,8	. 1530	3,3
. 323	. 74417	201	. 01050	174	. 85753	24,7	. 1527	3,3
. 324	. 74618	201	. 01225	175	. 85778	24,7	. 1524	3,3
1.325	I.74819	201	2.01399	175	0.85802	24,7	1. 1520	3,3
. 326	. 75021	202	. 01574	175	. 85827	24,6	. 1517	3,3
. 327	. 75222	202	. O1749	175	.85851	24,6	. 1514	3,3
. 328	. 75424	202	. 01925	175	. 86876	24,5	. I5II	3,2
. 329	. 75626	202	.02100	176	. 86900	24,5	. 1507	3,2
1.330	1. 75828	202	2.02276	176	0.86925	24,4	1. 1504	3,2
. 33 I	. 76031	202	. 02452	176	. 86949	24,4	. 1501	3,2
. 332	. 76233	203	. 02628	175	. 86974	24,4	. I498	3,2
. 333	. 76436	203	. 02804	175	. 86998	24,3	. I495	3,2
. 334	. 76639	203	.0298I	I77	. 87022	24,3	. I49I	3,2
I. 335	1.76842	203	2.03158	177	0.87047	24,2	I. I488	3,2
. 336	. 77045	203	. 03335	177	. 87071	24,2	. I485	3,2
. 337	. 77249	204	.03512	177	. 87095	24, I	. I482	3,2
. 338	. 77452	204	. 03689	177	.87II9	24, I	. 1479	3,2
. 339	. 77656	204	. 03867	178	. 87143	24, I	. 1475	3,2
I. 340	I. 77860	204	2.04044	178	0.87167	24,0	I. 1472	3,2
. 341	. 78064	204	. 04222	178	. 87191	24,0	. 1469	3,2
. 342	. 78268	204	. 04401	178	. 87215	23,9	. 1466	3 3,
. 343	. 78473	205	. 04579	178	. 87239	23,9	. I463	3 , 1
. 344	. 78677	205	. 04758	179	. 87263	23,9	. 1460	3, I
	1. 78882	205	2.04936	179	0.87287	23,8	I. 1456	3, I
. 346	. 79087	205	.05115	179	. 8731 I	23,8	. I453	3 , 1
. 347	. 7929.3	205	. 05294	179	. 87334	23,7	. I450	3, I
. 348	. 79498	205	. 05474	179	. 87358	23,7	. 1447	3,1
- 349	. 79704	206	. 05653	180	. 87382	23,6	. I444	3,1
I. 350	I. 79909	206	2.05833	180	0.87405	23,6	I. 1441	3, 1
u	$\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 350	1. 79909	206	2.05833	180	0.87405	23,6	I. 1441	3, I
. 351	. 80115	206	.06013	180	. 87429	23,6	. 1438	3,1
. 352	. 8032 I	206	. 06194	180	. 87452	23,5	. I435	3, I
. 353	. 80528	206	. 06374	18 I	. 87476	23,5	. I432	3,I
. 354	. 80734	207	. 06555	I8I	. 87499	23,4	. I429	3,I
I. 355	I. 80941	207	2.06735	181	0.87523	23,4	I. 1426	3,1
. 356	.81148	207	. 06916	I8I	. 87546	23,4	. 1423	3,0
. 357	.81355	207	. 07098	18 I	. 87570	23,3	.1419	3,0
. 358	. 81562	207	. 07279	182	. 87593	23,3	.1416	3,0
. 359	.81769	207	. 0746 I	182	. 87616	23,2	. I4I3	3,0
I. 360	1.81977	208	2.07643	182	0.87639	23,2	1. 1410	3,0
. 361	. 82184	208	. 07825	182	. 87662	23,2	. 1407	3,0
. 362	. 82392	208	. 08007	182	. 87686	23, I	. I404	3,0
. 363	. 82600	208	.08190	183	. 87709	23,1	. I40I	3,0
.364	. 82809	208	. 08372	183	. 87732	23,0	. 1398	3,0
1. 365	1.83017	209	2.08555	183	0.87755	23,0	I. I395	3,0
. 366	. 83226	209	. 08738	183	. 87778	23,0	. 1392	3,0
. 367	. 83435	209	. 08922	183	. 87801	22,9	. I389	3,0
. 368	. 83644	209	. 09105	184	. 87824	22,9	. 1386	3,0
.369	. 83853	209	. 09289	184	. 87846	22,8	. I384	3,0
1.370	1. 84062	209	2.09473	184	0.87869	22,8	I. 1381	3,0
. 371	. 84272	210	. 09657	184	. 87892	22,7	. 1378	2,9
. 372	. 84482	210	. 09841	184	. 87915	22,7	. I375	2,9
. 373	. 84691	210	. 10026	185	. 87937	22,7	. I372	2,9
. 374	. 84902	210	. 102 I I	185	. 87960	22,6	. I369	2,0
1.375	1.85112	210	2. 10396	185	0.87983	22,6	1. 1366	2,9
. 376	. 85322	211	. 10581	185	. 88005	22,6	. I363	2,9
. 377	. 85533	2 II	. 10766	186	. 88028	22,5	. 1360	2,9
. 378	. 85744	2 II	. 10952	186	. 88050	22,5	. I357	2,9
. 379	. 85955	2 II	. III38	186	. 88073	22,4	. I354	2,9
1.380	1.86166	2II	2. II324	186	0.88095	22,4	I. I351	2,9
. 381	. 86378	212	. II510	186	.88117	22,4	. I348	2,9
. 382	. 86589	212	. II697	187	.88I40	22,3	. I346	2,9
. 383	. 85801	212	. 11883	187	.88162	22,3	. I343	2,9
. 384	. 87013	212	. 12070	187	.88I84	22,2	. I340	2,9
I. 385	1.87225	212	2.12257	187	0.88207	22,2	I. 1337	2,9
. 386	. 87437	212	. 12445	187	. 88229	22,2	. I334	2,8
. 387	. 87650	213	. 12632	188	. 8825 I	22, I	. 1331	2,8
. 388	. 87863	213	. 12820	188	. 88273	22,I	. I328	2,8
. 389	. 88076	213	. 13008	188	. 88295	22,0	. 1326	2,8
1.390	1. 88289	213	2.13196	188	0.88317	22,0	I. 1323	2,8
. 391	. 88502	213	. 13385	189	. 88339	22,0	. 1320	2,8
. 392	. 88716	214	. 13573	189	.8836I	21,9	.1317	2,8
- 393	. 88929	214	. 13762	189	. 88383	21,9	-I314	2,8
- 394	. 89143	214	. 13951	189	. 88405	21,8	. 1312	2,8
I . 395	1. 89357	214	2.14I40	I89	0.88427	21,8	1. 1309	2,8
. 396	. 89571	214	. 14330	190	. 88448	21,8	. 1306	2,8
. 397	. 89786	215	. I4520	190	. 88470	21,7	. 1303	2,8
. 398	. 90000	215	. 14709	190	. 88492	21,7	. 1300	2,8
- 399	. 90215	215	. 14900	190	. 88513	21,7	. 1298	2,8
I. 400	I. 90430	215	2.15090	190	0.88535	21,6	I. 1295	2,8
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sin \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{Fo}^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\text {o }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.400	1.90430	215	2.15090	190	0.88535	21,6	I. 1295	2,8
. 401	. 90645	215	. 15280	191	. 88557	21,6	. 1292	2,8
. 402	. 90861	215	. 15471	191	. 88578	21,5	. 1289	2,7
. 403	. 91076	216	. 15662	191	. 88600	21,5	. 1287	2,7
. 404	. 91292	216	. 15853	191	. 8852 I	21,5	. 1284	2,7
1. 405	1.91508	216	2.16045	192	0.88643	21,4	I. 128 I	2,7
. 406	. 91724	216	. 16236	192	. 88564	21,4	. 1279	2,7
. 407	. 91940	216	. 16428	192	. 88686	21,3	. 1276	2,7
. 408	. 92157	217	. 16620	192	. 88707	21,3	. 1273	2,7
. 409	. 92374	217	. 16812	192	. 88728	21,3	. 1270	2,7
I.410	1.92591	217	2.17005	193	0.88749	21,2	1. 1268	2,7
. 411	. 92808	217	. 17198	193	. 88771	21,2	. 1265	2,7
.412	. 93025	217	. 17391	193	. 88792	21,2	. 1262	2,7
. 413	. 93242	218	. 17584	193	. 88813	21,1	. 1260	2,7
. 414	. 93460	218	. 17777	193	. 88834	21,1	. 1257	2,7
I.415	1.93678	218	2.17971	194	0.88855	21,0	1.1254	2,7
. 416	. 93896	218	. 18164	194	. 88876	21,0	. 1252	2,7
. 417	. 94114	218	. 18358	194	. 88897	21,0	. 1249	2,7
. 418	. 94333	219	. 18553	194	. 88918	20,9	. 1246	2,6
. 419	.94551	219	. 18747	195	. 88939	20,9	. 1244	2,6
1. 420	1.94770	219	2. 18942	195	0.88960	20,9	1. 1241	2,6
. 421	. 94989	219	. 19137	195	. 88981	20,8	.1238	2,6
. 422	. 95209	219	. 19332	195	. 89002	20,8	. 1236	2,6
423	. 95428	220	- 19527	195	. 89022	20,8	. 1233	2,6
. 424	. 95648	220	. 19723	196	. 89043	20,7	. 1231	2,6
1.425	1.95867	220	2. 19918	196	0.89064	20,7	1. 1228	2,6
. 426	. 96087	220	. 20114	196	. 89084	20,6	. 1225	2,6
. 427	. 96308	220	. 20310	196	. 89105	20,6	. 1223	2,6
. 428	. 96528	221	. 20507	197	. 89126	20,6	. 1220	2,6
. 429	. 96749	221	. 20704	197	. 89146	20,5	. 1218	2,6
I. 430	1.96970	221	2.20900	197	0.89167	20,5	1.1215	2,6
.431	.97191	221	. 21097	197	. 89187	20,5	.1212	2,6
. 432	. 97412	221	. 21295	197	. 89208	20,4	. 1210	2,6
. 433	. 97633	221	. 21492	198	. 89228	20,4	. 1207	2,6
- 434	. 97855	222	. 21690	198	. 89248	20,3	. 1205	2,6
	1.98076	222	2.21888	198	0.89269	20,3	I. 1202	2,5
. 436	. 98298	- 222	. 22086	198	. 89289	20,3	. 1200	2,5
. 437	. 9852 I	222	. 22285	199	. 89309	20,2	. 1197	2,5
. 438	. 98743	222	. 22483	199	. 89329	20,2	. 1195	2,5
-439	. 98966	223	. 22682	199	. 89350	20,2	. 1192	2,5
I. 440	I. 99188	223	2.2288 I	199	0.89370	20, I	1. 1189	2,5
.44I	. 9941 I	223	. 23080	199	. 89390	20,1	. 1187	2,5
. 442	. 99635	223	. 23280	200	. 89410	20,1	. 1184	2,5
. 443	. 99858	223	. 23480	200	. 89430	20,0	. 1182	2,5
. 444	2.00082	224	. 23680	200	. 89450	20,0	. 1179	2,5
I. 445	2.00305	224	2.23880	200	0.89470	20,0	I. 1177	2,5
. 446	. 00529	224	. 24080	201	. 89490	19,9	. 1174	2,5
. 447	. 00753	224	. 2428I	201	. 89510	19,9	. 1172	2,5
. 448	. 00978	224	. 24482	201	. 89530	19,8	. 1169	2,5
. 449	. 01202	225	. 24683	201	. 89550	19,8	. 1167	2,5
I. 450	2.01427	225	2.24884	201	0.89569	19,8	1.1165	2,5
u	$\boldsymbol{t a n ~ g d ~ u ~}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{s i n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.450	2.01427	225	2.24884	201	0.89569	19,8	1. 1165	2,5
.451	. 01652	225	. 25086	202	. 89589	19,7	. 1162	2,5
. 452	. 01877	225	. 25288	202	. 89609	19,7	. 1160	2,5
. 453	. 02103	225	. 25490	202	. 89628	19,7	. 1157	2,4
. 454	. 02328	226	. 25692	202	. 89648	19,6	. 1155	2,4
I. 455	2.02554	226	2.25894	203	0.89668	19,6	I. II52	2,4
. 456	. 02780	226	. 26097	203	. 89687	19,6	. 1150	2,4
. 457	. 03006	226	. 26300	203	. 89707	19,5	. 1147	2,4
. 458	. 03233	227	. 26503	203	. 89726	19,5	. II45	2,4
. 459	. 03459	227	. 26706	203	. 89746	19,5	. II43	2,4
1. 460	2.03686	227	2.26910	204	0.89765	19,4	I. 1140	2,4
. 461	. 03913	227	.27114	204	. 89785	19,4	. 1138	2,4
. 462	. 04140	227	. 27318	204	. 89804	19,4	. II35	2,4
.463	. 04368	228	. 27522	204	. 89823	19,3	. II33	2,4
. 464	. 04595	228	. 27726	205	. 89843	19,3	. II3 I	2,4
1.465	2.04823	228	2.27931	205	0.89862	19,2	I. 1128	2,4
. 466	.05051	228	. 28136	205	. 8988 I	19,2	. 1126	2,4
. 467	. 05280	228	. 28341	205	. 89900	19,2	. II23	2,4
. 468	. 05508	229	. 28547	206	. 89920	19, I	. I121	2,4
. 469	. 05737	229	. 28752	206	. 89939	19, I	. III9	2,4
1.470	2.05965	229	2.28958	206	0.89958	19, 1	I. 1116	2,4
. 471	. 06195	229	. 29164	206	. 89977	19,0	. III4	2,4
. 472	. 06424	229	. 29370	206	. 89996	19,0	. 11112	2,3
. 473	. 06653	230	. 29577	207	. 90015	19,0	. 1109	2,3
. 474	. 06883	230	. 29784	207	. 90034	18,9	. 1107	2,3
1.475	2.07113	230	2.29991	207	0.90053	18,9	I. 1105	2,3
. 476	. 07343	230	. 30198	207	. 90072	18,9	. 1102	2,3
. 477	. 07573	230	. 30405	208	. 90090	18,8	. 1100	2,3
. 478	. 07804	231	. 30613	208	.90109	18,8	. 1098	2,3
. 479	. 08034	231	. 3082 I	208	. 90128	18,8	. 1095	2,3
1.480	2.08265	231	2.31029	208	0.90147	18,7	1.1093	2,3
.481	. 08497	231	. 31238	208	. 90166	18,7	. 1091	2,3
. 482	. 08728	231	. 31446	209	. 90184	18,7	. 1088	2,3
.483	. 08959	232	. 31655	209	. 90203	18,6	. 1086	2,3
. 484	.09191	232	-.31864	209	. 9022 I	18,6	. 1084	2,3
1. 485	2.09423	232	2.32073	209	0.90240	18,6	1. 1082	2,3
. 486	. 09655	232	. 32283	210	. 90259	18,5	. 1079	2,3
. 487	. 09888	232	. 32493	210	. 90277	18,5	. 1077	2,3
. 488	. 10120	233	. 32703	210	. 90296	18,5	. 1075	2,3
. 489	. 10353	233	. 32913	210	. 90314	18,4	.1072	2,3
I. 490	2. 10586	233	2.33123	2 II	0.90332	18,4	1.1070	2,3
. 491	. 10819	233	. 33334	2 II	. 90351	18,4	. 1068	2,2
. 492	. 11053	234	- 33545	211	. 90369	18,3	. 1056	2,2
. 493	. 11286	234	. 33756	2 II	. 90388	18,3	. 1063	2,2
. 494	. 11520	234	. 33968	212	. 90406	18,3	. 1061	2,2
I. 495	2. II754	234	2.34179	212	0.90424	18,2	1. 1059	2,2
. 496	. 11989	234	. 34391	212	. 90442	18,2	. 1057	2,2
. 497	. 12223	235	. 34603	212	. 90460	18,2	. 1055	2,2
. 498	. 12458	235	. 34816	212	. 90479	18,I	. 1052	2,2
. 499	. 12693	235	-35028	213	. 90497	18, 1	. 1050	2,2
1.500	2.12928	235	2.35241	213	0.90515	18,1	I. 1048	2,2
u	$\tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.500	2.12928	235	2.35241	213	0.90515	18,1	1. 1048	2,2
. 501	. 13163	235	- 35454	213	. 90533	18,0	. 1046	2,2
. 502	. I3399	236	. 35667	213	. 9055 I	18,0	. 1044	2,2
. 503	. I3635	236	.3588I	214	. 90569	18,0	. 1041	2,2
. 504	. 13871	236	. 36095	214	. 90587	17,9	. 1039	2,2
1.505	2.14107	236	2.36309	214	0.90605	17,9	I. 1037	2,2
. 506	. 14343	237	. 36523	214	. 90623	17,9	. 1035	2,2
. 507	. 14580	237	. 36737	215	.9064I	17,8	. 1033	2,2
. 508	. 14817	237	. 36952	215	. 90658	17,8	. 1030	2,2
. 509	. 15054	237	. 37167	215	. 90676	17,8	. 1028	2,2
1.510	2. I 5291	237	2.37382	215	0.90694	17,7	1. 1026	2,2
.5II	. 15529	238	. 37597	216	. 90712	17,7	. 1024	2,2
. 512	. 15766	238	.37813	216	. 90729	17,7	. 1022	2,I
. 513	. 16004	238	. 38029	216	. 90747	17,6	. 1020	2,I
. 514	. 16242	238	. 38245	216	. 90765	17,6	. 1018	2,1
1.515	2.1648I	238	2.3846 I	216	0.90782	17,6	I. 1015	2,I
. 516	. 16719	239	. 38678	217	. 90800	17,6	. 1013	2,1
. 517	. 16958	239	. 38895	217	.90817	17,5	. IOII	2,I
. 518	. 17197	239	-39112	217	. 90835	17,5	. 1009	2,I
. 519	. 17436	239	. 39329	217	. 90852	17,5	. 1007	2,1
1.520	2.17676	240	2.39547	218	0.90870	17,4	1. 1005	2,1
. 52 I	.17915	240	. 39765	218	. 90887	17,4	. 1003	2,I
. 522	. 18155	240	. 39983	218	. 90905	17,4	. 1001	2, I
. 523	. 18395	240	. 40201	218	. 90922	17,3	. 0998	2,I
. 524	. 18636	240	. 40419	219	. 90939	17,3	. 0996	2,I
1.525	2. 18876	24 I	2.40638	219	0.90957	17,3	1.0994	2,I
. 526	. 19117	24 I	. 40857	219	. 90974	17,2	. 0992	2,I
. 527	. 19358	24 I	. 41076	219	. 90991	17,2	. 0990	2,I
. 528	. 19599	24 I	. 41296	220	. 91008	17,2	. 0988	2,I
. 529	. 19840	242	.41516	220	. 91025	17,I	. 0986	2,I
1.530	2.20082	242	2.41736	220	0.91042	17,I	I. 0984	2,I
. 531	. 20324	242	. 41956	220	. 91060	17,I	. 0982	2,I
. 532	. 20566	242	. 42176	221	. 91077	17, I	. 0980	2,I
. 533	. 20808	242	. 42397	221	.91094	17,0	. 0978	2,I
. 534	.2105I	243	. 42618	221	.9IIII	17,0	. 0976	2,0
1.535	2.21293	243	2.42839	22I	0.91128	17,0	1.0974	2,0
. 536	. 21536	243	. 43060	222	.91I45	16,9	. 0972	2,0
. 537	. 21780	243	. 43282	222	.9116I	16,9	. 0970	2,0
. 538	. 22023	244	. 43504	222	.91178	16,9	. 0968	2,0
. 539	. 22267	244	. 43726	222	.91195	16,8	. 0965	2,0
1.540	2.22510	244	2.43949	223	0.91212	16,8	1.0963	2,0
. 541	. 22755	244	. 44171	223	. 91229	16,8	.0961	2,0
. 542	. 22999	244	. 44394	223	. 91246	16,7	. 0959	2,0
. 543	. 23243	245	. 44617	223	. 91262	16,7	. 0957	2,0
. 544	. 23488	245	. 4484 I	223	.91279	16,7	. 0955	2,0
I. 545	2.23733	245	2.45064	224	0.91296	16,7	1. 0953	2,0
. 546	. 23978	245	. 45288	224	. 91312	16,6	.0951	2,0
. 547	. 24224	246	. 45512	224	. 91329	16,6	. 0949	2,0
. 548	. 24469	246	. 45736	224	. 91345	16,6	. 0947	2,0
. 549	. 24715	246	. 4596 I	225	.91362	16,5	. 0945	2,0
1.550	2.24961	246	2.46186	225	0.91379	16,5	I. 0943	2,0
4	$\boldsymbol{t a n} \mathbf{g d} \mathbf{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\tanh u$	$\omega F_{0}{ }^{\circ}$	$\operatorname{coth} u$	$\omega F_{0}{ }^{\prime}$
I. 550	2.24961	246	2.46186	225	0.91379	16,5	1.0943	2,0
. 551	. 25207	246	. 46411	225	. 91395	16,5	. 0942	2,0
. 552	. 25454	247	. 46636	225	.914II	16,4	. 0940	2,0
. 553	. 25701	247	. 46868	226	.91428	16,4	. 0938	2,0
. 554	. 25948	247	. 47088	226	.91444	16,4	. 0936	2,0
I. 555	2.26195	247	2.47314	226	0.91461	16,3	1.0934	2,0
. 556	. 26442	248	. 47540	226	. 91477	16,3	. 0932	2,0
. 557	. 26690	248	. 47767	227	. 91493	16,3	. 0930	I,9
. 558	. 26938	248	. 47993	227	.91510	16,3	. 0928	I,9
. 559	. 27186	248	. 4822 I	227	.91526	16,2	. 0926	1,9
1.560	2.27434	248	2.48448	227	0.91542	16,2	1.0924	1,9
. 561	. 27683	249	. 48675	228	.91558	16,2	. 0922	1,9
. 562	. 27932	249	. 48903	228	.91574	16,1	. 0920	1,9
. 563	.28I8I	249	. 49131	228	.91591	16, I	. 0918	I,9
. 564	. 28430	249	. 49360	228	.91607	16,1	. 0916	I,9
I. 565	2.28679	250	12.49588	229	0.91623	16, I	1.0914	1,9
. 566	. 28929	250	. 49817	229	. 91639	16,0	.0912	1,9
. 567	. 29179	250	. 50046	229	. 91655	16,0	.09II	I,9
. 568	. 29429	250	. 50275	229	.91671	I6,0	. 0909	1,9
. 569	. 29680	251	. 50505	230	.91687	15,9	. 0907	1,9
1.570	2.29930	251	2.50735	230	0.91703	15,9	1.0905	1,9
. 571	. 30181	251	. 50965	230	.91718	15,9	. 0903	1,9
. 572	. 30432	251	. 51195	230	. 91734	I 5,8	. 0901	1,9
. 573	. 30583	251	. 51426	23 I	.91750	I5,8	. 0899	1,9
. 574	- 30935	252	. 51656	231	.91766	15,8	. 0897	1,9
1. 575	2.31187	252	2.51887	231	0.91782	15,8	1.0895	1,9
. 576	. 31439	252	. 52119	231	.91797	15,7	. 0894	1,9
. 577	.31691	252	. 52350	232	.918I3	15,7	. 0892	1,9
. 578	. 31943	253	. 52582	232	.91829	15,7	. 0890	1,9
. 579	. 32196	253	. 52814	232	.91845	15,6	. 0888	1,9
1.580	2.32449	253	2.53047	232	0.91860	15,6	1.0886	1,9
. 581	. 32702	253	. 53279	233	.91876	15,6	. 0884	1,8
. 582	- 32956	254	. 53512	233	.91891	I5,6	. 0882	I,8
. 583	. 33209	254	. 53745	233	. 91907	15,5	.088I	I,8
. 584	. 33463	254	. 53978	233	. 91922	15,5	. 0879	I,8
1. 585	2.33717	254	2.54212	234	0.91938	15,5	1.0877	I,8
. 586	. 33972	254	. 54446	234	. 91953	15,4	. 0875	I,8
. 587	- 34226	255	. 54680	234	.91969	15,4	. 0873	I,8
. 588	-34481	255	. 54914	234	. 91984	15,4	. 0871	1,8
. 589	. 34736	255	. 55149	235	. 92000	15,4	. 0870	1,8
I. 590	2.34991	255	2.55384	235	0.92015	15,3	1.0868	I,8
. 591	. 35247	256	. 55619	235	. 92030	15,3	. 0866	I,8
. 592	. 35502	256	. 55854	236	. 92046	I5,3	. 0864	I,8
. 593	- 35758	256	. 56090	236	.9206I	15,2	. 0862	I,8
. 594	. 36015	256	. 56326	236	. 92076	15,2	.086I	I,8
I. 595	2.36271	257	2.56562	236	0.92091	15,2	I. 0859	I,8
. 596	. 36528	257	. 56798	237	. 92106	15,2	. 0857	I,8
. 597	- 36785	257	. 57035	237	. 92122	15,I	. 0855	I,8
. 598	- 37042	257	. 57272	237	. 92137	15, I	. 0853	I,8
. 599	. 37299	258	. 57509	237	.92152	15,1	. 0852	1,8
1.600	2.37557	258	2.57746	238	0.92167	I5, I	1. 0850	I,8
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{g} \mathrm{d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\csc \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	$\cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.600	2.37557	258	2.57746	238	0.9216\%	15, I	1. 0850	1,8
. 601	. 37815	258	. 57984	238	. 92182	15,0	. 0848	1,8
. 602	. 38073	258	. 58222	238	. 92197	15,0	. 0846	1,8
. 603	.3833I	258	. 58460	238	. 92212	15,0	. 0845	I,8
. 604	. 38590	259	. 58699	239	. 92227	I4,9	. 0843	I,8
1. 605	2.38849	259	2.58937	239	0.92242	14,9	1.0841	1,8
. 605	. 39108	259	. 59176	239	. 92257	14,9	. 0839	1,7
. 607	. 39367	259	. 59416	239	. 92272	14,9	. 0838	I,7
. 608	. 39626	260	. 59655	240	- 92286	14,8	. 0836	1,7
. 609	- 39886	260	- 59895	240	. 92301	14,8	. 0834	I,7
1.610	2.40146	260	2.60135	240	0.92316	14,8	1.0832	1,7
.6II	. 40406	260	. 60375	240	. 92331	14,8	. 0831	1,7
. 612	. 40567	261	. 60616	24 I	. 92346	14,7	. 0829	1,7
. 613	. 40928	261	. 60857	24 I	. 92360	14,7	. 0827	1,7
. 614	.41189	261	. 61098	24 I	. 92375	14,7	. 0825	1,7
1.615	2.41450	261	2.61339	241	0.92390	14,6	1.0824	1,7
. 616	. 41711	262	. 61581	242	. 92404	14,6	. 0822	1,7
. 617	. 41973	262	. 61822	242	. 92419	14,6	. 0820	I,7
. 618	. 42235	262	. 62064	242	. 92433	14,6	. 0819	1,7
. 619	. 42497	262	. 62307	242	. 92448	14,5	.0817	1,7
1.620	2.42760	263	2.62549	243	0.92462	14,5	1.0815	1,7
.621	. 43022	263	. 62792	243	. 92477	14,5	. 0814	1,7
. 622	. 43285	263	. 63035	243	. 92491	14,5	. 0812	1,7
. 623	. 43548	263	. 63279	244	. 92506	14,4	. 0810	1,7
. 624	-43812	264	. 63522	244	. 92520	14,4	. 0808	1,7
1. 625	2.44075	264	2.63767	244	0.92535	14,4	1.0807	1,7
. 626	. 44339	264	. 64011	244	. 92549	14,3	. 0805	1,7
. 627	. 44603	264	. 64255	245	. 92563	14,3	. 0803	I,7
. 628	. 44868	264	. 64500	245	. 92578	14,3	. 0802	1,7
. 629	. 45132	265	. 64745	245	. 92592	14,3	. 0800	1,7
1.630	2.45397	265	2.64990		0.92606	14,2	1.0798	1,7
.631	. 45662	265	. 65236	246	. 92620	14,2	. 0797	1,7
. 632	. 45928	265	. 65482	246	. 92635	14,2	. 0795	1,7
. 633	. 46193	266	- . 65728	246	. 92649	14,2	. 0793	1,6
. 634	. 46459	266	. 65974	246	. 92663	14,1	. 0792	1,6
1. 635	2.46725	266	2.66221	247	0.92677	14, I	1.0790	1,6
. 636	. 46992	266	. 66467	247	. 92691	I4, I	.0789	I,6
. 637	. 47258	267	. 66715	247	. 92705	14, 1	. 0787	I,6
. 638	. 47525	267	. 66962	248	. 92719	14,0	. 0785	1,6
. 639	. 47792	267	. 67210	248	. 92733	14,0	. 0784	1,6
1. 640	2.48059	267	2.67457	248	0.92747	14,0	1. 0782	1,6
.641	. 48327	268	. 67706	248	. 92761	I4,0	. 0780	1,6
. 642	. 48595	268	. 67954	249	. 92775	I3,9	. 0779	I,6
. 643	. 48853	268	. 68203	249	. 92789	12.9	. 0777	1,6
. 644	.49131	268	. 68452	249	. 92803	13,9	. 0776	1,6
1. 645	2.49400	269	2.68701	249	0.92817	13,9	1.0774	1,6
. 646	. 49669	269	. 68951	250	. 92831	$\begin{array}{r}13,8 \\ \text { 13 } \\ \hline\end{array}$. 0772	1,6 I,6
. 647	. 49938	269	. 69200	250	. 92884	13,8 13	. 0771	1,6 r,6
.648 .649	.50207 .50477	269 270	. 69451	250 250	. 92858	13,8 13,7	. 0769	1,6 1,6
1. 650	2.50746	270	2.69951	251	0.92886	13,7	1.0766	1,6
u	$\tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec $\mathrm{gd}^{\text {u }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega F_{0}{ }^{\prime}$
1.650	2.50746	270	2.69951	251	0.92885	13,7	1.0766	1,6
. 651	. 51017	270	. 70202	251	. 92899	I3,7	. 0764	I,6
. 652	. 51287	270	. 70454	251	.92913	13,7	. 0763	I,6
. 653	. 51557	271	. 70705	252	. 92927	I3,6	. 0761	I,6
. 654	. 51828	271	. 70957	252	. 92940	I3,6	. 0760	I,6
1. 655	2.52099	271	2.71209	252	0.92954	13,6	I. 0758	I,6
. 656	. 52371	271	.7146I	252	. 92968	13,6	. 0756	I,6
. 657	. 52642	272	. 71713	253	.9298I	13,5	. 0755	I,6
. 658	. 52914	272	. 71966	253	. 92995	13,5	. 0753	I,6
. 659	. 53186	272	. 72219	253	. 93008	I 3,5	. 0752	I,6
1.660	2.53459	272	2.72472	253	0.93022	I 3,5	1.0750	- 1,6
. 661	. 5373 I	273	. 72726	254	. 93035	13,4	. 0749	I,6
. 662	. 54004	273	. 72980	254	. 93049	13,4	. 0747	I,5
. 663	. 54277	273	. 73234	254	. 93062	I 3,4	. 0746	I,5
. 664	. 5455 I	273	. 73489	255	. 93075	I3,4	. 0744	I,5
1. 665	2.54824	274	2.73743	255	0.93089	13,3	1.0742	I,5
. 666	. 55098	274	. 73998	255	. 93102	I3,3	.074I	I,5
. 667	. 55372	274	. 74253	255	.93II5	I3,3	. 0739	I,5
. 668	. 55647	275	. 74509	256	.93I29	I3,3	. 0738	I,5
. 669	. 55921	275	. 74765	256	.93I42	I3,2	. 0736	I,5
1.670	2.56196	275	2.7502 I	256	0.93155	13,2	I. 0735	I,5
. 671	. 56471	275	. 75277	256	.93168	13,2	. 0733	I,5
. 672	. 56747	276	. 75534	257	. 93182	13,2	. 0732	I,5
. 673	. 57022	276	. 75791	257	.93195	I3,I	. 0730	I,5
. 674	. 57298	276	. 76048	257	. 93208	I3, I	. 0729	I,5
1.675	2.57574	276	2.76305	258	0.9322 I	I3,I	1.0727	I,5
. 676	. 5785 I	277	. 76563	258	:93234	I3,I	. 0725	I,5
. 677	. 58127	277	.7682I	258	. 93247	I3,0	. 0724	I,5
. 678	. 58404	277	. 77079	258	. 93260	I3,0	. 0723	I,5
. 679	. 58682	277	. 77338	259	. 93273	13,0	. 0721	I,5
1.680	2.58959	278	2.77596	259	0.93286	I3,0	1.0720	I,5
.681	. 59237	278	. 77856	259	. 93299	I3,0	. 0718	I,5
. 682	. 59515	278	.78115	260	. 93312	12,9	. 0717	I,5
. 683	. 59793	278	. 78375	250	. 93325	12,9	. 0715	I,5
. 684	. 60072	279	. 78635	260	. 93338	12,9	. 0714	I,5
1. 685	2.60350	279	2.78895	260	0.9335 I	12,9	1.0712	I,5
. 686	. 60629	279	.79155	26 I	. 93364	12,8	. 0711	1,5
. 687	. 60909	279	. 79416	251	. 93376	12,8	. 0709	I,5
. 688	.61 188	280	. 79677	26I	. 93389	12,8	. 0708	I,5
. 689	.61468	280	. 79938	26 I	. 93402	12,8	. 0706	I,5
1.690	2.61748	280	2.80200	262	0.93415	12,7	1.0705	I,5
. 691	. 62028	280	. 80462	262	. 93427	12,7	. 0703	I,5
. 692	. 62309	28I	. 80724	262	. 93440	12,7	. 0702	I,5
. 693	. 62590	28I	. 80987	263	. 93453	12,7	. 0701	I,5
. 694	. 62871	281	.81249	263	. 93465	12,6	. 0699	I,4
1.695	2.63152	282	2.81512	263	0.93478	12,6	1.0698	I,4
. 696	. 63434	282	.81776	263	. 93491	12,6	. 0696	I, 4
. 697	. 63716	282	. 82039	264	. 93503	12,6	. 0695	I,4
. 698	. 63998	282	. 82303	264	. 93516	12,5	. 0693	I,4
. 699	. 64280	283	. 82567	264	. 93528	12,5	. 0692	I,4
1.700	2.64563	283	2.82832	265	0.93541	12,5	1.069I	I.,4
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.700	2.64563	283	2.82832	265	0.93541	12,5	1.0591	I,4
. 701	. 64846	283	. 83096	265	. 93553	12,5	. 0689	I, 4
. 702	. 65129	283	. 83361	265	. 93566	12,5	. 0688	I, 4
. 703	. 65413	284	. 83627	265	. 93578	12,4	. 0586	I, 4
. 704	. 65697	384	. 83892	266	.93591	12,4	. 0685	I, 4
1.705	2.65981	284	2.84158	266	0.93603	12,4	1. 0683	I,4
. 706	. 66265	284	. 84424	266	. 93615	12,4	. 0682	I,4
. 707	. 66550	285	. 84690	267	. 93628	12,3	.0681	I, 4
. 708	. 66834	285	. 84957	267	. 93640	12,3	. 0679	I, 4
. 709	. 67119	285	. 85224	267	. 93652	12,3	. 0678	I, 4
I.710	2.67405	285	2.85491	267	0.93665	12,3	1.0676	I,4
. 711	. 67690	286	. 85759	268	. 93677	12,2	. 0675	I,4
. 712	. 67976	286	. 86027	268	. 93689	12,2	. 0674	I,4
.713	. 68262	286	. 86295	268	.93701	12,2	. 0672	I,4
. 714	. 68549	287	. 86563	269	.93714	12,2	. 0671	I,4
1.715	2.68836	287	2.86832	269	0.93726	12,2	1. 0669	I, 4
. 716	. 69123	287	.87101	269	. 93738	12, I	. 0668	I, 4
. 717	. 69410	287	. 87370	269	. 93750	12, I	. 0667	I, 4
. 718	. 69697	288	. 87640	270	. 93762	12, I	. 0665	I,4
. 719	. 69985	288	. 87910	270	. 93774	12,1	. 0664	I,4
1.720	2.70273	288	2.88180	270	0.93786	12,0	1.0663	I,4
. 721	. 70561	288	. 88450	271	. 93798	12,0	. 0661	I,4
. 722	. 70850	289	.88721	271	.93810	12,0	. 0660	I, 4
. 723	.71139	289	. 88992	271	. 93822	12,0	. 0658	I,4
. 724	. 71428	289	. 89263	271	. 93834	12,0	. 0657	I,4
1.725	2.71717	290	2.89535	272	0.93846	I 1,9	1.0656	I,4
. 726	. 72007	290	. 89807	272	. 93858	II,9	. 0654	I,4
. 727	. 72297	290	. 90079	272	. 93870	II,9	. 0653	I,3
. 728	. 72587	290	. 9035 I	273	. 93882	I 1,9	. 0652	I,3
. 729	. 72878	291	. 90624	273	. 93894	I I, 8	. 0650	I,3
1.730	2.73168	291	2.90897	273	0.93905	II,8	1. 0649	I,3
. 731	. 73460	291	.91170	273	. 93917	II,8	. 0648	I,3
. 732	. 73751	291	.91444	274	. 93929	I I, 8	. 0646	I,3
. 733	. 74042	292	.91718	274	.9394I	II, 8	. 0645	I,3
. 734	. 74334	292	. 91992	274	. 93953	II,7	. 0644	I,3
I. 735	2.74626	292	2.92266	275	0.93964	11,7	1.0642	I,3
. 736	. 74919	293	. 92541	275	. 93976	I I,7	. 0641	I,3
. 737	. 75211	293	. 92816	275	. 93988	I I,7	. 0640	I,3
. 738	. 75504	293	. 93092	276	-93999	11,6	.0638	I,3
. 739	. 75798	293	. 93367	276	.940I I	I 1,6	. 0537	1,3
1.740	2.76091	294	2.93643	276	0.94023	II,6	1.0536	I,3
.741	. 76385	294	. 93919	276	. 94034	II, 6	. 0634	I,3
. 742	. 76579	294	. 94196	277	. 94046	I I, 6	. 0633	I,3
. 743	. 76973	294	. 94473	277	. 94057	II,5	. 0632	I, 3
. 744	. 77268	295	. 94750	277	. 94069	II,5	.053I	I,3
1.745	2.77563	295	2.95027	278	0.94080	II,5	1.0629	1,3
. 746	. 77858	295	. 95305	278	. 94092	II,5	. 0528	I,3
. 747	. 78153	296	. 95583	278	. 94103	II,4	. 0627	I,3
.748	. 78449	296	.9586I	278	.94115	II, 4	. 0625	I,3 I,3
. 749	. 78745	296	. 90140	279	-94126	II,4	. 0624	1,3
1.750	2.7904 I	296	2.96419	279	0.94138	II,4	1.0623	I,3
u	$\tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	sec od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n g d u}$	$\omega F_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\text {a }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.750	2.79041	296	2.96419	279	0.94138	II,4	1.0623	1,3
. 751	. 79338	297	. 96698	279	.94149	II,4	.062 I	I,3
. 752	. 79635	297	. 96978	280	.94160	II,3	. 0620	I,3
. 753	. 79932	297	. 97257	280	. 94172	II,3	. 0619	I,3
. 754	. 80229	298	. 97537	280	.94183	II,3	.06I8	I,3
I. 755	2.80527	298	2.97818	28I	0.94194	II,3	1.0616	I,3
. 756	. 80825	298	. 98098	28I	. 94205	II,3	.0615	I,3
. 757	.81123	298	. 98379	28 I	. 94217	11,2	.06I4	I,3
. 758	.81422	299	. 98661	28 I	-. 94228	11,2	.06I3	I,3
. 759	.81721	299	. 98942	282	. 94239	II,2	.06II	1,3
1.760	2.82020	299	2.99224	282	0.94250	II,2	1.0610	I,3
. 761	. 82319	300	. 99506	282	. 94261	II, I	. 0609	I,3
. 762	.82619	300	. 99789	283	. 94273	II,I	. 0608	I,3
. 763	. 82919	300	3.00072	283	. 94284	II, I	. 0606	I,2
. 764	. 83219	300	. 00355	283	. 94295	II, I	. 0605	I,2
1.765	2.83519	301	3.00638	284	0.94306	II, I	1.0604	I,2
. 766	. 83820	301	. 00922	284	. 94317	II,O	. 0603	I,2
. 767	. 84121	301	. 01205	284	. 94328	II,0	.0601	I,2
. 768	. 84422	301	. 01490	284	. 94339	II,O	. 0600	I,2
.769	. 84724	302	. 01774	285	. 94350	II,0	. 0599	I,2
1.770	2.85026	302	3.02059	285	0.94361	11,0	I. 0598	1,2
. 771	. 85328	302	. 02344	285	. 94372	10,9	. 0596	1,2
. 772	. 85631	303	. 02630	286	. 94383	10,9	. 0595	I,2
. 773	. 85933	303	. 02916	286	. 94394	10,9	. 0594	1,2
. 774	. 86237	303	. 03202	286	. 94405	10,9	. 0593	I,2
1.775	2.86540	303	3.03488	287	0.94416	10,9	I.059I	1,2
. 776	. 85844	304	. 03775	287	. 94426	10,8	. 0590	I,2
. 777	. 87147	304	. 04052	287	. 94437	10,8	. 0589	I,2
. 778	. 87452	304	. 04349	287	. 94448	10,8	. 0588	1,2
. 779	. 87756	305	. 04637	288	. 94459	10,8	. 0587	I,2
1.780	2.88061	305	3.04925	288	0.94470	10,8	1.0585	1,2
.781	. 88366	305	. 05213	288	. 94480	10,7	. 0584	1,2
. 782	. 88671	306	. 05501	289	.9449I	10,7	. 0583	1,2
. 783	. 88977	306	. 05790	289	. 94502	10,7	. 0582	1,2
. 784	.89283	306	. 06079	289	. 94513	10,7	.0581	1,2
1.785	2.89589	306	3.06369	290	0.94523	10,7	I. 0579	1,2
. 786	. 89896	307	. 06659	290	. 94534	10,6	. 0578	1,2
. 787	. 90202	307	. 05949	290	. 94544	10,6	. 0577	I,2
. 788	. 90510	307	. 07239	291	. 94555	10,6	. 0576	1,2
.789	.90817	308	. 07530	291	. 94565	10,6	. 0575	I,2
1.790	2.91125	308	3.07821	291	0.94576	10,6	1.0574	1,2
.791	.91433	308	.08112	291	. 94587	10,5	. 0572	1,2
. 792	.91741	308	. 08403	292	. 94597	10,5	. 0571	1,2
. 793	. 92049	309	. 08695	292	. 94608	10,5	. 0570	1,2
. 794	. 92358	309	. 08988	292	.94618	10,5	. 0569	I,2
1.795	2.92667	309	3.09280	293	0.94629	10,5	1.0568	1,2
. 796	. 92977	310	. 09573	293	. 94639	10,4	. 0566	1,2
. 797	. 93287	310	. 09856	293	. 94649	IO,4	. 0565	1,2
. 798	. 93597	310	. 10160	294	. 94660	10,4	. 0564	1,2
. 799	. 93907	310	. 10453	294	. 94670	10,4	. 0563	1,2
1.800	2.94217	3 II	3.10747	294	0.94681	10,4	1. 0562	1,2
u	$\boldsymbol{t a n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{g}$ d u	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	ωF_{0}	$\operatorname{coth} u$	$\omega F_{0}{ }^{\prime}$
1.800	2.94217	311	3.10747	294	0.9468I	10,4	1. 0562	1,2
. 801	. 94528	3 II	. I 1042	295	.9469I	10,3	.056I	I,2
. 802	. 94840	3 II	. 11336	295	. 94701	10,3	. 0560	I,2
. 803	.95151	312	. 11631	295	. 94712	10,3	. 0558	I, I
. 804	. 95463	312	. 11927	295	. 94722	10,3	. 0557	I, I
1.805	2.95775	312	3.12222	296	0.94732	10,3	1.0556	I, I
. 806	. 96087	313	. 12518	296	. 94742	10,2	. 0555	I, I
. 807	. 96400	3 I 3	. 12814	296	. 94753	10,2	. 0554	I, I
. 808	. 96713	313	. 13 III	297	. 94763	10,2	. 0553	I, I
. 809	. 97026	313	. 13408	297	. 94773	10,2	. 0552	I, I
1.8 IO	2.97340	314	3.13705	297	0.94783	10,2	I. 0550	I, I
.8II	. 97654	314	. 14003	298	. 94793	10, I	. 0549	I, I
.812	. 97968	314	. 14300	298	. 94803	10, I	. 0548	I, I
. 813	. 98282	315	. 14599	298	.94814	10,1	. 0547	I, I
.814	. 98597	315	. 14897	299	. 94824	10, 1	. 0546	I, I
1.815	2.98912	3 I 5	3.15196	299	0.94834	10,I	I. 0545	I, I
.816	. 99227	315	. 15495	299	. 94844	10,0	. 0544	I, I
.817	. 99543	316	. 15794	300	. 94854	10,0	. 0543	I, I
. 818	. 99859	316	. 16094	300	. 94864	10,0	.054I	I, I
. 819	3.00175	316	. 16394	300	. 94874	10,0	. 0540	I, I
1.820	3.00492	317	3. 16694	300	0.94884	10,0	1.0539	I, I
. 821	. 00808	3 I 7	. 16995	301	. 94894	10,0	. 0538	I, I
. 822	. 01126	317	. I7296	301	. 94904	9,9	. 0537	I, I
. 823	. 01443	318	. I7597	301	. 94914	9,9	. 0536	I, I
. 824	. 01761	318	. 17899	302	. 94924	9,9	. 0535	I, I
1. 825	3.02079	318	3. 18201	302	0.94933	9,9	1.0534	I, I
. 826	. 02397	319	. 18503	302	. 94943	9,9	. 0533	I, I
. 827	. 02716	319	. 18805	303	. 94953	9,8	. 0532	I, I
. 828	. 03035	319	. 19108	303	. 94963	9,8	. 0530	I, I
. 829	. 03354	319	. 194 II	303	. 94973	9,8	. 0529	I, I
1.830	3.03674	320	3.19715	304	0.94983	9,8	1.0528	I, I
. 831	. 03994	320	. 20019	304	. 94992	9,8	. 0527	I, I
. 832	. 04314	320	. 20323	304	. 95002	9,7	. 0526	I, I
. 833	. 04634	321	. 20627	305	. 95012	9,7	. 0525	I, I
. 834	. 04955	321	. 20932	305	. 95022	9,7	. 0524	I, I
1.835	3.05276	321	3.21237	305	0.95031	9,7	1.0523	I, I
. 836	. 05597	322	. 21543	306	. 9504 I	9,7	. 0522	I, I
. 837	. 05919	322	. 21849	306	. 95051	9,7	. 0521	I, I
. 838	.05241	322	. 22155	306	. 95060	9,6	. 0520	I, I
. 839	. 05563	322	. 22461	307	. 95070	9,6	. 0519	I, I
I. 840	3.06886	323	3.22768	307	0.95080	9,6	1.0518	I, I
.84I	. 07209	323	. 23075	307	. 95089	9,6	.05I6	I, I
. 842	. 07532	323	. 23382	308	. 95099	9,6	.0515	I, I
. 843	. 07856	324	. 23690	308	.95108	9,5	.0514	I, I
. 844	.08180	324	. 23998	308	.951 18	9,5	. 0513	I, I
I. 845	3.08504	324	3.24306	309	0.95127	9,5	1.0512	I, I
- .846	. 08828	325	. 24615	309	.95137	9,5	.0511	1,0
. 847	. 09153	325	. 24924	309	. 95146	9,5	. 0510	1,0
.848	. 09478	325	. 25233	309	.95156	9,5	. 0509	1,0
. 849	. 09803	326	. 25543	310	.95165	9,4	. 0508	1,0
1.850	3.10129	326	3.25853	310	0.95175	9,4	1.0507	I,O
u	$\boldsymbol{t a n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.850	3. 10129	326	3.25853	310	0.95175	9,4	1.0507	1,0
. 851	. 10455	326	. 26163	310	. 95184	9,4	. 0506	I, 0
. 852	. 1078 I	326	. 26474	311	. 95193	9,4	. 0505	1,0
. 853	. 11108	327	. 26785	3 II	. 95203	9,4	. 0504	1,0
. 854	. 11435	327	. 27096	3 II	.95212	9,3	. 0503	1,0
1. 855	3.11762	327	3.27408	312	0.95221	9,3	1.0502	1,0
. 856	. 12090	328	. 27719	312	.9523I	9,3	.0501	1,0
. 857	. 12418	328	. 28032	312	. 95240	9,3	. 0500	1,0
. 858	. 12746	328	. 28344	313	-95249	9,3	. 0499	1,0
. 859	. 13074	329	. 28657	313	-95259	9,3	. 0498	1,0
1.860	3.13403	329	3.28970	313	0.95268	9,2	1.0497	1,0
. 861	. 13732	329	. 29284	314	. 95277	9,2	. 0496	1,0
. 862	. 14062	330	. 29598	314	. 95286	9,2	. 0495	1,0
. 863	- 14392	330	. 29912	314	. 95296	9,2	. 0494	1,0
. 864	. 14722	330	-30227	315	. 95305	9,2	. 0493	1,0
1.865	3.15052	33 I	3.30542	315	0.95314	9,2	1.0492	1,0
. 866	. 15383	331	. 30857	315	. 95323	9, I	.0491	1,0
. 867	. 15714	33I	. 31172	316	. 95332	9,I	. 0490	1,0
. 868	. 16045	331	. 31488	316	.95341	9, I	. 0489	1,O
. 869	. 16377	332	-31804	316	-95350	9,I	. 0488	I, 0
1.870	3. 16709	332	3.32121	317	0.95359	9,I	1.0487	I,O
. 871	.17041	332	. 32438	317	. 95368	9,0	. 0486	1,0
. 872	. 17374	333	- 32755	317	- 95378	9,0	. 0485	1,0
. 873	- 17706	333	- 33073	318	-95387	9,0	. 0484	1,0
. 874	. 18040	333	. 33390	318	. 95396	9,0	. 0483	1,0
I. 875	3. 18373	344	3.33709	318	0.95405	9,0	1.0482	1,0
. 876	. 18707	334	- 34027	319	. 95414	9,0	.048I	1,0
. 877	. 19041	334	- 34346	319	. 95422	8,9	. 0480	I,O
. 878	. 19376	335	. 34665	319	.9543I	8,9	. 0479	1,0
. 879	. 197 II	335	. 34985	320	. 95440	8,9	. 0478	I,O
1.880	3.20046	335	3.35305	320	0.95449	8,9	1.0477	1,0
. 88 I	.20381	336	. 35625	320	. 95458	8,9	. 0476	I,O
. 882	. 20717	336	. 35946	321	. 95467	8,9	. 0475	1,0
. 883	. 21053	336	- 36266	321	- 95476	8,8	. 0474	1,0
. 884	. 21390	337	-36588	32 I	- 95485	8,8	. 0473	1,0
1.885	3.21726	337	3.36909	322	0.95493	8,8	1.0472	I, 0
. 886	. 22063	337	. 37231	322	. 95502	8,8	. 0471	1,0
. 887	. 22401	338	- 37553	322	-95511	8,8	. 0470	1,0
. 888	. 22738	338	- 37876	323	- 95520	8,8	. 0469	I, 0
. 889	. 23076	338	-38199	323	-95529	8,7	. 0468	I,O
1.890	3.23415	339	3.38522	323	0.95537	8,7	1.0467	I,O
. 891	. 23753	339	. 38846	324	. 95546	8,7	. 0466	I,O
. 892	. 24093	339	- 39170	324	. 95555	8,7	. 0465	I,O
. 893	. 24432	339	- 39494	324	- 95563	8,7	. 0464	I,O
. 894	. 24772	340	- 39818	325	. 95572	8,7	. 0463	0,9
1. 895	3.25112	340	3.40143	325	0.9558 I	8,6	1.0462	0,9
. 896	. 25452	340	. 40469	325	. 95588	8,6	. 0461	0,9
. 897	. 25792	341	. 40794	326	. 95598	8,6	. 0460	0,9
. 898	. 26133	341	.41120	326	-95607	8,6	. 0460	0,9
. 899	. 26475	341	.41447	326	-95615	8,6	. 0459	0,9
1.900	3.26816	342	3.41773	327	0.95624	8,6	1.0458	0,9
u	$\boldsymbol{t a n} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { c o s h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{c o t h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.900	3.26816	342	3.41773	327	0.95624	8,6	1.0458	0,9
.90I	.27158	342	. 42100	327	. 95632	8,5	. 0457	0,9
. 902	. 27500	342	. 42427	328	.9564I	8,5	. 0456	0,9
. 903	. 27843	343	. 42755	328	. 95649	8,5	. 0455	0,9
. 904	. 28186	343	. 43083	328	. 95658	8,5	. 0454	0,9
1.905	3.28529	343	3.43412	329	0.95666	8,5	I. 0453	0,9
. 906	. 28873	344	. 43740	329	. 95675	8,5	. 0452	0,9
. 907	. 29217	344	. 44069	329	. 95683	8,4	.045I	0,9
. 908	. 2956I	344	. 44399	330	. 95692	8,4	. 0450	0,9
. 909	. 29906	345	. 44728	330	. 95700	8,4	. 0449	0,9
1.910	$3 \cdot 30250$	345	3.45058	330	0.95709	8,4	1.0448	0,9
.91I	. 30596	345	. 45389	33 I	. 95717	8,4	. 0447	0,9
. 912	. 3094 I	346	. 45720	33 I	. 95725	8,4	. 0447	0,9
. 913	. 31287	346	. 46051	331	. 95734	8,4	. 0446	0,9
.914	. 31633	346	. 46382	332	. 95742	8,3	. 0445	0,9
1.915	3.31980	347	3.46714	332	0.95750	8,3	1.0444	0,9
. 916	. 32327	347	. 47046	332	. 95759	8,3	. 0443	0,9
.917	. 32674	347	. 47379	333	. 95767	8,3	. 0442	0,9
.918	. 33021	348	. 47712	333	. 95775	8,3	.044I	0,9
. 919	. 33369	348	. 48045	333	. 95783	8,3	. 0440	0,9
1.920	3.33718	348	3.48378	334	0.95792	8,2	1.0439	0,9
. 921	. 34066	349	. 48712	334	. 95800	8,2	. 0438	0,9
. 922	. 34415	349	. 49046	334	.95808	8,2	. 0438	0,9
. 923	. 34764	349	.4938I	335	.95816	8,2	. 0437	0,9
. 924	.35II4	350	. 49716	335	.95825	8,2	. 0436	0,9
1.925	3.35464	350	$3 \cdot 50051$	335	0.95833	8,2	1. 0435	0,9
. 926	. 35814	350	. 50387	336	.9584I	8,1	. 0434	0,9
. 927	. 36164	351	. 50723	336	. 95849	8, I	. 0433	0,9
. 928	. 36515	351	. 51059	337	. 95857	8, I	. 0432	0,9
. 929	. 36867	351	. 51396	337	. 95865	8,1	.043I	0,9
1.930	3.37218	352	3.51733	337	0.95873	8, I	1. 0430	0,9
.93I	. 37570	352	. 52070	338	.9588I	8, I	. 0430	0,9
. 932	. 37922	352	. 52408	338	. 95890	8, I	. 0429	0,9
. 933	. 38275	353	. 52746	338	. 95898	8,0	. 0428	0,9
. 934	. 38628	353	. 53085	339	. 95906	8,0	. 0427	0,9
I. 935	$3 \cdot 3898 \mathrm{I}$	353	$3 \cdot 53423$	339	0.95914	8,0	1. 0426	0,9
. 936	. 39335	354	. 53763	339	. 95922	8,0	. 0.425	0,9
. 937	. 39689	354	. 54102	. 340	. 95930	8,0	. 0424	0,9
. 938	. 40043	354	. 54442	340	. 95938	8,0	. 0423	0,9
. 939	. 40397	355	. 54782	340	. 95945	7,9	. 0423	0,9
1.940	3.40752	355	3.55123	341	- 0.95953	7,9	1.0422	0,9
.94I	. 41108	355	. 55464	341	.9596I	7,9	.0421	0,9
. 942	. 41463	356	. 55805	341	. 95969	7,9	. 0420	0,9
. 943	.41819	356	. 56147	342	. 95977	7,9	.0419	0,9
. 944	. 42176	356	. 56489	342	. 95985	7,9	.0418	0,9
1.945	3.42532	357	3.56831	343	0.95993	7,9	1.0417	0,9
. 946	. 42889	357	. 57174	343	. 96001	7,8	.0417	0,9
. 947	. 43247	358	. 57517	343	. 96009	7,8	.0416	0,9
. 948	. 43604	358	. 57860	344	.96016	7,8	.0415	0,9
. 949	. 43962	358	. 58204	344	.96024	7,8	.04I4	0,9
1.950	3.4432 I	359	3.58548	344	0.96032	7,8	1.0413	0,8
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	sec gd u	${ }_{0}{ }^{\text {F }}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega F^{\prime}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.950	3.14321	359	$3 \cdot 58548$	344	0.96032	7,8	1.0413	0,8
. 951	. 44679	359	. 58893	345	. 96040	7,8	. 0412	
. 952	. 45038	359	. 59237	345	. 96047	7,7	. 0412	
. 953	. 45398	360	. 59583	345	. 96055	7,7	.04II	
. 954	. 45758	360	- 59928	346	. 96053	7,7	. 0410	
1.955	3.46118	360	3.60274	346	0.95071	7,7	1.0409	0,8
. 956	. 46478	361	. 60620	346	. 96078	7,7	. 0408	
. 957	. 46839	261	. 60967	347	.96086	7,7	. 0407	
. 958	. 47200	361	.6I3I4	347	. 96094	7,7	. 0407	
. 959	. 47562	362	. 61662	348	.96101	7,6	. 0406	
1.950	3.47923	362	3.62009	348	0.96109	7,6	1.0405	0,8
-961	. 48286	362	. 62357	348	.96117	7,6	. 0404	
. 952	. 48648	363	. 62706	349	.96124	7,6	. 0403	
. 963	. 4901 I	363	. 63055	349	.96132	7,6	. 0402	
. 964	. 49374	363	. 63404	349	. 96139	7,6	. 0402	
1.965	3.49738	364	3.63753	350	0.96147	7,6	I. 0401	0,8
. 966	. 50102	364	. 64103	350	. 96155	7,5	. 0400	
. 957	. 50466	364	. 64454	350	.96162	7,5	. 0399	
. 968	. 50831	365	. 64804	35 I	.96I70	7,5	. 0398	
. 969	. 51196	365	. 65155	35 I	.95177	7,5	. 0397	
1.970	3.51561	366	3.65507	352	0.96185	7,5	1.0397	0,8
. 971	. 51927	366	. 65858	352	.96192	7,5	. 0396	
. 972	. 52293	366	. 662 I I	352	.96199	7,5	. 0395	
. 973	. 52659	367	. 66563	353	.96207	7,4	. 0394	
. 974	. 53026	367	-. 66916	353	.96214	7,4	. 0393	
1.975	$3 \cdot 53393$	367	3.67269	353	0.96222	7,4	1.0393	0,8
. 976	. 53760	368	. 67623	354	. 96229	7,4	. 0392	
. 977	. 54128	368	. 67977	354	. 96237	7,4	.0391	
. 978	. 54495	368	. 68331	354	.96244	7,4	. 0390	
. 979	. 54855	369	. 68686	355	.9525I	7,4	. 0389	
1.980	$3.55234{ }^{\text { }}$	369	3.69041	355	0.96259	7,3	I. 0389	0,8
.98I	. 55603	369	. 69395	356	.96255	7,3	. 0388	
. 982	. 55972	370	. 69752	356	. 96273	7,3	. 0387	
. 983	. 56342	370	. 70108	356	.9528I	7,3	. 0386	
. 984	. 56713	370	. 70465	357	. 96288	7,3	. 0386	
1.985	3.57083	371	3.70821	357	0.96295	7,3	1. 0385	0,8
. 985	. 57454	371	. 71179	357	. 96302	7,3	. 0384	
. 987	. 57826	372	. 71536	358	.96310	7,2	. 0383	
. 988	. 58197	372	. 71894	358	.963I7	7,2	. 0382	
.989	. 58569	372	. 72253	359	.95324	7,2	. 0382	
1.990	$3 \cdot 58942$	373	3.726 II	359	0.9633 I	7,2	I. 038 I	0,8
.99I	. 59315	373	. 72971	359	. 96339	7,2	. 0380	
. .992	. 59588	373	. 73330	360	. 96346°	7,2	. 0379	
. 993	. 60061	374	.73690	350	. 96353	7,2	. 0379	
. 994	. 60435	374	. 74050	350	. 96360	7,1	. 0378	
1.995	3.60809	374	3.744 II	361	0.96367	7,I	1.0377	0,8
. 996	.6I I84	375	. 74772	361	. 95374	7,1	. 0376	
. 997	. 61559	375	. 75133	362	. 96382	7,I	. 0375	
. 998	. 61934	375	. 75495	362	. 96389	7, I	. 0375	
. 999	. 62310	376	. 75857	362	. 96396	7,I	. 0374	
2.000	3.62686	376	3.76220	363	0.95403	7,I	1.0373	0,8
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega F_{0}{ }^{\text {, }}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.000	3.62686	376	3.76220	363	0.96403	7,1	1. 0373	0,8
. 01	. 63062	377	. 76582	363	.95410	7,1	. 0372	
. 002	. 63439	377	. 76946	363	. 96417	7,0	. 0372	
. 003	. 63816	377	. 77309	364	. 96424	7,0	. 0371	
. 004	. 64194	378	. 77673	364	. 9643 I	7,0	. 0370	
2.005	3.64572	378	3.78038	365	0.96438	7,0	1.0369	0,8
. 006	. 64950	378	. 78402	365	. 96445	7,0	. 0369	0,8
. 007	. 65328	379	. 78768	365	. 96452	7,0	. 0368	0,7
. 008	. 65707	379	. 79133	366	. 96459	7,0	. 0367	
. 009	. 66087	379	. 79499	366	. 96466	6,9	. 3366	
2.010	3.66466	380	3.79865	366	0.96473	6,9	1.0366	0,7
. OII	. 66846	380	. 80232	367	. 96480	6,9	. 0365	0,
. 012	. 67227	38 I	. 80599	367	. 95487	6,9	. 0364	
. 013	. 67608	381	. 80966	368	. 96493	6,9	. 0363	
. 014	. 67989	38I	.81334	368	. 96500	6,9	. 0363	
2.015	3.68370	382	3.81702	368	0.96507	6,9	1.0362	0,7
. 016	. 68752	382	. 82071	369	. 96514	6,9	.0361	
. 017	. 69134	382	. 82440	369	. 9652 I	6,8	. 0360	
.oı8	. 69517	383	. 82809	370	. 96528	6,8	. 0360	
. 019	. 69900	383	. 83179	370	. 96535	6,8	. 0359	
2.020	3.70283	384	3.83549	370	0.96541	6,8	1.0358	0,7
. 021	. 70667	384	. 83919	37 I	. 96548	6,8	. 0358	
. 022	. 71051	384	. 84290	37 I	. 96555	6,8	. 0357	
. 023	. 71436	385	. 84662	371	. 96562	6,8	. 0356	
. 024	. 71821	385	. 85033	372	. 96568	6,7	. 0355	
2.025	3.72206	385	3.85405	372	0.96575	6,7	1.0355	0,7
. 025	. 72591	386	. 85778	373	. 96582	6,7	. 0354	
. 027	. 72977	386	. 86150	373	. 96589	6,7	. 0353	
. 028	. 73364	387	. 86524	373	. 96595	6,7	. 0352	
. 029	. 73750	387	. 86897	374	. 96602	6,7	. 0352	
2.030	3.74138	387	3.87271	374	0.96609	6,7	1.0351	0,7
.031	. 74525	388	. 87645	375	.96515	6,7	. 0350	
. 032	. 74913	388	. 88020	375	. 96622	6,6	. 0350	
. 033	. 75301	388	. 88395	375	. 96629	6,6	. 0349	
. 034	. 75690	389	. 8877 I	376	.96635	6,6	. 0348	
2.035	3.76079	389	3.89147	376	0.96642	6,6		0,7
. 036	. 76468	390	. 89523	376	. 96648	6,6	. 0347	
. 037	. 76858	390	. 89900	377	. 96655	6,6	. 0346	
. 038	. 77248	390	. 90277	377	. 96662	6,6	. 0345	
. 039	. 77638	391	. 90654	378	. 96668	6,6	. 0345	
2.040	3.78029	391	3.91032	378	0.96675	6,5	I. 0344	0,7
. 041	. 78120	391	. 91410	378	. 9668 I	6,5	. 0343	
. 042	. 78812	392	. 91789	379	. 96688	6,5	. 0343	
. 043	. 79204	392	. 92168	379	. 96694	6,5	. 0342	
. 044	. 79596	393	. 92547	380	.96701	6,5	.034I	
2.045	3.79989	393	3.92927	380	0.96707	6,5	1.0340	0,7
. 046	. 80382	393	. 93307	380	. 95714	6,5	. 0340	
. 047	. 80776	394	. 93688	38 I	. 96720	6,5	. 0339	
. 048	. 81169	394	. 94069	381	. 96727	6,4	. 0338	
. 049	.81564	394	. 94450	382	. 96733	6,4	. 0338	
2.050	3.81958	395	3.94832	382	0.96740	6,4	1.0337	0,7
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.050	3.81958	395	3.94832	382	0.96740	6,4	1.0337	0,7
. 051	. 82353	395	. 95214	382	. 96746	6,4	. 0336	
. 052	. 82749	396	. 95597	383	. 96752	6,4	. 0336	
. 053	. 83145	396	. 95979	383	. 96759	6,4	. 0335	
. 054	. 8354 I	396	. 96363	384	. 96765	6,4	. 0334	
2.055	3.83937	397	3.96747	384	0.96771	- 6,4	1.0334	0,7
. 056	. 84334	397	.97131	384	. 96778	6,3	. 0333	
. 057	. 84732	398	. 97515	385	. 96784	6,3	. 0332	
. 058	. 85129	398	-97900	385	. 96790	6,3	. 0332	
. 059	. 85527	398	. 98285	386	. 95797	6,3	.033I	
2.060	3.85926	399	3.98571	386	0.96803	6,3	1.0330	0,7
. 061	. 85325	399	. 99057	386	. 96809	6,3	. 0330	
. 062	. 86724	399	. 99444	387	. 96816	6,3	. 0329	
. 063	. 87124°	400	. 99831	387	. 96822	6,3	. 0328	
. 064	. 87524	400	4.00218	388	. 96828	6,2	. 0328	
2.065	3.87924	401	4.00606	388	0.96834	6,2	1.0327	0,7
. 066	. 88325	401	. 00994	388	. 9684	6,2	. 0326	
. 067	. 88726	401	. 01382	389	. 96847	6,2	. 0326	
. 068	. 89128	402	. 01771	389	. 96853	6,2	. 0325	
. 069	. 89530	402	.02161	390	. 96859	6,2	. 0324	
2.070	3.89932	403	4.02550	390	0.96865	6,2.	1.0324	0,7
. 071	. 90335	403	. 02941	390	. 96872	6,2	. 0323	
. 072	. 90738	403	.03331	391	. 96878	6,1	. 0322	
. 073	.91141	404	. 03722	391	. 96884	6,1	. 0322	
:074	.91545	404	.04113	392	. 96890	6, I	. 0321	
2.075	3.91950	405	4.04505	392	0.96896	6, 1	1.0320	0,7
. 076	. 92354	405	. 04897	392	. 96902	6,1	. 0320	0,6
. 077	. 92759	405	. 05290	393	. 96908	6, I	. 0319	
. 078	. 93165	406	. 05683	393	. 96914	6, I	.0318	
. 079	.9357I	406	. 06076	394	. 96920	6, I	. 0318	
2.080	3.93977	406	4.06470	394	0.96926			0,6
. 081	. 94384	407	. 06864	394	. 96933	6,0	. 0316	
. 082	. 94791	407	. 07259	395	. 96939	6,0	. 0316	
. 083	. 95198	408	. 07654	395	. 96945	6,0	. 0315	
. 084	. 95606	408	. 08049	396	. 96951	6,0	. 0315	
2.085	3.96014	408	4.08445	396	0.96957	6,0	1.0314	0,6
. 086	. 96423	409	.0884I	396	. 96963	6,0	. 0313	
. 087	. 96832	409	. 09238	397	. 96969	6,0	. 0313	
. 088	. 9724 I	410	. 09635	397	. 96975	6,0	.0312	
. 089	.9765I	410	. 10032	398	. 96980	5,9	.03II	
2.090	3.98061	410	4. 10430	398	0.96986	5,9	1.0311	o,6
. 091	. 98472	411	. 10828	398	. 95992	5,9	.0310	
. 092	. 98883	4 II	. 11227	399	. 96998	5,9	. 0309	
. 093	-99294	412	. 11626	399	. 97004	5,9	. 0309	
. 094	-99706	412	. 12026	400	. 97010	5.9	. 0308	
2.095	4.00119	412	4. 12426	400	0.97016	5,9	1.0308	0,6
. 096	.00531	413	. 12826	401	. 97022	5,9	. 0307	
. 097	. 00944	413	. 13227	401	. 97028	5,9	. 0306	
. 098	. 01358	414	. 13628	401	. 97034	5,8	. 0306	
. 099	.01771	414	- 14029	402	. 97039	5,8	. 0305	
2. 100	4.02186	414	4.14431	402	0.97045	5,8	1.0304	0,6
u	$\boldsymbol{t a n}$ od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sec gd u	$\omega \mathrm{Fo}^{\prime}$	$\boldsymbol{s i n g d u}$.	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{Fo}^{\prime}$
2.100	4.02186	414	4.1443I	402	0.97045	5,8	1.0304	0,6
. 101	. 02600	415	. 14834	403	.9705I	5,8	. 0304	
. 102	.03015	415	. 15237	403	. 97057	5,8	. 0303	
. 103	.0343I	416	. 15640	403	. 97063	5,8	. 0303	
. 104	. 03847	416	. 16043	404	. 97068	5,8	. 0302	
2.105	4.04263	416	4.16447	404	0.97074	5,8	1.0301	0,6
. 106	. 04680	417	. 16852	405	. 97080	5,8	.0301	
. 107	. 05097	417	. 17257	405	. 97086	5,7	. 0300	
. 108	.05514	418	. 17662	406	.97091	5,7	. 0300	
.109	. 05932	418	. 18068	406	. 97097	5,7	. 0299	
2.110	4.06350	418	4. 18474	406	0.97103	5,7	1. 0298	0,6
. III	. 06769	419	. 1888 I	407	.97109	5,7	. 0298	
. 112	. 07188	419	. 19288	407	.97114	5,7	. 0297	
. II3	. 07607	420	. 19695	408	. 97120	5,7	. 0297	
. 114	. 08027	420	. 20103	408	. 97126	5,7	. 0296	
2.II5	4.08448	42 I	4.205 II	408	0.97131	5,7	1.0295	0,6
. i16	. 08868	42 I	. 20920	409	.97137	5,6	. 0295	
. 117	. 09289	421	. 21329	409	.97143	5,6	. 0294	
. 118	.097II	422	. 21738	410	.97148	5,6	. 0294	
. 119	. 10133	422	. 22148	410	. 97154	5,6	. 0293	
2.120	4. 10555	423	4.22558	411	0.97159	5,6	I. 0292	0,6
. 121	. 10978	423	. 22969	4II	.97165	5,6	. 0292	
. 122	. II40I	423	. 23380	4 II	.97171	5,6	.0291	
. 123	. II825	424	. 23792	412	.97176	5,6	.0291	
. 124	. 12249	424	. 24204	412	. 97182	5,6	. 0290	
2.125	4. 12673	425	4.24617	413	0.97187	5,5	1.0289	0,6
. 126	. I3098	425	. 25029	413	. 97193	5,5	. 0289	
. 127	. I3523	425	. 25443	414	. 97198	5,5	. 0288	
. 128	. 13949	426	. 25856	414	. 97204	5,5	. 0288	
. 129	. 14375	426	. 2627 I	414	. 97209	5,5	. 0287	
2.130	4.14801	427	4.26685	415	0.97215	5,5	1.0286	0,6
. 131	. 15228	427	. 27100	415	. 97220	5,5	. 0286	
. 132	. I 5656	428	. 27516	416	. 97226	5,5	. 0285	
. I33	. 16083	428	. 27932	416	.9723I	5,5	. 0285	
. 134	. 16512	428	. 28348	417	. 97237	5,4	. 0284	
2.135	4. 16940	429	4.28765	417	0.97242	5,4	1.0284	0,6
. 136	. 17369	429	. 29182	417	. 97248	5,4	. 0283	
. 137	. 17798	430	. 29599	418	. 97253	5,4	. 0282	
. 138	. 18228	430	. 30017	418	. 97258	5,4	. 0282	
. 139	. 18558	430	. 30436	419	. 97264	5,4	.028I	
2.140	4.19089	431	4.30855	419	0.97269	5,4	I. 028 I	0,6
. 141	. 19520	431	. 31274	420	. 97275	5,4	. 0280	
. 142	. 19952	432	. 31694 -	420	. 97280	5,4	. 0280	
. 143	. 20384	432	. 32 II4	420	. 97285	5,4	. 0279	
. 144	. 20816	433	. 32534	42 I	.97291	5,3	. 0278	
2. 145	4.21249	433	4.32955	42 I	0.97296	5,3	1.0278	0,6
. 146	. 21682	433	- 33377	422	.97301	5,3	. 0277	
. 147	. 22115	434	- 33799	422	. 97307	5,3	. 0277	
. 148	. 22549	434	-3422I	423	.97312	5,3	. 0276	
. 149	. 22984	435	. 34644	423	.97317	5,3	. 0276	
2.150	4.23419	435	4.35067	423	0.97323	5,3	1.0275	0,6
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\csc g d \mathrm{u}$	$\omega \mathrm{F}^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}$	coth u	$\omega \mathbf{F}_{0}{ }^{\prime}$
2.150	4.23419	435	4.35067	423	0.97323	5,3	1. 0275	0,6
. 151	. 23854	435	. 35491	424	. 97328	5,3	. 0275	
. 152	. 24290	436	. 35915	424	. 97333	5,3	. 0274	
. 153	. 24726	436	-36339	425	. 97338	5,3	. 0273	
. 154	. 25162	437	. 36764	425	. 97344	5,2	. 0273	
2. 155	4.25599	437	$4 \cdot 37190$	426	0.97349	5,2	I. 0272	0,6
. 156	. 26037	438	.376I5	426	. 97354	5,2	. 0272	0,6
. 157	. 26475	438	. 38042	426	. 97359	5,2	. 0271	0,5
. 158	. 26913	438	. 38468	427	. 97365	5,2	. 0271	0,5
. 159	. 27352	439	. 38896	427	. 97370	5,2	. 0270	0,5
2.160	4.27791	439	$4 \cdot 39323$	428	0.97375	5,2	1.0270	0,5
.16I	. 28230	440	. 39751	428	. 97380	5,2	. 0269	
. 162	. 28570	440	. 40180	429	. 97385	5,2	. 0268	
. 163	.29III	44 I	. 40608	429	. 97390	5,2	. 0268	
. 164	. 2955 I	44 I	. 41038	430	. 97396	5, I	. 0267	
2.165	4.29993	44 I	4.41468	430	0.97401	5, I	1. 0267	0,5
. 166	. 30434	442	. 41898	430	. 97406	5,1	. 0266	
. 167	. 30876	442	. 42328	431	. 9741 I	5,I	. 0266	
. 168	.31319	443	. 42760	43 I	. 97416	5, I	. 0265	
. 169	. 31762 .	443	.43191	432	.9742I	5, I	. 0265	
2.170	$4 \cdot 32205$	444	4.43623	432	0.97426	5, I	1. 0264	0,5
.171	. 32649	444	. 44056	433	.9743I	5, I	. 0264	
. 172	. 33093	444	. 44488	433	. 97436	5, I	. 0263	
. 173	. 33538	445	. 44922	434	. 9744 I	5, I	. 0263	
$\because 174$. 33983	445	. 45355	434	. 97446	5,0	. 0262	
2.175	4.34429	446	4.45790	434	0.97452	5,0	1.0262	0,5
. 175	. 34875	446	. 46224	435	. 97457	5,0	.026I	
. 177	. 3532 I	447	. 46659	435	. 97462	5,0	. 0260	
. 178	. 35768	447	. 47095	436	. 97467	5,0	. 0260	
. 179	. 362 I 5	448	. 4753 I	436	. 97472	5,0	. 0259	
2.180	$4 \cdot 36663$	448	4.47967	437	0.97477	5,0	I. 0259	0,5
. 181	. 3711 I	448	. 48404	437	. 97482	5,0	. 0258	
. 182	. 37560	449	. 48842	438	. 97487	5,0	. 0258	
. 183	. 38009	449	. 49279	438	.9749I	5,0	. 0257	
. 184	.38459	450	. 49718	438	. 97496	4,9	. 0257	
2.185	$4 \cdot 38909$	450	4.50156	439	0.97501	4,9	1.0256	0,5
. 185	. 39359	451	. 50595	439	. 97506	4,9	. 0256	
.187	. 39810	451	. 51035	440	.9751 1	4,9	. 0255	
. 188	. 4026 I	451	. 51475	440	.97516	4,9	. 0255	
. I89	. 40713	452	. 51916	441	.9752I	4,9	. 0254	
2. 190	4.41165	452	4.52356	441	0.97526	4,9	I. 0254	0,5
. 191	. 41617	453	. 52798	442	.9753I	4,9	. 0253	
. 192	. 42070	453	. 53240	442	. 97536	4,9	. 0253	
. 193	. 42524	454	. 53682	443	.9754I	4,9	. 0252	
. 194	. 42978	454	. 54125	443	. 97545	4,8	. 0252	
2. 195	4.43432	455	4.54568	443	0.97550	4,8	1.0251	0,5
. 196	. 43887	455	. 55012	444	. 97555	4,8	.0251	
. 197	. 44342	455	. 55456	444	. 97560	4,8	. 0250	
. 198	. 44798	456	. 55900	445	. 97565	4,8	. 0250	
. 199	. 45254	456	. 56345	445	. 97570	4,8	. 0249	
2.200	4.457 II	457	4.56791	446	0.97574	4,8	1.0249	0,5
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.200	4.457 I I	457	4.56791	446	0.97574	4,8	1.0249	0,5
. 201	. 46168	457	. 57237	446	-97579	4,8	. 0248	
. 202	. 46625	458	. 57683	447	. 97584	4,8	. 0248	
. 203	. 47083	458	. 58130	447	. 97589	4,8	. 0247	
. 204	. 4754 I	459	. 58577	448	. 97593	4,8	. 0247	
2.205	4.48000	459	4.59025	448	0.97598	4,7	1.0246	0,5
. 206	. 48459	459	. 59473	448	. 97603	4,7	. 0246	0,5
. 207	. 48919	460	. 59922	449	. 97608	4,7	. 0245	
. 208	. 49379	460	. 60371	449	. 97612	4,7	. 0245	
. 209	. 49840	461	. 6082 I	450	.976I7	4,7	. 0244	
2.210	$4 \cdot 5030 \mathrm{I}$	461	4.61271	450	0.97622	4,7	1.0244	0,5
. 211	. 50762	462	. 61721	45 I	. 97626	4,7	. 0243	
. 212	. 51224	462	. 62172	451	.9763I	4,7	. 0243	
. 213	. 51687	463	. 62624	452	. 97636	4,7	. 0242	
. 214	. 52149	463	. 63076	452	. 97640	4,7	. 0242	
2.215	4.52613	464	4.63528	453	0.97645	4,7	1.024 I	0,5
. 216	. 53077	464	. 6398 I	453	. 97650	4,6	.024I	
.217	. 5354 I	464	. 64434	454	. 97654	4,6	. 0240	
. 218	. 54005	465	. 64888	454	. 97659	4,6	. 0240	
. 219	. 5447 I	465	. 65342	454	. 97664	4,6	. 0239	
2.220	4.54936	466	4.65797	455	0.97668	4,6	1.0239	0,5
. 221	. 55402	466	. 66252	455	. 97673	4,6	. 0238	
. 222	. 55869	467	. 66708	456	. 97678	4,6	. 0238	
. 223	. 56336	467	. 67164	456	. 97682	4,6	. 0237	
. 224	. 56803	468	. 67620	457	. 97687	4,6	. 0237	
2.225	4.57271	468	4.68078	457	0.97691	4,6	1. 0236	0,5
. 226	. 57739	469	. 68535	458	. 97696	4,6	. 0236	
. 227	. 58208	469	. 68993	458	. 97700	4,5	. 0235	
. 228	. 58677	469	. 69451	459	. 97705	4,5	. 0235	
. 229	. 59147	470	. 69910	459	. 97709	4,5	. 0234	
2.230	$4 \cdot 59617$	470	4.70370	460	0.97714	4,5	1.0234	0,5
. 231	. 60087	471	. 70830	460	. 97718	4,5	. 0233	
. 232	. 60559	471	. 71290	461	. 97723	4,5	. 0233	
. 233	. 61030	472	. 71751	461	. 97727	4,5	. 0233	
. 234	.61502	472	. 72212	462	. 97732	4,5	. 0232	
2.235	4.61974	473	4.72674	462	0.97736	4,5	1.0232	0,5
. 236	. 62447	473	.73136	462	. 97741	4,5	.023I	
. 237	.6292I	474	. 73599	463	. 97745	4,5	. 023 I	
. 238	. 63395	474	. 74062	463	. 97750	4,4	. 0230	
. 239	. 63869	475	. 74525	464	. 97754	4,4	. 0230	
2.240	4.64344	475	4.74989	464	0.97759	4,4	1.0229	0,5
. 241	. 64819	475	. 75454	465	. 97763	4,4	. 0229	
. 242	. 65295	476	. 75919	465	. 97768	4,4	. 0228	
. 243	. 65771	476	. 76385	466	. 97772	4,4	. 0228	
. 244	. 66247	477	. 7685 I	466	. 97776	4,4	. 0227	
2.245	4.66724		4.77317	467	0.97781	4,4	1.0227	0,5
. 246	. 67202	478	. 77784	467	. 97785	4,4	. 0227	
. 247	. 67680	478	. 78252	468	. 97790	4,4	. 0226	
. 248	.68158	479	.78719	468	. 97794	4,4	. 0226	
. 249	. 68637	479	.79188	469	. 97798	4,4	. 0225	
2.250	4.69117	480	4.79657	469	0.97803	4,3	I. 0225	0,5
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	coth u	$\omega \mathbf{F}_{0}{ }^{\prime}$
2.250	4.69117	480	4.79657	469	0.97803	4,3	I. 0225	0,5
.25I	. 69597	480	. 80126	470	. 97807	4,3	. 0224	
. 252	. 70077	48 I	. 80596	470	.978II	4,3	. 0224	
. 253	. 70558	48I	. 81066	471	.978I6	4,3	. 0223	
. 254	. 71039	482	.81537	471	. 97820	4,3	. 0223	0,5
2.255	4.71521	482	4.82008	472	0.97824	4,3	1.0222	0,4
. 256	. 72003	482	. 82480	472	. 97829	4,3	. 0222	
. 257	. 72486	483	. 82952	472	. 97833	4,3	. 0222	
. 258	. 72969	483	. 83425	473	. 97837	4,3	.022I	
. 259	. 73453	484	. 83898	473	. 9784 I	4,3	.022I	
2.260	4.73937	484	4.84372	474	0.97846	4,3	1.0220	0,4
. 261	. 74422	485	. 84846	474	. 97850	4,3	. 0220	
. 262	. 74907	485	. 85321	475	. 97854	4,2	. 0219	
. 263	. 75392	486	. 85796	475	. 97858	4,2	. 0219	
. 264	. 75878	486	. 86272	476	. 97863	4,2	.0218	
2.265	4.76365	487	4.86748	476	0.97867	4,2	1.0218	0,4
. 266	. 76852	487	. 87224	477	. 97871	4,2	. 0218	
. 267	. 77339	488	. 87701	477	. 97875	4;2	. 0217	
. 268	. 77827	488	.88179	478	. 97879	4,2	. 0217	
. 269	. 783 I 6	489	. 88657	478	. 97884	4,2	. 0216	
2.270	4.78804	489	4.89136	479	0.97888	4,2	1.0216	0,4
.27I	. 79294	490	. 89615	479	. 97892	4,2	.0215	
. 272	. 79784	490	. 90094	480	. 97896	4,2	.0215	
. 273	. 80274	491	. 90574	480	. 97900	4,2	.0214	
: 274	. 80765	491	. 91055	48I	. 97905	4, I	.0214	
2.275	4.81256	492	4.91536	48 I	0.97909	4,I	1.0214	0,4
. 276	. 8 I 748	492	. 92017	482	.97913	4,I	. 0213	
. 277	. 82240	492	. 92499	482	. 97917	4,1	.0213	
. 278	. 82733	493	. 92982	483	. 97921	4,I	.0212	
. 279	. 83226	493	.93465	483	. 97925	4,I	. 0212	
2.280	4.83720	494	4.93948	484	0.97929	4,I	I.02II	0,4
.28I	. 84214	494	. 94432	484	. 97933	4, I	.02II	
. 282	. 84709	495	. 94917	485	. 97937	4,1	.02II	
.283	. 85204	495	. 95402	485	-. 97942	4, I	. 0210	
. 284	. 85699	496	. 95887	486	-. 97946	4,I	.0210	
2.285	4.86196	496	4.96373	486	0.97950	4,I	1.0209	0,4
. 286	. 86692	497	. 96859	487	. 97954	4,I	. 0209	
.287	. 87189	497	. 97346	487	. 97958	4,0	. 0208	
. 288	. 87687	498	. 97834	488	. 97962	4,0	. 0208	
. 289	. 88185	498	. 98322	488	. 97966	4,0	. 0208	
2.290	4.88684	499	4.98810	489	0.97970	4,0	1.0207	0,4
. 291	.89183	499	. 99299	489	. 97974	4,0	. 0207	
. 292	. 89682	500	. 99789	490	. 97978	4,0	. 0206	
. 293	. 90182	500	5.00279	490	. 97982	4,0	. 0206	
. 294	. 90683	501	.00769	491	. 97986	4,0	. 0206	
2.295	4.91184	501	5.01260	49I	0.97990	4,0	1.0205	0,4
. 296	.91685	502	. 01751	492	. 97994	4,0	. 0205	
. 297	. 92187	502	. 02243	492	. 97998	4,0	. 0204	
. 298	. 92690	503	.02736	493	. 98002	4,0	. 0204	
. 299	.93193	503	. 03229	493	. 98006	3,9	. 0203	
2.300	4.93696	504	5.03722	494	0.98010	3,9	1.0203	0,4
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

[^13]Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.300	4.93696	504	5.03722	494	0.98010	3,9	1.0203	0,4
. 301	. 94200	504	. 04216	494	.98014	3,9	. 0203	
. 302	. 94705	505	. 04710	495	.98018	3,9	. 0202	
. 303	. 95210	505	. 05205	495	.98021	3,9	. 0202	
. 304	. 95715	506	.05701	496	. 98025	3,9	.0201	
2.305	4.96221	506	5.06197	496	0.98029	3,9	1.0201	0,4
. 306	. 96727	507	. 06693	497	. 98033	3,9	. 0201	
. 307	. 97234	507	. 07190	497	. 98037	3,9	. 0200	
. 308	. 97742	508	. 07688	498	.9804I	3,9	. 0200	
. 309	. 98250	508	.08186	498	. 98045	3,9	. 0199	
2.310	4.98758	509	5.08684	499	0.98049	3,9	1.0199	0,4
. 311	. 99267	509	. 09183	499	. 98053	3,9	. 0199	
. 312	. 99777	510	. 09683	500	. 98056	3,8	. 0198	
. 313	5.00286	510	. 10183	500	. 98060	3,8	. 0198	
. 314	. 00797	511	. 10683	501	. 98064	3,8	. 0197	
2.315	5.01308	511	5.11184	501	0.98068	3,8	1.0197	0,4
. 316	. 01819	512	. 11686	502	. 98072	3,8	. 0197	
. 317	.0233I	512	. 12188	502	. 98076	3,8	. 0196	
. 318	. 02844	513	. I2691	503	. 98079	3,8	. 0196	
. 319	. 03357	513	. 13194	503	. 98083	3,8	. 0195	
2.320	5.03870	514	5.13697	504	0.98087	3,8	1.0195	0,4
. 321	. 04384	514	. 14202	504	.98091	3,8	. 0195	
. 322	. 04898	515	. 14706	505	. 98095	3,8	. 0194	
. 323	.05413	515	. 15211	505	.98098	3,8	. 0194	
. 324	. 05929	516	. 15717	506	.98102	3,8	. 0193	
2.325	5.06445	516	5.16223	506	0.98106	3,8	1. 0193	0,4
. 326	. 06961	517	. 16730	507	.98i 10	3,7	. 0193	
. 327	. 07478	517	. 17237	507	.98is3	3,7	. 0192	
. 328	. 07996	518	. 17745	508	.98ir	3,7	. 0192	
. 329	.08514	518	. 1825.3	509	.98121	3,7	. 0192	
2.330	5.09032	519	5.18762	509	0.98124	3,7	1.0191	0,4
.33I	. 09551	519	. 19271	510	.98ı28	3,7	. 0191	
. 332	. 10071	520	. 19781	510	.98132	3,7	. 0190	
. 333	. I059I	520	. 20291	5 II	.98136	3,7	. 0190	
. 334	. IIIII	521	. 20802	5 II	.98139	3,7	. 0190	
2.335	5.11632	52 I	5.21314	512	0.98143	3,7	I. 0189	0,4
. 336	. 12154	522	. 21825	512	.98I47	3,7	. 0189	
. 337	. 12676	522	. 22338	513	.98I50	3,7	. 0188	
. 338	. 13199	523	. 22851	513	.98154	3,7	. 0188	
. 339	. 13722	523	. 23364	514	.98I58	3,7	. 0188	
2.340	5.14245	524	5.23878	514	0.98161	3,6	1.0187	0,4
. 341	. 14770	524	. 24393	515	.98i65	3,6	. 0187	
- 342	. 15294	525	. 24908	515	.98169	3,6	. 0187	
. 343	. 15819	525	. 25423	516	.98172	3,6	. 0186	
- 344	. 16345	526	. 25939	516	.98176	3,6	. 0186	
2.345	5.16871	526	5.26456	517	0.98179	3,6	1.0185	0,4
. 346	. 17398	527	. 26973	517	.98183	3,6	. 0185	
- 347	. 17925	527	. 27491	518	.98187	3,6	. 0185	
. 348	.18453 .18981	528 529	.28009 .28528	518 519	.98190	3,6 3,6	. 010184	-
-349	. 18981	529	. 28528	519	-98194	3,6	. 0184	
2.350	5.19510	529	5.29047	520	0.98197	3,6	1.0184	0,4
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.350	5.19510	529	5.29047	520	0.98197	3,6	I. 0184	0,4
. 351	. 20039	530	. 29567	520	. 98201	3,6	. 0183	
. 352	. 20569	530	. 30087	52 I	. 98204	3,6	. 0183	
. 353	. 21100	531	. 30608	52 I	. 98208	3,6	. 0182	
. 354	. 21630	531	.31129	522	. 98212	3,5	. 0182	
2.355	5.22162	532	5.31651	522	0.98215	3,5	1.0182	0,4
. 356	. 22694	532	. 32174	523	. 98219	3,5	.018I	
. 357	. 23226	533	. 32697	523	. 98222	3,5	.018I	
. 358	.23759	533	. 33220	524	. 98226	3,5	. 0181	
. 359	. 24293	534	- 33744	524	. 98229	3,5	. 0180	
2.360	5.24827	534	5.34269	525	0.98233	3,5	1.0180	0,4
.361	. 25361	535	. 34794	525	. 98236	3,5	. 0180	
. 362	. 25896	535	. 35319	526	. 98240	3,5	. 0179	
.363	. 26432	536	. 35845	526	. 98243	3,5	. 0179	
. 364	. 26968	536	. 36372	527	. 98247	3,5	. 0178	
2.365	5.27504	537	5.36899	528	0.98250	3,5	1.0178	0,4
. 366	. 28042	537	. 37427	528	. 98254	3.5	. 0178	
. 367	. 28579	538	. 37955	529	. 98257	3,5	. 0177	
. 368	. 29118	538	. 38484	529	.98261	3,4	. 0177	
.369	. 29656	539	. 39014	530	. 98264	3,4	. 0177	
2.370	5.30196	540	5.39544	530	0.98267	3,4	1.0176	0,4
. 371	. 30735	540	. 40074	531	. 98271	3,4	. 0176	
. 372	. 31276	54 I	. 40605	531	. 98274	3,4	. 0176	
. 373	. 31817	541	. 41137	532	. 98278	3,4	. 0175	
. 374	. 32358	542	.41669	532	.9828I	3,4	. 0175	
2.375	5.32900	542	5.42201	533	0.98285	3,4	1. 0175	0,4
. 376	. 33442	543	. 42735	533	. 98288	3,4	. 0174	0,4
. 377	. 33985	543	. 43268	534	.98291	3,4	. 0174	0,4
. 378	- 34529	544	. 43803	535	. 98295	3,4	. 0173	0,3
. 379	. 35073	544	. 44337	535	. 98298	3,4	. 0173	0,3
2.380	$5 \cdot 35618$	545	5.44873	536	0.98301	3,4	1.0173	0,3
. 381	. 36163	545	. 45409	536	. 98305	3,4	. 0172	
.382	. 36708	546	. 45945	537	. 98308	3,4	. 0172	
. 383	. 37255	546	. 46482	537	.983I I	3,3	. 0172	
. 384	. 37801	547	. 47020	538	.98315	3,3	. 0171	
2.385	5.38349	548	5.47558	538	0.98318	3,3	1.0171	- 0,3
. 386	. 38897	548	. 48096	539	. 98322	3,3	. 0171	
. 387	- 39445	549	. 48635	539	. 98325	3,3	. 0170	
. 388	. 39994	549	. 49175	540	. 98328	3,3	. 0170	
. 389	. 40543	550	. 49715	541	. 98331	3,3	. 0170	
2.390	5.41093	550	5.50256	541	0.98335	3,3	1.0169	0,3
. 391	. 41644	55 I	. 50798	542	. 98338	3,3	. 0169	
. 392	- 42195	551	. 51339	542	. 93341	3,3	. 0169	
. 393	. 42746	552	. 51882	543	. 98345	3,3	. 0168	
- 394	. 43299	552	. 52425	543	. 98348	3,3	. 0168	
2.395	5.43851	553	5.52969	544	0.98351	3,3	1. 0168	0,3
. 396	. 44405	554	. 53513	544	. 98354	3,3	. 0167	
- 397	. 44958	554	- 54057	545	. 98358	3,3	. 0167	
. 398	. 45513	555	. 54603	546	. 98361	3,3	. 0167	
- 399	. 46068	555	. 55148	546	.98364	3,2	. 0166	
2.400	5.46623	556	5.55695	547	0.98367	3,2	1.0166	0,3
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{sing} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.400	5.46623	556	5.55695	547	0.98367	3,2	1.0166	0,3
. 401	. 47179	556	. 56242	547	.9837I	3,2	. 0166	
. 402	. 47735	557	. 56789	548	. 98374	3,2	. 0165	
. 403	. 48292	557	. 57337	548	. 98377	3,2	. 0165	
. 404	. 48850	558	. 57886	549	. 98380	3,2	.0165	
2.405	5.49408	558	5.58435	549	0.98384	3,2	1.0164	0,3
. 406	. 49967	559	. 58984	550	. 98387	3,2	. 0164	
. 407	. 50526	560	. 59535	55 I	. 98390	3,2	. 0164	
. 408	. 51086	560	. 60085	551	. 98393	3,2	. 0163	
. 409	. 51646	561	. 60637	552	. 98396	3,2	. 0163	-
2.410	$5 \cdot 52207$	56 I	5.61189	552	0.98400	3,2	1.0163	0,3
.41I	. 52769	562	. 61741	553	.98403	3,2	. 0162	
. 412	. 53331	562	. 62294	553	. 98406	3,2	. 0162	
. 413	. 53893	563	. 62848	554	. 98409	3,2	. 0162	
. 414	. 54456	563	. 63402	554	. 98412	3,2	.0161	
2.415	5.55020	564	5.63957	555	0.98415	3,1	1.016I	0,3
. 416	. 55584	565	. 64512	556	.98418	3, I	. 0161	
. 417	.56149	565	. 65068	556	. 98422	3,1	. 0160	
. 418	. 567 I5	566	. 65624	557	. 98425	3, I	. 0160	
.419	. 57280	566	.66I8I	557	. 98428	3, I	. 0160	
2.420	5.57847	567	5.66739	558	0.98431	3,I	1.OI59	0,3
. 42 I	. 58414	567	. 67297	558	. 98434	3,I	. 0159	
. 422	. 58981	568	. 67856	559	. 98437	3, I	. 0159	
. 423	. 59550	568	. 68415	560	. 98440	3, I	. 0158	
. 424	. 60118	569	. 68975	560	. 98443	3, I	. 0158	
2.425	5.60688	570	5.69535	561	0.98446	3,I	1.0158	0,3
. 426	.61257	570	. 70096	561	.98450	3, I	. 0157	
. 427	. 61828	571	. 70658	562	. 98453	3, I	. 0157	
. 428	. 62399	571	. 71220	562	. 98456	3, I	. 0157	
. 429	. 62970	572	. 71783	563	. 98459	3, I	. 0157	
2.430	5.63542	572	5.72346	564	0.98462	3,I	1.0156	0,3
. 431	.64115	573	. 72910	564	. 98465	3,0	. 0156	
. 432	. 64688	573	. 73474	565	.98468	3,0	. 0156	
. 433	. 65262	574	. 74039	565	. 98471	3,0	. 0155	
. 434	. 65836	575	.74605	566	. 98474	3,c	. 0155	
2.435	5.66411	575	5.75171	566	0.98477	3,0	1.OI 55	0,3
. 436	. 66986	576	. 75738	567	.98480	3,0	. 0154	
. 437	. 67563	576	. 76305	568	.98483	3,0	. 0154	
. 438	.68139	577	. 76873	568	.98485	3,0	. 0154	
. 439	. 68716	577	. 77441	569	.98489	3,0	. 0153	
2.440	5.69294	578	5.78010	569	0.98492	3,0	1.0153	0,3
. 441	. 69872	579	. 78580	570	. 98495	3,0	. 0153	
. 442	. 7045 I	579	. 79150	570	. 98498	3,0	. 0152	
. 443	. 7103 I	580	. 79721	571	. 98501	3,0	. 0152	
. 444	.716II	580	. 80292	572	. 98504	3,0	. 0152	
2.445	5.72191	58 I	5.80864	572	0.98507	3,0	1.0152	0,3
. 446	. 72772	58I	. 81436	573	. 98510	3,0	. 0151	
. 447	. 73354	582	. 82009	573	. 98513	3,0	. 0151	
. 448	. 73936	583	. 82583	574	. 98516	2,9	. 0151	
. 449	.74519	583	. 83157	575	.98519	2,9	. 0150	
2.450	5.75103	584	5.83732	575	0.98522	2,9	1.0150	0,3
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.450	5.75103	584	5.83732	575	0.98522	2,9	I.OI50	0,3
. 45 I	. 75687	584	. 84307	576	. 98525	2,9	. 0150	
. 452	. 76271	585	. 84883	576	. 98528	2,9	. OI49	
. 453	. 76856	585	. 85460	577	. 98530	2,9	. 0149	
. 454	. 77442	586	. 86037	577	. 98533	2,9	. 0149	
2.455	5.78029	587	5.85615	578	0.98536	2,9	1.0149	0,3
. 456	. 78615	587	. 87193	579	. 98539	2,9	. 0148	
. 457	. 79203	588	. 87772	579	. 98542	2,9	. 0148	
. 458	. 79791	588	. 88352	580	. 98545	2,9	. 0148	
. 459	. 80380	589	. 88932	580	. 98548	2,9	. 0147	
2.460	5.80969	590	5.89512	58 I	0.98551	2,9	I.OI47	0,3
. 461	. 81559	590	. 90094	582	. 98554	2,9	. 0147	
. 462	. 82149	591	. 90675	582	. 98556	2,9	.0146	
. 463	. 82740	591	.9I258	583	. 98559	2,9	. 0146	
. 464	. 83332	592	.9184I	583	. 98562	2,9	. 0146	
2.465	5.83924	592	5.92425	58.	0.98565	2,8	I. 0146	0,3
. 466	. 84516	593	. 93009	585	. 98568	2,8	. 0145	
.467	.85110	594	. 93594	585	. 9857 I	2,8	. 0145	
. 468	. 85704	594	.94179	586	. 98574	2,8	. 0145	
. 469	. 86298	595	. 94765	586	. 98576	2,8	. 0144	
2.470	5.86893	595	5.95352	587	0.98579	2,8	I.OI44	0,3
.47I	. 87489	596	. 95939	587	. 98582	2,8	. 0144	
. 472	. 88085	597	. 96527	588	. 98585	2,8	. 0144	
. 473	. 88682	597	.97115	583	. 98588	2,8	. OI43	
. 474	. 89279	498	. 97704	589	. 98590	2,8	.OI43	
2.475	5.89877	598	5.98294	590	0.98593	2,8	I.OI43	0,3
. 476	. 90476	599	. 98884	591	. 98596	2,8	. 0142	
. 477	. 91075	599	. 99474	591	. 98599	2,8	. 0142	
. 478	. 91675	600	6.00066	592	. 98602	2,8	.0142	
. 479	. 92275	601	. 00658	592	. 98604	2,8	. 0142	
2.480	5.92876	601	6.01250	593	0.98607	2,8	I.OI4I	0,3
. 48 I	. 93478	602	. 01844	593	.98610	2,8	.0141	
. 482	. 94080	602	. 02437	594	. 98613	2,8	. 0141	
. 483	. 94682	603	. 03032	595	.985I5	2,7	.0140	
. 484	. 95286	604	. 03627	595	.98618	2,7	. 0140	
2.485	5.95890	604	6.04222	596	0.9852 I	2,7	1.OI40	0,3
. 486	. 96494	605	.04818	596	. 98524	2,7	. 0140	
.487	. 97099	605	.05415	597	. 98526	2,7	. OI39	
. 488	. 97705	606	. 06013	598	. 98629	2,7	.OI39	
. 489	.983II	607	.066I I	598	.98632	2,7	.OI39	
2.490	5.98918	607	6.07209	599	0.98535	2,7	I. 0138	0,3
. 491	. 99526	608	. 07809	600	. 98537	2,7	. 0138	
. 492	6.00134	608	. 08408	600	. 98540	2,7	. 0138	
. 493	. 00743	609	. 09009	601	. 98643	2,7	. 0138	
. 494	. 01352	610	.09610	601	. 98645	2,7	. 0137	
2.495	6.01952	610	6.10211	602	0.98548	2,7	I. 0137	0,3
. 496	. 02572	611	.10814	603	. 9865 I	2,7	. 0137	
. 497	.03183	6 II	. II4I7	603	. 98653	2,7	.0136	
. 498	. 03795	612	. 12020	604	. 98556	2,7	.0136	
. 499	. 04408	613	. 12624	604	. 98559	2,7	.0136	
2.500	6.05020	613	6.13229	605	0.g856I	2,7	I. 0136	0,3
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\propto \mathrm{F}_{0}{ }^{\prime}$
2.500	6.05020	613	6.13229	605	0.98661	2,7	1.0136	0,3
. 501	. 05634	614	. I3834	606	. 98664	2,7	. 0135	
. 502	. 06248	614	. 14440	606	. 98667	2,6	. 0135	
. 503	. 06863	615	. 15047	607	. 98669	2,6	.OI35	
. 504	. 07478	616	. 15654	607	. 98672	2,6	. 0135	
2.505	6.08094	616	6.16262	608	0.98675	2,6	I.OI34	0,3
. 506	. 08711	617	. 16870	609	. 98677	2,6	. 0134	
. 507	. 09328	617	. 17479	609	. 98680	2,6	. 0134	
. 508	. 09946	618	. 18089	610	.98683	2,6	. 0134	
. 509	. 10564	619	. 18699	6i I	.98685	2,6	. OI33	
2.510	6. 11183	619	6. 19310	611	0.98688	2,6	I. 0133	0,3
. 511	. I.1803	620	. 19921	612	. 98590	2,6	. 1133	0,3
. 512	. 12423	621	. 20534	612	. 98693	2,6	. 0132	
. 513	. 13044	621	. 21 146	613	. 98596	2,6	. 0132	
. 514	. 13665	622	. 21760	6I4	. 98698	2,6	. 0132	
2.515	6.14287	622	6.22374	614	0.98701	2,6	1.0132	0,3
. 516	. 14910	623	. 22988	615	.c8703	2,6	.0131	
. 517	. 15533	624	. 23603	616	. 98706	2,6	.OI3I	
. 518	. 16157	624	. 24219	616	. 98708	2,6	.OI3I	
. 519	. 16782	625	. 24836	617	.987II	2,6	.OI3I	
2.520	6.17407	625	6.25453	617	0.98714	2,6	1.0130	0,3
. 52 I	. 18033	626	. 26071	618	.98716	2,6	. 0130	
. 522	. 18659	627	. 26689	619	. 98719	2,5	.0130	
. 523	. 19286	627	. 27308	619	.9872I	2,5	. 0130	
. 524	. 19914	628	. 27927	620	. 98724	2,5	. 0129	
2.525	6.20542	629	6.28548	621	0.98726	2,5	1.0129	0,3
. 526	. 21171	629	.29169	621	. 98729	2,5	. 0129	
. 527	. 21800	630	. 29790	622	.9873I	2,5	. 0128	
. 528	. 22430	630	. 30412	622	. 98734	2,5	. 0128	
. 529	.2306I	631	. 31035	623	. 98736	2,5	. 0128	
2.530	6.23692	632	6.31658	624	0.98739	2,5	1.0128	0,3
. 531	. 24324	632	. 32282	624	.9874I	2,5	. 0127	
. 532	. 24957	633	. 32907	625	. 98744	2,5	. 0127	
. 533	. 25590	634	. 33532	626	. 98746	2,5	. 0127	
. 534	. 26224	634	. 34158	626	. 98749	2,5	. 0127	
2.535	6.26858	635	6.34785	627	0.98751	2,5	1.0126	0,3
. 536	. 27494	635	. 35412	627	.98754	2,5	. 0126	
. 537	. 28129	636	. 36040	628	. 98756	2,5	. 0126	
. 538	. 28766	637	. 36668	629	. 98759	2,5	.0126	
. 539	. 29403	637	. 37297	629	.9876I	2,5	. 0125	
2.540	6.30040	638	6.37927	630	0.98764	2,5	1.0125	0,3
. 541	. 30678	639	. 38557	631	. 98766	2,5	. 0125	0,3
. 542	-31317	639	. 39188	631	. 98769	2,4	. 0125	0,3
. 543	. 31957	640	- 39820	632	.98771	2,4	. 0124	0,3
. 544	- 32597	$640{ }^{\circ}$. 40452	633	. 98773	2,4	. 0124	0,2
2.545	6.33238	641	6.41085	633	0.98776	2,4	I.OI24	0,2
. 546	. 33879	642	.41719	634	. 98778	2,4	.OI24	
. 547	-3452I	642	. 42353	635	.98781	2,4	. 0123	
. 548	. 35164	643	. 42988	635	.98783	2,4	. 0123	
. 549	. 35807	644	. 43623	636	.98785	2,4	. 0123	
2.550	6.36451	644	6.44259	636	0.98788	2,4	1.0123	0.2
u	$\boldsymbol{t a n g d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.550	6.36451	644	6.44259	636	0.98788	2,4	1.0123	0,2
. 551	. 37096	645	. 44896	637	. 98790	2,4	. 0122	
. 552	. 37741	646	. 45533	638	. 98793	2,4	. 0122	
. 553	. 38387	646	. 46172	638	. 98795	2,4	. 0122	
. 554	. 39033	647	. 46810	639	. 98798	2,4	. 0122	
2.555	6.39680	647	6.47450	640	0.98800	2,4	1.0121	0,2
. 556	. 40328	648	. 48090	640	. 98802	2,4	. 0121	
. 557	. 40977	649	. 48730	641	. 98805	2,4	. 0121	
. 558	. 41626	649	. 49372	642	.98807	2,4	. 0121	
. 559	. 42275	650	. 50014	642	.98810	2,4	. 0120	
2.560	6.42926	651	6.50656	643	0.98812	2,4	1.0120	0,2
. 561	. 43577	651	. 51299	644	.988I4	2,4	. 0120	
. 562	. 44228	652	. 51943	644	.98817	2,4	. 0120	
. 563	. 44880	653	. 52588	645	.98819	2,3	. 0120	
. 564	. 45533	653	. 53233	646	.9882I	2,3	. 0119	
2.565	6.46187	654	6.53879	646	0.98824	2,3	I.OII9	0,2
. 566	.4684I	655	. 54525	647	. 98826	2,3	. OII9	
. 567	. 47496	655	. 55173	647	.98828	2,3	. OI 19	
. 568	.48152	656	. 55820	648	.9883I	2,3	. 0118	
.569	. 48808	656	. 56469	649	. 98833	2,3	. 0118	
2.570	6.49464	657	6.57118	649	0.98835	2,3	1. 0118	0,2
. 571	. 50122	658	. 57768	650	. 98838	2,3	. 0118	
. 572	. 50780	658	. 58418	65 I	. 98840	2,3	. OII7	
. 573	. 51439	659	. 59069	651	. 98842	2,3	. 0117	
. 574	. 52098	660	. 5972 I	652	. 98845	2,3	. 0117	
2.575	6.52758	660	6.60374	653	0.98847	2,3	1.0117	0,2
. 576	. 53419	66 I	.61027	653	. 98849	2,3	. 0116	
. 577	. 54080	662	. 61680	654	. 9885 I	2,3	. 0116	
. 578	. 54742	662	. 62335	655	. 98854	2,3	.OII6	
. 579	. 55405	663	. 62990	655	. 98856	2,3	. 0116	
2.580	6.56068	664	6.63646	656	0.98858	2,3	1.OII5	0,2
. 58 I	. 56732	664	. 64302	657	. 98860	2,3	. OII5	
. 582	. 57397	665	. 64959	657	. 98853	2,3	.OII5	
. 583	. 58062	666	-. 65617	658	. 98865	2,3	.OII5	
. 584	. 58728	666	. 66275	659	. 98867	2,3	. OII5	
2.585	6.59395	667	6.66934	659	0.98870	2,2	I. OII 4	0,2
. 586	. 60062	668	. 67594	660	. 98872	2,2	. 0114	
. 587	. 60730	668	. 68254	66 I	. 98874	2,2	. OII4	
. 588	.6I358	669	. 68915	661	. 98876	2,2	. 0114	
. 589	. 62068	670	. 69577	662	. 98878	2,2	. OII3	
2.590	6.62738	670	6.70240	663	0.98881	2,2	1.0113	0,2
. 591	. 63.408	671	. 70903	663	.98883	2,2	. OII 13	
. 592	. 64079	672	. 71566	664	. 98885	2,2	. 0113	
. 593	. 64751	672	.7223I	665	. 98887	2,2	. OII3	
. 594	. 65424	673	. 72835	665	. 98890	2,2	. 0112	
2.595	6.66097	674	6.73562	656	0.98892	2,2	1.0112	0,2
. 596	. 66771	674	. 74228	667	. 98894	2,2	. OI 12	
. 597	. 67446	675	. 74895	667	. 98896	2,2	. OII 2	
. 598	.68121	676	. 75563	668	. 98898	2,2	. OIII	
. 599	. 68797	676	. 7623 I	669	.98901	2,2	.OIII	
2.600	6.69473	677	6.76901	669	0.98503	2,2	I.OIII	0,2
4	$\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \Gamma^{\prime}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.600	6.69473	677	6.76901	669	0.98903	2,2	I.OIII	0,2
. 601	. 70150	678	. 77570	670	. 98905	2,2	. 0111	
. 602	. 70828	678	. 78241	671	. 98907	2,2	. OIIO	
. 603	. 71507	679	. 78912	672	. 98909	2,2	. O1IO	
. 604	. 72186	680	. 79584	672	.9891 I	2,2	. 0110	
2.605	6.72866	680	6.80256	673	0.98914	2,2	1.0110	0,2
. 606	. 73547	681	. 80930	674	.98916	2,2	. 0110	
. 607	. 74228	682	.81604	674	. 98918	2,2	. 0109	
. 608	. 74910	682	. 82278	675	. 98920	2,1	. 0109	
. 609	. 75593	683	. 82953	675	. 98922	2,I	. 0109	
2.610	6.76276	684	6.83629	675	0.98924	2,I	1.0109	0,2
.6II	. 76960	684	. 84306	677	. 98926	2,I	. 0109	
.612	. 77644	685	. 84983	678	. 98929	2,I	. 0108	
. 613	. 78330	686	.8566I	678	. 88931	2,I	. 0108	
. 614	. 79016	686	. 86340	679	. 98933	2,I	. 0108	
2.615	6.79702	687	6.87019	680	0.98935	2,I	1.0108	0,2
.616	. 80390	688	. 87699	680	. 98937	2,1	. 0107	
. 617	.81078	688	. 88380	68I	. 98939	2,I	. 0107	
. 618	.81767	689	.8905I	682	.9894I	2,I	. 0107	
. 619	. 82456	690	. 89744	682	.98943	2,I	. 0107	
2.620	6.83146	690	6.90426	683	0.98946	2,I	1.0107	0,2
. 621	. 83837	691	.91IIO	684	. 98948	2,I	. 0106	
. 622	. 84528	692	.91794	685	. 98950	2,1	. 0106	
. 623	. 85220	692	. 92479	685	. 98952	2,I	. 0106	
. 624	. 85913	693	.93164	686	. 98954	2,I	. 0106	
2.625	6.86607	694	6.93851	687	0.98956	2,I	1.0106	0,2
. 626	. 87301	695	. 94538	687	. 98958	2,1	. 0105	
. 627	. 87996	695	. 95225	688	. 98960	2,I	. 0105	
. 628	. 88691	696	. 95914	689	. 98962	2,I	. 0105	
. 629	. 89388	697	. 96603	689	. 98964	2,I	.0105	1
2.630	6.90085	697	6.97292	690	0.98966	2,I	1.0104	0,2
. 631	. 90782	698	. 97983	691	. 98968	2,1	. 0104	
. 632	.91481	699	. 98674	691	. 98970		. 0104	
. 633	. 92180	699	. 99366	692	.98972	- 2,0	. 0104	
. 634	. 92879	700	7.00058	693	. 98974	2,0	. 0104	
2.635	6.93580	701	7.00752	694	0.98977	2,0	1.0103	0,2
. 636	.9428I	701	. 01446	694	. 98979	2,0	. 0103	
. 637	. 94983	702	. 02140	695	.98981	2,0	. 0103	
. 638	. 95685	703	. 02835	696	. 98983	2,0	. 0103	
. 639	. 96388	704	. 03532	696	. 98985	2,0	. 0103	
2.640	6.97092	704	7.04228	697	0.98987	2,0	1.0102	0,2
.64I	. 97797	705	. 04926	698	. 98989	2,0	. 0102	
. 642	. 98502	706	. 05624	699	.98991	2,0	. 0102	
. 643	. 99208	706	. 06323	699	. 98993	2,0	. 0102	
. 644	. 99915	707	. 07022	700	. 98995	2,0	. 0102	
2.645	7.00622	708	7.07723	701	0.98997	2,0	1.0101	0,2
. 646	. 01330	708	. 08423	701	. 98999	2,0	. 0101	
. 647	. 02039	709	.09125	702	. 99001	2,0	. OIOI	
. 648	. 02748	710	. 09828	703	. 99003	2,0	. 0101	
. 649	. 03458	711	. 10531	703	. 99005	2,0	. 0101	
2.650	7.04169	711	7.11234	704	0.99007	2,0	1.0100	0,2
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { c o s h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\text {. }}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.650	7.04169	7 II	7. II234	704	0.99007	2,0	1.0100	0,2
. 651	.0488I	712	. II939	705	. 99009	2,0	. 0100	
. 652	. 05593	713	. 12544	706	. 9901 I	2,0	. 0100	
. 653	. 05306	713	. 13350	706	. 99013	2,0	. 0100	
. 654	. 07020	714	. 14057	707	. 99015	2,0	. 0100	
2.655	7.07734	715	7.14764	708	0.95016	2,0	I. 0099	0,2
. 656	. 08449	715	. 15472	708	. 99018	2,0	. 0099	
. 657	. 09165	716	. 1618 I	709	. 99020	I,9	. 0099	
. 658	. 09882	717	. 1689 I	710	. 99022	I,9	. 0099	
. 659	. 10599	718	. 17601	711	. 99024	1,9	. 0099	
2.660	7.11317	718	7.18312	711	0.99026	I,9	I. 0098	0,2
. 66 I	. 12036	719	. 19024	712	. 99028	I,9	. 0098	
. 662	. 12755	720	. 19736	713	. 99030	I,9	. 0098	
. 663	. 13475	720	. 20449	713	. 99032	I,9	. 00098	
. 664	. 14196	721	. 21163	714	. 99034	1,9	. 0098	
2.665	7. 14918	722	7.21877	715	0.99036	1,9	I. 0097	0,2
. 666	. 15640	723	. 22593	716	. 99038	I,9	. 0097	
. 667	. 16363	723	. 23309	716	. 99040	I,9	. 0097	
. 668	. 17086	724	. 24025	717	. 99042	I,9	. 0097	
. 669	. 1781 I	725	. 24743	718	. 99044	I,9	. 0097	
2.670	7.18536	725	7.25461	719	0.99045	I,9	1.0096	0,2
. 671	. 19262	726	. 26180	719	. 99047	1,9	. 00096	
. 672	. 19988	727	. 26900	720	. 99049°	I,9	. 00096	
. 673	. 20715	728	. 27620	721	. 99051	1,9	. 0096	
. 6.74	. 21443	728	. 28341	721	. 99053	I,9	. 0096	
2.675	7.22172	729	7.29063	722	0,99055	1,9	I. 0095	0,2
. 676	. 22902	730	. 29785	723	. 99057	1,9	. 0095	
. 677	. 23632	731	. 30509	724	. 99059	I,9	. 0095	
. 678	. 24363	731	- 31233	724	. 9906	I,9	. 0095	
. 679	. 25094	732	. 31957	725	. 99062	1,9	. 0095	
2.680	7.25827	733	7.32683	726	0.99064	1,9	1.0094	0,2
.681	. 26560	733	. 33409	727	. 99066	I,9	. 00094	
. 682	. 27293	734	. 34136	727	. 95058	1,9	. 0094	
. 683	. 28028	735	- 34864	728	. 99070	I,9	. 0094	
. 684	. 28763	736	- 35592	729	. 99072	I,8	. 0094	
2.685	7.29499	736	$7 \cdot 36321$	729	0.99073	I,8	1.0094	0,2
. 685	. 30236	737	. 37051	730	. 99075	1,8	. 0093	
. 687	. 30973	738	. 37782	731	. 99077	I,8	. 0093	
. 688	.3171	739	. 38513	732	. 99079	I,8	. 0093	
. 689	. 32450	739	- 39245	732	.9908I	I,8	. 0093	
2.690	7.33190	740	7.39978	733	0.99083	1,8	I. 0093	0,2
. 691	. 33930	741	. 4071 I	734	. 99084	I,8	. 0092	
. 692	. 3467 I	741	. 41446	735	. 93085	I,8	. 0092	
. 693	. 35413	742	. 42 I8I	735	. 99088	I, 8	. 0092	
. 694	. 36156	743	. 42917	736	-99050	I,8	. 0092	
2.695	7.36899	744	7.43653	737	0.95092	1,8	1.0092	0,2
. 696	. 37643	744	. 44390	738	. 95094	I,8	. 0001	
. 697	. 38388	745	. 45128	738	. 99095	I,8	.009I	
. 698	. 39133	746	. 45867	739	. 99097	I,8	.009I	
. 699	. 39879	747	. 46607	740	. 99099	I,8	.0091	
2.700	7.40626	747	7.47347	741	0.99101	I,8	1.0091	0,2
u	$\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{g} \mathrm{d} u$	$\omega \mathrm{F}_{0}{ }^{\text {d }}$	$\csc g d \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{c o t h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.700	7.40626	747	7.47347	741	0.99101	I,8	1.0091	0,2
.701	. 41374	748	. 48088	741	.99103	I,8	.009I	
. 702	. 42 I 22	749	. 48830	742	. 99104	I,8	. 0090	-
. 703	. 42872	750	. 49572	743	. 99105	I,8	. 0090	
. 704	. 43622	750	. 50315	744	.99108	I,8	. 0090	
2.705	7.44372	751	7.51059	744	0.99110	I,8	1.0090	0,2
. 706	. 45124	752	. 51804	745	.99III	I,8	. 0090	
. 707	. 45876	753	. 52550	746	.99113	I,8	. 0089	
. 708	. 46629	753	. 53296	747	.99115	I,8	.0089	
. 709	. 47383	754	. 54043	747	.99117	I,8	. 0089	
2.710	7.48137	755	$7 \cdot 54791$	748	0.99118	1,8	1.0089	0,2
. 711	. 48892	756	. 55539	749	. 99120	1,8	. 0089	
. 712	. 49648	756	. 56288	750	. 99122	1,7	. 0089	
. 713	. 50405	757	. 57038	750	. 99124	I,7	. 0088	
. 714	. 51162	758	. 57789	751	.99125	1,7	. 0088	
2.715	7.51920	759	7.58541	752	0.99127	1,7	1. 0088	0,2
. 716	. 52679	759	. 59293	753	.99129	I,7	. 0088	
. 717	. 53439	760	. 60046	753	.9913I	1,7	. 0088	
. 718	. 54199	761	. 60800	754	. 99132	1,7	. 0088	
. 719	. 54960	762	. 61555	755	.99134	I,7	. 0087	
2.720	7.55722	762	7.62310	756	0.99136	I,7	1.0087	0,2
.721	. 56485	763	. 63066	756	. 99138	1,7	. 0087	
. 722	. 57249	764	. 63823	757	.99139	1,7	. 0087	
. 723	. 58013	765	. 64580	758	.99141	1,7	. 0087	
. 724	. 58778	765	. 65339	759	. 99143	I,7	. 0086	
2.725	7.59543	766	7.66098	760	0.99144	1,7	1.0086	0,2
. 726	. 60310	767	. 66858	760	.99146	1,7	. 0086	
. 727	.61077	768	.67619	751	.99148	1,7	. 0086	
. 728	. 61845	768	. 68380	762	.99150	1,7	. 0086	
.729	.62614	769	. 69142	763	.9915I	1,7	. 0086	
2.730	7.63383	770	7.69905	763	0.99153	1,7	1. 0085	0,2
.731	.64154	77.1	. 70669	764	.99I55	1,7	. 0085	
. 732	. 64925	771	. 71434	765	. 99156	1,7	. 0085	
. 733	. 65697	772	. 72199	766	.99158	1,7	. 0085	
. 734	. 66469	773	. 72955	766	.99160	1,7	. 0085	
2.735	7.67242	774	7.73732	767	0.99161	1,7	1. 0085	0,2
. 736	. 68017	774	. 74500	768	. 99163	I,7	. 0084	
. 737	.68791	775	. 75268	769	. 99165	1,7	. 0084	
. 738	. 69567	776	. 76037	770	.99165	1,7	. 0084	
. 739	. 70344	777	. 76807	770	.99168	1,7	. 0084	
2.740	7.71121	778	7.77578	771	0.99170	1,7	1.0084	0,2
.741	. 71899	778	. 78349	772	.99171	1,7	. 0084	
. 742	. 72577	779	. 79122	773	.99173	1,6	.0083	
. 743	. 73457	780	. 79895	773	.99175	I,6	. 0083	
. 744	. 74237	78 I	. 80668	774	-99176	1,6	. 0083	
2.745	7.75018	781	7.81443	775	0.99178	1,6	1.0083	0,2
. 746	. 75800	782	. 82219	776	. 99179	1,6	. 0083	
.747	. 76583	783	. 82995	777	.99181	1,6	. 0083	
. 748	. 77365	784 785	.83772 .84549	777 778	. 99183	1,6 I,6	. 0082	-
. 749	-78150	785	. 84549	778	-99184	1,6	. 0082	-
2.750	7.78935	785	7.85328	779	0.99186	1,6	1.0082	0,2
u	$\boldsymbol{t a n g} \mathrm{g} u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	ωF_{0}	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.750	7.78935	785	7.85328	779	0.99186	1,6	1.0082	0,2
. 751	. 79721	786	. 86107	780	. 99188	1,6	.0082	
. 752	. 80507	787	. 86887	781	.99189	1,6	. 0082	
. 753	.81295	788	. 87668	781	.99191	1,6	. 0082	
. 754	. 82083	788	. 88450	782	.99192	I,6	.008I	
2.755	7.82872	789	7.89232	783	0.99194	1,6	1.0081	0,2
. 756	.8366I	790	. 90016	784	.99196	1,6	.008I	
. 757	. 84452	791	. 90800	784	.99197	1,6	.008I	
. 758	. 85243	792	. 91585	785	. 99199	1,6	.008I	
. 759	. 85035	792	. 92370	785	. 99200	1,6	.008I	
2.760	7.85828	793	7.93157	787	0.99202	1,6	1.0080	0,2
. 761	. 87621	794	. 93944	788	. 99204	I,6	.0080	
. 762	. 88415	795	. 94732	788	. 99205	I,6	.0080	
.763	. 8921 I	796	. 95521	789	. 99207	1,6	. 0080	
. 764	. 90006	796	. 96310	790	. 99208	1,6	. 0080	
2.765	7.90803	797	7.97101	791	0.99210	1,6 ${ }^{\circ}$	1.0080	0,2
. 766	.91601	798	. 97892	792	. 99212	1,6	. 0079	
. 767	. 92399	799	. 98684	792	. 99213	1,6	. 0079	
. 768	.93198	799	. 99477	793	. 99215	I,6	. 0079	
.769	. 93998	800	8.00270	794	. 99216	1,6	. 0079	
2.770	7.94799	801	8.01065	795	0.99218	1,6	1.0079	0,2
. 771	. 95600	802	. 01860	796	. 99219	I,6	. 0079	
. 772	.96402	803	. 02656	796	. 99221	1,6	. 0079	
. 773	. 97205	803	. 03453	797	. 99222	1,5	. 0078	
. 774	. 98009	804	. 04250	798	. 99224	1,5	. 0078	
2.775	7.98814	805	8.05049	799	0.99226	1,5	1.0078	0,2
. 776	. 99619	806	. 05848	800	. 99227	1,5	. 0078	
. 777	8.00426	807	. 06648	800	. 99229	1,5	. 0078	
. 778	. 01233	807	. 07449	801	. 99230	1,5	. 0078	
. 779	. 02040	808	.0825I	802	. 99232	I,5	. 0077	
2.780	8.02849	809	8.09053	803	0.99233	1,5	1.0077	0,2
.781	. 03659	810	. 09856	804	. 99235	I,5	. 0077	
. 782	. 04469	8II	. 10660	804	. 99236	I,5	. 0077	
. 783	. 05280	8II	. 11465	805	. 99238	I,5	. 0077	
. 784	. 06092	8I2	. I227I	806	. 99239	I,5	. 0077	
2.785	8.06904	813	8. 13077	807	0.9924 I	1,5	1.0077	0,2
. 786	. 07718	8 I 4	. 13885	808	. 99242	I,5	. 0076	
. 787	. 08532	8 I 5	. 14693	809	. 99244	I,5	. 0076	
. 788	. 09347	8 I 6	. 15502	809	. 99245	I,5	. 0076	
. 789	. 10163	8i6	.163II	810	. 99247	I,5	. 0076	
2.790	8. 10980	817	8.17122	8 II	0.99248	1,5	1.0076	0,2
. 791	. II797	8 I 8	. I7933	812	. 99250	I,5	. 0076	
. 792	. 12616	819	. 18746	8 I 3	. 9925 I	1,5	. 0075	
. 793	. I3435	820	. 19559	8 I 3	. 99253	I,5	. 0075	
. 794	. 14255	820	. 20373	8I4	. 99254	I,5	. 0075	
2.795	8.15076	821	8.21187	815	0.99256	1,5	1.0075	0,2
. 796	. 15897	822	. 22003	8 I 6	. 99257	I,5	. 0075	0,2
. 797	. 16720	823	. 22819	817	. 99259	I,5	. 0075	0,2
. 798	. 17543	824	.23636	8 I 8	. 99260	1,5	. 0075	0,2
. 799	. 18367	824	. 24454	8 I 8	. 99262	I,5	. 0074	0,1
2.800	8. 19192	825	8.25273	819	0.99263	I,5	1.0074	O,I
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\csc \mathrm{cd}^{\text {u }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.800	8.19192	825	8.25273	819	0.99263	1,5	1.0074	O,I
. 801	. 20018	826	. 26092	820	. 99265	1,5	. 0074	
. 802	. 20844	827	. 26913	82 I	. 99266	I,5	. 0074	
. 803	. 21671	828	. 27734	822	. 99268	1,5	. 0074	
. 804	. 22499	829	. 28556	822	. 99269	I,5	.,0074	
2.805	8.23328	829	8.29379	823	0.99270	1,5	1.0073	O,I
. 806	. 24158	830	. 30203	824	. 99272	I,5	. 0073	
. 807	. 24989	831	- 31027	825	. 99273	1,4	. 0073	
. 808	. 25820	832	. 31853	826	. 99275	I,4	. 0073	
. 809	. 26653	833	. 32679	827	. 99276	I,4	. 0073	
2.810	8.27486	834	8.33506	827	0.99278	1,4	1.0073	0,1
.81I	. 28320	834	. 34334	828	. 99279	I,4	. 0073	
.812	. 29154	835	. 35163	829	.9928I	I,4	. 0072	
.813	. 29990	836	. 35992	830	. 99282	I,4	. 0072	
.814	. 30826	837	. 36823	83 I	. 99283	1,4	. 0072	
2.815	8.31664	838	8.37654	832	0.99285	I,4	1.0072	0, I
.816	. 32502	838	. 38486	833	. 99286	I,4	. 0072	
.817	. 33341	839	. 39319	833	. 99288	I,4	. 0072	
. 818	. 34180	840	. 40153	834	. 99289	I,4	. 0072	
.819	. 3502 I	841	. 40987	835	. 99291	I,4	. 0071	
2.820	8.35862	842	8.41823	836	0.99292	1,4	1.0071	0,1
.821	. 36704	843	. 42659	837	. 99293	I,4	. 007 I	
. 822	. 37548	843	. 43496	838	. 99295	I, 4	. 007 I	
. 823	.38391	844	. 44334	838	. 99296	I,4	. 007 I	
. 824	. 39236	845	. 45173	839	. 99298	I,4	. 0071	
2.825	8.40082	846	8.46013	840	0.99299	1,4	1.0071	O,I
. 826	. 40928	847	. 46853	841	. 99300	I,4	. 0070	
. 827	.41776	848	. 47695	842	. 99302	I,4	. 0070	
. 828	. 42624	849	. 485.37	843	. 99303	I, 4	.0070	
. 829	. 43473	849	. 49380	843	. 99305	I,4	.0070	
2.830	8.44322	850	8.50224	844	0.99306	I,4	1.0070	0,1
. 831	. 45173	851	. 51068	845	. 99307	I,4	. 0070	
. 832	. 46025	852	. 51914	846	-99309	I,4	. 0070	
. 833	. 46877	853	. 52760	847	. 99310	I,4	. 0069	
. 834	. 47730	854	. 53608	848	.993 I I	I,4	. 0069	
2.835	8.48584	854	8.54456	849	0.99313	I,4	1.0059	O,I
. 836	. 49439	855	. 55305	849	. 99314	I, 4	. 0069	
. 837	. 50295	856	. 56155	8=0	. 99316	I, 4	. 0069	
. 838	.5115I	857	. 57006	851	. 99317	I,4	. 0069	
. 839	. 52009	858	. 57857	852	. 99318	I,4	. 0069	
2.840	8.52867	859	8.58710	853	0.99320	I,4	1.0069	O,I
.84I	. 53726	860	. 59563	854	. 9932 I	I,4	. 0068	
. 842	. 54586	860	. 60417	855	. 99322	I, 4	. 0068	
. 843	. 55447	861	.61272	855	. 99324	I,3	. 0068	
. 844	. 56309	852	.62128	856	.99325	1,3	. 0068	
2.845	8.57171	863	8.62985	857	0.99326	I,3	1.0068	0,I
. 846	. 58035	864	. 63842	858	. 99328	1,3	. 0068	
. 847	. 58899	865	. 64701	859	. 99329	1,3	. 0068	
. 848	. 59764	866	. 65560	860	. 99330	I,3	. 0067	
. 849	. 60630	866	. 66420	86 I	. 993332	I,3	. 0067	
2.850	8.61497	867	8.6728I	861	0.99333	1,3	1.0067	0,I
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.850	8.61497	867	8.6728I	861	0.99333	1,3	1.0067	0,I
. 851	. 62365	868	. 68143	862	. 99334	I,3	. 0067	
. 852	. 63233	869	. 69006	863	. 99336	I,3	. 0067	
. 853	. 64103	870	. 69870	864	. 99337	I,3	. 0067	
. 854	. 64973	871	. 70734	865	. 99338	I,3	. 0067	
2.855	8.65844	872	8.71600	866	0.99340	I,3	1. 0066	O,I
. 856	. 66716	872	. 72466	867	. 99341	I,3	. 0066	
. 857	. 67589	873	. 73333	868	. 99342	I,3	. 0066	
. 858	. 68463	874	. 74201	868	. 99344	I,3	. 0066	
. 859	. 69337	875	. 75070	869	. 99345	I,3	. 0066	
2.860	8.70213	876	8.75940	870	0.99346	I,3	1.0066	O,I
. 861	. 71089	877	. 76810	871	. 99348	I,3	. 0066	
. 862	. 71967	878	. 77682	872	. 99349	I,3	. 0066	
. 863	. 72845	879	. 78554	873	. 99350	I, 3	. 0065	
. 864	. 73724	879	. 79428	874	.9935 I	I,3	. 0065	
2.865	8.74604	880	8.80302	875	0.99353	I,3	1.0065	0,1
. 85	. 75484	88 I	.81177	875	. 99354	I,3	. 0065	
. 867	. 76366	882	. 82053	876	. 99355	I,3	. 0065	
. 868	. 77248	883	. 82930	877	. 99357	I,3	. 0065	
. 859	.78132	884	. 83807	878	. 99358	I,3	. 0065	
2.870	8.79016	885	8.84686	879	0.99359	I,3	1. 0065	O,I
. 871	. 79901	886	.85.565	880	. 99360	I,3	. 0064	
. 872	. 80787	886	. 86446	88 I	. 99362	I,3	. 0064	
. 873	. 81674	887	. 87327	882	. 99363	I,3	. 0064	
. 874	. 82562	888	. 88209	883	. 09364	1,3	. 0064	
2.875	8.83450	889	8.89092	883	0.99365	I,3	1.0064	O, I
. 876	. 84340	890	. 89976	884	. 99367	I,3	. 0064	
. 877	. 85230	891	. 90861	885	. 99368	1,3	. 00064	
. 878	. 86122	892	. 91746	886	. 99369	I,3	. 0063	
. 879	. 87014	893	.92633	887	.9937I	I,3	. 0063	
2.880	8.87907	894	8.93520	888	0.99372	1,3	1.0063	O, I
.88I	. 88801	894	. 94409	889	. 99373	I,3	. 0063	
. 882	. 89696	895	. 95298	890	. 99374	I,2	. 0063	
. 883	.90591	896	.96188	891	. 99376	I,2	. 0063	
. 884	.91488	897	. 97079	891	. 99377	1,2	. 0063	
2.885	8.92386	898	8.97971	892	0.99378	1,2	1.0053	O, I
. 886	. 93284	899	. 98864	893	. 99379	1,2	. 0062	
. 887	. 94183	900	. 99758	894	. 99380	I,2	. 0062	.
. 888	. 95084	901	9.00652	895	. 99382	1,2	. 0062	
. 889	. 95985	902	. 01548	896	. 99383	1,2	. 0062	
2.890	8.96887	902	9.02444	897	0.99384	1,2	1.0062	O,I
. 891	. 97790	903	. 03342	898	. 99385	1,2	. 0062	
. 892	. 98693	904	. 04240	899	. 99387	I,2	. 0062	
. 893	. 99598	905	. 05139	900	. 99388	1,2	. 0062	
. 894	9.00504	906	. 06039	901	. 99389	1,2	.006I	
2.895	9.01410	907	9.06940	901	0.99390	I,2	1.006I	O,I
. 896	. 02318	908	. 07842	902	. 9939 I	I,2	. 0061	
. 897	. 03226	909	. 08745	903	. 99393	I,2	. 0061	
. 898	.04135	910	. 09648	904	. 99394	I, 2	. 0061	
. 899	. 05045	911	. 10553	905	. 99395	I,2	.006I	
2.900	9.05956	911	9.11458	906	0.99396	1,2	1.006 1	O, I
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\text {b }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.900	9.05956	911	9.11458	906	0.99396	1,2	1.006I	0,I
.901	. 06868	912	. 12365	907	. 99398	I,2	.006I	
. 902	.0778I	913	. 13272	co8	. 99399	I,2	.0060	
. 903	. 08695	914	. 14180	909	. 99400	1,2	. 0060	
. 904	. 09609	915	. 15090	910	.9940I	I,2	. 0060	
2.905	9. 10525	916	9.16000	9II	0.99402	1,2	1.0060	O,I
. 906	. I I44I	917	. 16911	91I	. 99403	I,2	. 0060	
. 907	. I2359	918	. 17823	912	. 99405	I,2	. 0060	
. 908	. 13277	919	. 18735	913	. 99406	I,2	. 0060	
. 909	. 14196	920	. 19649	914	. 99407	I,2	. 0060	
2.910	9.15116	921	9.20564	915	0.99408	I,2	1.0060	0,1
.91I	. 16037	921	. 21479	916	. 99409	I,2	. 0059	
. 912	. 16959	922	. 22396	917	.994II	I,2	. . 0059	
. 913	. 17882	923	. 23313	918	. 99412	I,2	. .0059	
. 914	. 18806	924	. 24232	919	. 99413	1,2	. 0059	
2.915	9. 19730	925	9.25151	920	0.99414	1,2	1. 0059	O,I
.916	. 20656	926	. 26071	921	. 99415	I,2	. 0059	
.917	. 21583	927	. 26992	922	. 99416	I,2	. 0059	
. 918	. 22510	928	. 27914	923	. 99418	I,2	. 0059	
. 919	. 23438	929	. 28837	923	. 99419	1,2	. 0058	
2.920	9.24368	930	9.29751	924	0.99420	1,2	I. 0058	O,I
.92I	. 25298	931	. 30686	925	. 9942 I	1,2	. 0058	
. 922	. 26229	932	. 31612	926	. 99422	I,2	. 0058	
. 923	.2716I	933	. 32538	927	. 99423	I, I	. 0058	
. 924	. 28094	933	. 33466	928	. 99425	I, I	. 0058	
2.925	9.29028	934	9.34395	929	0.99426	I, I	1.0058	0,1
. 926	. 29963	935	. 35324	930	. 99427	I, I	. 0058	
.927	. 30899	936	. 36254	931	. 99428	I, I	. 0058	
. 928	. 31835	937	. 37186	932	. 99429	I, I	. 0057	
.929	. 32773	938	.38i 18	933	. 99430	I, I	. 0057	
2.930	9.33712	939	9.39051	934	0.9953 I	I, I	1.0057	O,I
.93I	. 3465 I	940	- 39986	935	. 99433	I, I	. 0057	
. 932	- 35592	941	.40921	936	. 99434	I, I	. 0057	
. 933	- 36533	942	. 41857	937	. 99435	I, I	. 0057	
. 934	- 37475	943	. 42794	937	. 99436	I, I	. 0057	
2.935	9.38419	944	9.43732	938	0.99437	I, I	1.0057	0,I
. 936	. 39363	945	. 44671	939	. 99438	I, I	. 0057	
. 937	. 40308	946	. 45610	940	. 99439	I, I	. 0056	
. 938	. 41254	947	. 4655 I	941	. 99440	I, I	. 0056	
. 939	. 42201	947	. 47493	942	. 9944 I	I, I	. 0056	
2.940	9.43149	948	9.48436	943	0.99443	I, I	1.0056	0,1
.94I	. 44098	949	. 49379	944	. 99444	I, I	. 0056	
. 942	. 45048	950	. 50324	945	. 99445	I, I	. 0056	
. 943	. 45999	951	. 51269	946	. 99446	I, I	. 0056	
. 944	. 46950	952	. 52216	947	. 99447	I, I	. 0056	
2.945	9.47903	953	9.53163	948	0.99448	I, I	1.0055	0,1
. 946	. 48857	954	. 54112	949	. 99449	I, I	. 0055	
. 947	. 4981 I	955	. 55061	950	. 99450	I, I	. 0055	
. 948	. 50767	956	. 56011	951	. 99451	I, I	. 0055	
. 949	. 51723	957	. 56962	952	. 99453	I, I	. 0055	
2.950	9.5268I	958	9.57915	953	0.99454	I, I	1.0055	O,I
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\csc \boldsymbol{g d} \mathbf{u}$	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.950	9.5268I	958	9.57915	953	0.99454	I, I	I. 0055	O, I
.951	. 53639	959	. 58868	954	. 99455	I, I	. 0055	
. 952	. 54598	960	. $5 ¢ 822$	955	. 99456	I, I	. 0055	
. 953	. 55559	961	. 60777	956	. 99457	I, I	. 0055	
. 954	. 56520	962	.61733	957	. 99458	I, I	. 0055	
2.955	9.57482	963	9.62690	957	0.99459	I, I	I. 0054	O,I
. 956	. 58445	964	. 63648	958	. 99460	I, I	. 0054	
. 957	. 59410	965	. 64607	959	. 9946 I	I, I	. 0054	
. 958	. 60375	966	. 65567	950	. 99462	I, I	. 0054	
. 959	. 61341	967	. 66528	961	. 99463	I, I	. 0054	
2.960	9.62308	967	9.67490	962	0.99464	I, I	I. 0054	O,I
. 961	. 63276	968	. 68452	963	. 99465	I, I	. 0054	
. 962	. 64245	969	. 69416	954	. 99467	I, I	. 0054	
. 963	.65214	970	. 70381	965	. 99468	I, I	. 0054	
. 964	. 66185	971	.71347	956	. 99469	I, I	. 0053	
2.965	9.67157	972	9.72313	957	0.99470	I, I	1.0053	O,I
. 966	.68130	973	. 7328 I	968	. 9947 I	I, I	. 0053	
. 967	. 69104	974	. 74249	969	. 99472	I, I	. 0053	
. 968	. 70078	975	. 75219	970	. 99473	I, I	. 0053	
. 969	. 71054	976	.76190	971	. 99474	1,0	. 0053	
2.970	9.72031	977	9.77161	972	0.99475	1,0	1.0053	O,I
.971	. 73008	978	.78134	973	. 99476	I,O	. 0053	
. 972	. 73987	979	. 79107	974	. 99477	I, 0	. 0053	
. 973	. 74967	980	. 80082	975	. 99478	1,0	. 0052	
. 974	. 75947	981	. 81057	975	. 99479	1,0	. 0052	
2.975	9.76929	982	9.82034	977	0.99480	1,0	1.0052	O,I
. 976	. 77911	983	. 83011	978	. 9948 I	1,0	. 0052	
. 977	. 78895	984	. 83989	979	. 99482	I, 0	. 0052	
. 978	. 79879	985	. 84969	980	. 99483	1,0	. 0052	
. 979	. 8085	986	. 85949	c8i	. 99484	1,0	. 0052	
2.980	9.81851	987	9.86930	982	0.99485	1,0	1.0052	O,I
.98I	. 82839	988	. 87913	983	. 99486	1,0	. 0052	
. 982	. 83827	989	. 88896	984	. 99487	I, 0	. 0052	
. 983	. 848 I 6	990	. 89880	985	. 99488	I, 0	. 0051	
. 984	. 85807	991	. 90866	986	. 99489	I, 0	. 0051	
2.985	9.86798	992	9.91852	987	0.99490	1,0	I. 0051	0,1
-.985	. 87790	993	. 92839	988	. 9949 I	1,0	. 0051	
. 987	. 88784	994	. 93828	989	. 99492	1,0	. 0051	
. 988	. 89778	995	.94817	990	. 99493	1,0	. 005 I	
. 989	. 90773	996	.95807	991	.99495	I, 0	. 0051	
2.990	9.91770		9.96798	992	0.99496	1,0	1.0051	O, I
.991	. 92767	998	.97791	993	. 99497	I, 0	. 005 I	
. 992	. 93765	999	. 98784	994	. 99498	1,0	. 0051	
. 993	. 94765	1000	. 99778	995	. 99499	1,0	. 0050	
. 994	. 95765	1001	10.00774	996	. 99500	1,0	. 0050	
2.995	9.96766	1002	10.01770	997	0.99501	1,0	1.0050	O, I
. 996	. 97768	1003	. 02767	958	. 99502	1,0	. 0050	
. 997	. 98772	1004	. 03765	999	. 99503	I, 0	. 0050	
. 998	. 99776	1005	. 04765	1000	. 99504	I, 0	. 0050	
. 999	10.00781	1006	. 05765	1001	. 99504	1,O	. 0050	
3.000	10.01787	1007.	10.06766	1002	0.99505	1,0	1.0050	O, I
u	$\boldsymbol{t a n g d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
3.00	10.0179	1007	10.0677	1002	0.99505	9,9	1.0050	I,O
. OI	10.1191	1017	10.1683	1012	.99515	9,7	. 0049	1,0
. 02	10.2212	1027	10.2700	1022	. 99525	9,5	. 0048	1,0
. 03	10.3245	1037	10.3728	1032	. 99534	9,3	. 0047	0,9
. 04	10.4287	1048	10.4765	1043	. 99543	9,I	. 0046	0,9
3.05	10.5340	1058	10.5814	1053	0.99552	8,9	I. 0045	0,9
. 06	10.6403	1069	10.6872	1064	.9956I	8,8	. 0044	0,9
. 07	10.7477	1079	10.7942	1075	. 99570	8,6	. 0043	0,9
. 08	10.8562	1090	10.9022	1086	. 99578	8,4	. 0042	0,8
. 09	10.9658	IIOI	II.OII3	1097	. 99587	8,2	.004I	0,8
3.10	II . 0765	III2	II.1215	1108	0.99595	8,1	I. 004 I	0,8
. II	11.1882	1123	II. 2328	1119	. 99603	7,9	. 0040	0,8
. 12	II. 3011	I 135	II . 3453	II30	.996I I	7,8	. 0039	0,8
. 13	11.4151	1146	II. 4588	II 42	.99618	7,6	. 0038	0,8
. 14	II. 5303	1157	II. 5736	I 153	. 99626	7,5	. 0038	0,8
3.15	II. 6466	1169	I 1 : 6895	I 165	0.99633	7,3	I. 0037	0,7
. 16	11.764I	I18I	11.8065	1176	.9964I	7,2	. 0036	0,7
. 17	II .8827	1192	II .9247	1188	. 99648	7,0	. 0035	0,7
. 18	12.0025	1204	12.0442	1200	. 99655	6,9	. 0035	0,7
. 19	12.1236	1216	12.1648	1212	. 99662	6,8	. 0034	0,7
3.20	12.2459	1229	12.2866	1225	0.99568	6,6	1.0033	0,7
. 21	12.3694	1241	12.4097	1237	. 99675	6,5	. 0033	0,7
. 22	12.494I	1253	12.5340	1249	.9968I	6,4	. 0032	0,6
. 23	12.6200	1266	12.6595	1262	. 99688	6,2	.003I	0,6
. 24	12.7473	1279	12.7854	1275	. 99694	6, 1	.003I	0,6
3.25	12.8758	1291	12.9146	1288	0.99700	6,0	1.0030	0,6
. 26	13.0056	1304	13.0440	1301	. 99706	5,9	. 0030	0,6
. 27	13.1367	1317	13.1747	1314	. 99712	5,8	. 0029	0,6
. 28	13.2691	1331	13.3067	1327	. 99717	5,6	. 0028	0,6
. 29	13.4028	1344	13.4401	1340	. 99723	5,5	. 0028	0,6
$3 \cdot 30$	13.5379	1357	13.5748	1354	0.99728	5,4	1.0027	0,5
. 31	13.6743	1371.	13.7108	1367	. 99734	5,3	. 0027	0,5
. 32	13.8121	1385	13.8483	I38I	. 99739	5,2	. 0026	0,5
. 33	13.9513	1399	13.9871	1395	. 99744	5,I	. 0026	0,5
. 34	14.0918	1413	14.1273	1409	. 99749	5,0	. 0025	0,5
3.35	14.2338	1427	14.2689		0.99754		1.0025	0,5
. 36	14.3772	1441	14.4120	1438	. 99759	4,8	. 0024	0,5
. 37	I4.522I	1456	14.5565	1452	. 99764	4,7	. 0024	0,5
. 38	14.6684	1470	14.7024	1467	. 99768	4,6	. 0023	0,5
- 39	14.8161	I485	14.8498	1482	. 99773	4,5	. 0023	0,5
3.40	14.9654	1500	14.9987	1497	0.99777	4,4	I. 0022	0,4
. 41	15.1161	1515	15.1491	1512	. 99782	4,4	. 0022	0,4
. 42	15.2584	1530	15.3011	1527	. 99786	4,3	. 002 I	0,4
. 43	I5.422I	1545	15.4545	1542	. 99790	4,2	.002I	0,4
. 44	15. $-\cdots$:	1561	15.6095	1558	. 99795	4, I	.002I	0,4
3.45	15.734	1577	I5.7661	1573	0.99799	4,0	1.0020	0,4
. 46	15.8928	I 592	15.9242	1589	. 99803	3,9	. 0020	0,4
. 47	16.0528	1608	16.0839	1605	. 99807	3,9	. 0019	0,4
. 48	16.2145	1625	16.2453	1621	.99810	3,8	. 0019	0,4
. 49	16.3777	1641	16.4082	1638	.99814	3,7	.0019	0,4
$3 \cdot 50$	16.5426	. 1657	16.5728	1654	0.99818	3,6	1.0018	0,4
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
3.50	16.5426	1657	16.5728	1654	0.99818	3,6	1.0018	0,4
. 51	16.7092	1674	16.7391	1671	.99821	3,6	.0018	0,4
. 52	16.8774	1691	16.9070	1688	. 99825	3,5	.0018	0,4
. 53	17.0473	1708	17.0766	1705	. 99828	3,4	.0017	0,3
. 54	17.2190	1725	17.2480	1722	. 99832	3,4	.0017	0,3
$3 \cdot 55$	17.3923	1742	17.4210	1739	0.99835	3,3	1.0017	0,3
. 56	I7.5674	1760	17.5958	1757	. 99838	3,2	.0016	0,3
. 57	17.7442	1777	17.7724	1774	. 99842	3,2	.0016	0,3
. 58	17.9228	1795	17.9507	1792	. 99845	3,I	.0016	0,3
. 59	18.1032	I8I3	18. 1308	1810	. 99848	3,0	. OOI5	0,3
3.60	18.2855	1831	18.3128	1829	0.99851	3,0	1.0015	0,3
. 61	18.4695	1850	18.4966	1847	. 99854	2,9	. 0015	0,3
. 62	18.6554	1868	18.6822	1866	. 99857	2,9	.0014	0,3
. 63	18.8432	1887	18.8697	1884	. 99859	2,8	.0014	0,3
. 64	19.0328	1906	19.0590	1903	.99862	2,8	.0014	0,3
3.65	19.2243	1925	19.2503	1922	0.99865	2,7	1.0014	0,3
. 66	19.4178	1944	19.4435	1942	. 99868	2,6	. 0013	0,3
. 67	19.6132	1964	19.6387	1961	. 99870	2,6	.0013	0,3
. 68	19.8106	1984	19.8358	I98I	. 99873	2,5	.0013	0,3
. 69	20.0099	2003	20.0349	2001	.99875	2,5	. 0012	0,2
3.70	20.2113	2024	20.2360	2021	0.99878	2,4	1.0012	0,2
. 71	20.4147	2044	20.4391	2041	. 99880	2,4	.0012	0,2
. 72	20.6201	2064	20.6443	2052	. 99883	2,3	. 0012	0,2
. 73	20.8276	2085	20.8516	2083	. 99885	2,3	.0012	0,2
. 74	21.0371	2106	21.0609	2104	. 99887	2,3	. 001 I	0,2
3.75	21. 2488	2127	21.2723	2125	0.99889	2,2	I.0011	0,2
. 76	21.4626	2149	21. 4859	2146	. 99892	2,2	.00II	0,2
. 77	21. 6785	2170	21.7016	2168	. 99894	2,I	.00II	0,2
. 78	21. 8966	2192	21.9194	2190	.99836	2,I	.0010	0,2
. 79	22. 1169	2214	22.1395	2212	. 99898	2,0	.0010	0,2
3.80	22.3394	2236	22.3618	2234	0.99900	2,0	1.0010	0,2
.8I	22.5641	2259	22.5863	2256	. 99902	2,0	. 0010	0,2
. 82	22.7911	2281	22.8131	2279	. 99904	I,9	.0010	0,2
. 83	23.0204	2304	23.0421	2302	. 99906	I,9	. 0009	0,2
. 84	23.2520	2327	23.2735	2325	. 99908	I,8	. 0009	0,2
3.85	23.4859	2351	23.5072	2349	0.99909	I,8	1. 00009	0,2
. 86	23.7221	2374	23.7432	2372	. 9991 I	I,8	. 0009	0,2
. 87	23.9608	2398	23.9816	2396	. 99913	1,7	. 0009	0,2
. 88	24.2018	2422	24.2224	2420	. 99915	I,7	. 0009	0,2
. 89	24.4452	2447	24.4657	2445	.99916	I,7	. 0008	0,2
3.90	24.69 II	2471	24.7113	2469	0.99918	1,6	I. 0008	0,2
. 91	24.9395	2496	24.9595	2494	. 99920	I,6	. 0008	0,2
. 92	25.1903	2521	25.2101	2519	. 9992 I	1,6	. 0008	0,2
. 93	25.4437	2546	25.4633	2544	. 99923	I,5	. 0008	0,2
. 94	25.6996	2572	25.7190	2570	. 99924	I,5	. 0008	0,2
3.95	25.958I	2598	25.9773	2596	0.99926	I,5	1.0007	O,I
. 96	26.2191	2624	26.2382	2622	. 99927	I,5	. 0007	O,I
. 97	26.4828	2650	26.5017	2648	. 99929	I,4	. 0007	O,I
. 98	26.7492	2677	26.7679	2575	. 99930	I, 4	.0007	O,I
. 99	27.0182	2704	27.0367	2702	. 99932	I, 4	. 0007	0, I
4.00	27.2899	2731	$27 \cdot 3082$	2729	0.99933	I,3	1.0007	O, I
u	$\boldsymbol{\operatorname { t a n }} \mathbf{g d} \mathbf{u}$	$\omega F_{0}{ }^{\prime}$	sec gd u	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{s i n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
4.00	27.2899	2731	27.3082	2729	0.99933	1,3	1.0007	0,1
. 1	27.5644	2758	27.5825	2756	. 99934	1,3	. 0007	
. 02	27.8416	2786	27.8595	2784	. 99936	I,3	. 0006	
. 03	28.1216	2814	28.1393	2812	- 99937	1,3	. 0006	
. 04	28.4044	2842	28.4220	2840	. 99938	1,2	. 0006	
4.05	28.6900	2871	28.7074	2859	0.99939	1,2	1.0006	0,I
. 06	28.9785	2900	28.9958	2898	. 9994 I	1,2	. 0006	
. 07	29.2699	2929	29.2870	2927	. 99942	1,2	. 0006	
. 08	29.5643	2958	29.5812	2956	. 99943	I, I	. 0006	
. 09	29.8616	2988	29.8783	2986	. 99944	I, I	. 0006	
4.10	30.1619	3018	30.1784	3016	0.99945	I, I	1.0005	0,1
. 11	30.4652	3048	30.4816	3047	. 99946	I, I	. 0005	
.12	30.7715	3079	30.7877	3077	. 99947	1,I	. 0005	
. 13	31.0809	3110	31.0970	3108	. 99948	1,0	. 0005	
. 14	31.3934.	3141	31.4094	3139	-99949	1,0	. 0005	
4.15	31.7091	3172	31.7249	3171	0.99950	1,0	1.0005	0,1
. 16	32.0280	3204	32.0436	3203	. 99951	1,0	. 0005	
$\cdot 17$	32.3500	3237	32.3655	3235	- 99952	1,0	. 0005	
. 18	32.6753	3269	32.6906	3268	-99953	0,9	. 0005	
. 19	33.0038	3302	33.0150	3300	- 99954	0,9	. 0005	
4.20	33.3357	3335	33.3507	3334	0.99955	0,9	1.0004	0,1
. 21	33.6708	3369	33.6857	3367	. 99956	0,9	. 0004	
. 22	34.0094	3402	34.024 I	3401	- 99957	0,9	. 0004	
.23	34.3513	3437	34.3659	3435	- 99958	0,8	. 0004	
. 24	34.6967	3471	34.71 II	3470	-99958	0,8	. 0004	
4.25	35.0456	3506	35.0598	3505	0.99959	0,8	1.0004	0, I
. 26	35.3979	3541	35.4121	3540	. 99960	o,8	. 0004	
. 27	35.7538	3577	35.7678	3575	. 99961	0,8	. 0004	
. 28	36. 1133	3613	36.1271	3611	. 99962	0,8	. 0004	
. 29	36.4764	3649	36.4501	3648	- 99962	0,8	. 0004	
4.30	36.843I	3686	36.8567	3684	0.99963	0,7	1.0004	0, I
. 31	37.2135	3723	37.2270	3721	. 99964	0,7	. 0004	
. 32	37.5877	3760	37.6010	3759	. 99965	0,7	. 0004	
. 33	37.9656	3798	37.9787	3797	. 99965	0,7	. 0003	
. 34	38.3473	3836	38.3603	3835	. 99966	0,7	. 0003	
4.35	38.7328	3875	38.7457	3873	0.99967	0,7	1.0003	0,I
. 36	39.1222	3913	39.1350	3912	. 99967	0,7	. 0003	
. 37	39.5155	3953	39.528 I	3952	. 99968	0,6	. 0003	
. 38	39.9128	3993	39.9253	3991	- 99969	0,6	. 0003	
- 39	40.3140	4033	40.3264	403I	. 99969	0,6	. 0003	
4.40	40.7193	4073	40.7316	4072	0.99970	0,6	1.0003	0,1
. 41	41.1287	4114	41.1408	4113	. 99970	0,6	. 0003	
. 42	41.5421	4155	41.5542	4154	. 99971	0,6	. 0003	
. 43	41.9598	4197	41.9717	4156	. 99972	0,6	. 0003	
. 44	42.3816	4239	42.3934	4238	. 99972	0,6	. 0003	
4.45	42.8076	4282	42.8193	428 I	0.95973	0,5	1.0003	0, I
. 46	43.2380	4325	43.2495	4324	. 99973	0,5	. 0003	
. 47	43.6726	4368	43.6841	4367	. 99974	0,5	. 0003	
. 48	44.1117	4412	44.1230	44 II	-99974	0,5	. 0003	
. 49	44.5551	4457	44.5663	4456	. 99975	0,5	. 0003	
4.50	45.0030	4501	45.0141	4500	0.99975	0,5	1.0002	0, 0
u	$\boldsymbol{t a n g d u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s e c}$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{s i n}$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
$4 \cdot 50$	45.0030	4501	45.0141	4500	0.99975	0,5	I. 0002	0,0
. 51	45.4554	4547	45.4664	4546	. 99976	0,5	. 0002	
. 52	45.9124	4592	45.9232	4591	. 99976	0,5	. 0002	
. 53	46.3739	4638	46.3847	4637	. 99977	0,5	. 0002	
. 54	46.8401	4685	46.8507	4684	. 99977	0,5	. 0002	
4.55	47.3109	4732	47.3215	4731	0.99978	0,4	I. 0002	0,0
. 56	47.7865	4780	47.7970	4779	. 99978	0,4	. 0002	
. 57	48.2669	4828	48.2772	4827	. 99979	0,4	. 0002	
. 58	48.752 I	4876	48.7623	4875	. 99979	0,4	. 0002	
- 59	49.242 I	4925	49.2523	4924	. 99979	0,4	. 0002	
4.60	49.737 I	4975	49.7472	4974	0.99980	0,4	I. 0002	0,0
.6I	50.2371	5025	50.2471	5024	. 99980	0,4	. 0002	
. 62	50.742 I	5075	50.7519	5074	.9998I	0,4	. 0002	
. 63	51.2522	5126	51.2619	5125	.9998I	0,4	. 0002	
. 64	51.7673	5178	51.7770	5177	.9998I	0,4	. 0002	
4.65	52.2877	5230	52.2973	5229	0.99982	0,4	1.0002	0,0
. 66	52.8133	5282	52.8228	528I	. 99982	0,4	. 0002	
. 67	53.3442	5335	53.3536	5334	. 99982	0,4	. 0002	
. 68	53.8804	5389	53.8897	5388	. 99983	0,3	. 0002	
. 69	54.4220	5443	54.43 I 2	5442	. 99983	0,3	. 0002	
4.70	54.9690	5498	54.9781	5497	0.99983	0,3	I. 0002	0,0
. 71	55.5216	5553	55.5306	5552	. 99984	0,3	. 0002	
.72	56.0797	5609	56.0886	5608	. 99984	0,3	. 0002	
. 73	56.6434	5665	56.6522	5664	. 99984	0,3	. 0002	
. 74	57.2127	5722	57.2215	5721	. 99985	0,3	. 0002	
4.75	57.7878	5780	57.7965	5779	0.99985	0,3	I.000I	0,0
. 76	58.3687	5838	58.3772	5837	. 99985	0,3	.000I	
. 77	58.9554	5896	58.9639	5896	. 99985	0,3	. 0001	
.78	59.5480	5956	59.5564	5955	. 99986	0,3	. 0001	
. 79	60.1465	6015	60.1548	6015	. 99986	0,3	. 0001	
4.80	60.7511	6076	60.7593	6075	0.99986	0,3	r.000I	0,0
. 81	61.3617	6137	61.3699	6136	. 99987	0,3	. 0001	
. 82	61.9785	6199	61.9866	6198	. 99987	0,3	. 0001	
. 83	62.6015	6261	62.6095	6260	. 99987	0,3	. 0001	
. 84	63.2307	6324	63.2386	6323	. 99987	0,3	. 0001	
4.85	63.8663	6387	63.8741	6387	0.99988	0,2	I. 0001	0,0
. 86	64.5082	6452	64.5160	645 I	. 99988	0,2	.0001	
. 87	65.1566	6516	65.1643	6516	. 99988	0,2	. 0001	
. 88	65.8 II 5	6582	65.8191	6581	. 99988	0,2	. 0001	
. 89	66.4730	6648	66.4805	6647	. 99989	0,2	.000I	
4.90	67.1412	6715	67.1486	6714	0.99989	0,2	I.000I	0,0
.91	67.8160	6782	67.8234	6782	. 99989	0,2	.0001	
. 92	68.4977	6850	68.5050	6850	. 99989	0,2	. 0001	
. 93	69.186I	6919	-69.1934	6919	. 99990	0,2	. 0001	
. 94	69.8815	6989	69.8887	6988	. 99990	0,2	. 0001	
4.95	70.5839	7059	70.5910	7058	0.99990	0,2	I.000I	0,0
. 96	71.2934	7130	71.3004	7129	. 99990	0,2	.0001	
. 97	72.0100	7202	72.0169	7201	. 99990	0,2	.0001	
. 98	72.7338	7274	72.7406	7273	. 99991	0,2	. 0001	
. 99	73.4648	7347	73.4716	7346	. 9999 I	0,2	.0001	
5.00	74.2032	7421	74.2099	7420	0.99991	0,2	I. 0001	0,0
u	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
5.00	74.2032	7421	74.2099	7420	0.99991	0,2	I. 0001	0,0
. 01	74.9490	7496	74.9557	7495	. 9999 I	0,2	.0001	
. 02	75.7023	7571	75.7090	7570	.9999I	0,2	. 0001	
. 03	76.4632	7647	76.4698	7646	.9999I	0,2	. 0001	
. 04	77.2318	7724	77.2382	7723	. 99992	0,2	. 0001	
5.05	78.0080	7801	78.0144	7801	0.99992	0,2	I. 0001	0,0
. 06	78.7921	7880	78.7984	7879	. 99992	0,2	. 0001	
. 07	79.5840	7959	79.5903	7958	. 99992	0,2	. 0001	
. 08	80.3839	8039	80.3901	8038	. 99992	0,2	.000I	
. 09	81.1918	8120	81.1980	8i 19	. 99992	0,2	. 0001	
5.10	82.0079	8201	82.0140	8201	0.99993	O,I	I.000I	0,0
. II	82.8322	8284	82.8382	8283	. 99993	O,I	.0001	
. 12	83.6647	8367	83.6707	8366	. 99993	O, I	. 0001	
. I3	84.5056	845 I	84.5115	845 I	. 99993	O,I	.000I	
. I4	85.3550	8536	85.3608	8535	. 99993	O,I	. 0001	
5.15	86.2128	8622	86.2186	8621	0.99993	O,I	I.000I	0,0
. 16	87.0794	8709	87.0851	8708	. 99993	O,I	. 0001	
. 17	87.9546	8796	87.9603	8795	. 99994	O, I	.000I	
. 18	88.8386	8884	88.8442	8884	. 99994	O, I	.000I	
. 19	89.7315	8974	89.7371	8973	. 99994	O,I	.000I	
5.20	90.6334	9064	90.6389	9063	0.99994	O,I	I.000I	0,0
. 21	91.5443	9155	91.5498	9154	. 99994	O,I	.000I	
. 22	92.4644	9247	92.4698	9246	. 99994	O,I	. 0001	
. 23	93.3937	9340	93.3991	9339	. 99994	O,I	. 0001	
. 24	94.3324	9434	94.3377	9433	-99994	O,I	.000I	
5.25	95.2805	9529	95.2858	9528	0.99994	O,I	1.000I	0,0
. 26	96.238 I	9624	96.2433	9624	. 99995	O,I	. 0001	
. 27	97.2054	9721	97.2106	9721	. 99995	O,I	. 0001	
. 28	98.1824	9819	98.1875	9818	. 99995	O,I	. 0001	
. 29	99.1692	9917	99.1742	9917	. 99995	O,I	. 0001	
5.30	100. 1659	10017	100.1709	10017	0.99995	O,I	1.0000	0,0
. 31	101. 1726	10118	IOI. 1776	10117	. 99995	O, I	. 0000	
. 32	102.1895	10219	102. 1944	10219	. 99995	O,I	. 0000	
. 33	103.2166	10322	103.2214	10322	. 99995	O,I	. 0000	
. 34	104.2540	10426	104.2588	10425	. 99995	O,I	. 0000	
5.35	105.3018	10531	105.3065	10530	0.99995	O, I	1.0000	0,0
. 36	106.3601	10636	106.3648	10636	. 99996	O,I	. 0000	
. 37	107.4291	10743	107.4338	10743	. 99996	O,I	. 0000	
. 38	108.5088	10851	108.5134	10851	. 99996	O,I	. 0000	
- 39	109.5994	10960	109.6040	10960	. 99996	O,I	. 0000	
5.40	110.7009	11071	110.7055	11070	0.99996	O,I	1.0000	0,0
. 41	III.8136	III82	III.8180	III8I	. 99996	O,I	. 0000	
. 42	112.9375	11294	112.9418	11294	. 99996	O,I	. 0000	
. 43	I14.0724	11408	114.0768	11407	. 99996	O,I	. 0000	
. 44	115.2189	II 522	I 15.2233	II522	. 99996	O,I	. 0000	
5.45	116.3769	11638	I16.3812	11638	0.99996	O,I	I. 0000	0,0
. 46	117.5466	11755	117.5508	11755	. 99996	O,I	. 0000	
. 47	118.7280	11873	118.7322	11873	. 99996	O,I	. 0000	
. 48	119.9213	11993	119.9254	11992	. 99997	O,I	. 0000	
. 49	121.1265	12113	121.1307	12113	. 99997	O,I	. 0000	
5.50	122.3439	12235	122.3480	12234	0.99997	O,I	1.0000	0,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
$5 \cdot 50$	122.3439	12235	122.3480	12234	0.99997	O,I	1.0000	0,0
. 51	123.5735	12358	123.5776	12357	. 99997	0,1	. 0000	
. 52	I24.8155	12482	I24.8195	12482	. 99997	0,1	. 0000	
. 53	126.0700	12607	126.0739	12607	. 99997	O,I	. 0000	
. 54	127.3370	12734	127.3410	12734	.99997	O,I	. 0000	
5.55	I28.6i68	12862	128.6207	12862	0.99997	0,I	1.0000	0,0
. 56	129.9095	12991	129.9133	12991	. 99997	O,I	. 0000	
. 57	I3I.215I	13122	131.2190	13122	-99997	0,I	. 0000	
. 58	132.5339	13254	132.5377	13253	. 99997	0,I	. 0000	
. 59	I 33.8659	13387	133.8697	13387	. 99997	O,I	. 0000	
5.60	135.2114	13522	135.2150	13521	0.99997	0,1	1.0000	0,0
.61	136.5703	I3657	I36.5739	I 3657	. 99997	O,I	. 0000	
. 62	137.9429	13795	137.9465	13794	. 99997	0,I	. 0000	
. 63	139.3293	13933	139.3329	I 3933	. 99997	O,I	. 0000	
. 64	140.7296	14073	I40.733	14073	-99997	0,I	. 0000	
5.65	142.1440	14215	142.1475	14214	0.99998	0,0	1.0000	0,0
. 66	143.5726	14358	143.5761	14357	. 99998	0,0	. 0000	
. 67	145.0155	14502	145.0190	14502	. 99998	0,0	. 0000	
. 68	146.4730	14648	146.4764	14647	. 99998	0,0	. 0000	
. 69	147.9451	14795	$147 \cdot 9485$	14795	. 99998	0,0	. 0000	
5.70	149.4320	14944	149.4354	14943	0.99998	0,0	1.0000	0,0
. 71	150.9339	15094	150.9372	15093	. 99998	0,0	. 0000	
.72	152.4508	15245	152.4541	I 5245	. 99998	0,0	. 0000	
. 73	153.9830	I $5399{ }^{\circ}$	153.9863	15398	. 99998	0,0	. 0000	
. 74	155.5306	I 5553	155.5338	I 5553	. 99998	0,0	. 0000	
5.75	157.0938	15710	157.0969	15709	0.99998	0,0	1.0000	0,0
. 76	158.6726	15868	r'58.6757	15867	. 99998	0,0	. 0000	
. 77	160.2673	16027	160.2704	16027	. 99998	0,0	. 0000	
. 78	161.8781	16188	16I.88II	16188	. 99998	0,0	. 0000	
. 79	163.5050	16351	163.5080	16350	. 99998	0,0	. 0000	
5.80	165.1483	16515	165.1513	16515	0.99998	0,0	1. 0000	0,0
. 81	166.808 I	1668I	166.8III	1668I	. 99998	0,0	. 0000	
. 82	168.4845	16849	168.4875	16848	. 99998	0,0	. 0000	
. 83	170.1779	17018	170.1808	17018	. 99998	0,0	. 0000	
. 84	171.8882	I7189	171.89II	I7I89	. 99998	0,0	. 0000	.
5.85	173.6158	17362	173.6186	17362	0.99998	0,0	1.0000	0,0
. 86	175.3606	17536	175.3635	17536	. 99998	0,0	. 0000	
. 87	177.1231	17713	177.1259	17712	. 99998	0,0	. 0000	
. 88	178.9032	17891	178.9060	17890	-99998	0,0	. 0000	
. 89	180.7013	18070	180.7040	18070	. 99998	0,0	. 0000	
5.90	182.5174	18252	182.5201	I8252	0.99998	0,0	1.0000	0,0
.91	184.3517	'18435	184.3544	I8435	. 99999	0,0	. 0000	
. 92	186.2045	18621	186.2072	18620	. 99999	0,0	. 0000	
. 93	188.0759	18808	188.0786	18808	. 99999	0,0	. 0000	
. 94	189.966I	18997	189.9688	18997	. 99999	0,0	. 0000	
5.95	191.8754	19188	191.8780	19188	0.99999	0,0	1.0000	0,0
. 96	193.8038	1938I	193.8064	19380	. 99999	0,0	. 0000	
. .97	195.7516	19575	195.7541	19575	. 99999	0,0	. 0000	
. 98	197.7189	19772	197.7214	19772	. 99999	0,0	. 0000	
. 99	199.7061	19971	199.7086	19971	. 99999	0,0	. 0000	
6.00	201.7132	20172	201.7156	20171	0.99999	0,0	1.0000	0,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

TABLE III

NaTURAL AND LOGARITHMIC CIRCULAR FUNCTIONS

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0000	0.00000	10,0	1.00000	. 0,0	- $-\infty$	$+\infty$	0.00000	0,0	$0^{\circ} 000000000$
.0001	. 00010		. 00000		6.00000	43429,4	. 00000		00020.63
. 0002	. 00020		. 00000		. 30103	21714,7	. 00000		00041.25
. 0003	. 00030		. 00000		. 47712	14476,5	. 00000		0 O1 01. 88
. 0004	. 00040		. 00000		. 60206	10857,4	. 00000		O OI 22.51
0.0005	0.00050	10,0	1.00000	0,0	6.69897	8685,9	0.00000	0,0	O OI 43.13
. 0006	. 00060		. 00000		. 778 I 5	7238,2	. 00000		00203.76
. 0007	.00070		. 00000		. 84510	6204,2	. 00000		00224.39
. 0008	. 00080		. 00000		. 90309	5428,7	. 00000		00245.01
. 0009	. 00090		. 00000		. 95424	4825,5	. 00000		00305.64
0.0010	0.00100	10,0	1.00000	0,0	7.00000	4342,9	0.00000	0,0	00326.26
.0011	.001 10		. 00000		. 04139	3948,	. 00000		00346.89
. 0012	. 00120		. 00000		.07918	3619, 1	. 00000		00407.52
.0013	.00130		. 00000		. I I394	3340,7	. 00000		00428.14
. 0014	.00140		. 00000		. 14613	3102,1	. 00000		00448.77
0.0015	0.00150	10,0	1.00000	0,0	7.17609	2895,3	0.00000	0,0	00509.40
.0016	. 00160		. 00000		. 20412	2714,3	. 00000		00530.02
. 0017	. 00170		. 00000		. 23045	2554,7	. 00000		00550.65
. 0018	.00180		. 00000		. 25527	2412,7	. 00000		006 II. 28
.0019	.00190		. 00000		. 27875	2285,8	. 00000		00631.90
0.0020	0.00200	10,0	1.00000	0,0	7.30103	2171,5	0.00000	0,0	0 0652.53
. 0021	. 00210		. 00000		. 32222	2068, I	. 00000		00713.16
. 0022	. 00220		. 00000		- 34242	1974, 1	. 00000		00733.78
. 0023	. 00230		. 00000		. 36173	1888,2	. 00000		00754.41
. 0024	. 00240		. 00000		.38021	1809,6	. 00000		00815.04
0.0025	0.00250	10,0	1.00000	0,0	$7 \cdot 39794$	1737,2	0.00000	0,0	00835.66
. 0026	. 00260		. 00000		.41497	1670,4	. 00000		00856.29
. 0027	. 00270		. 00000		. 43136	1608,5	. 00000		00916.91
. 0028	. 00280		. 00000		. 44716	1551,0	. 00000		00937.54
. 0029	. 00290		. 00000		. 46240	1497,6	. 00000		00958.17
0.0030	0.00300	10,0	1.00000	0,0	7.47712	1447,6	0.00000	0,0	0 10 18.79
.0031	.00310		. 00000		. 49136	1400,9	. 00000		0 10 39.42
. 0032	. 00320		0.99999		. 50515	1357,2	. 00000		0 II 00.05
. 0033	. 00330		. 99999		. 51851	1316,0	. 00000		0 II 20.67
. 0034	. 00340		-99999		-53148	1277,3	. 00000		0 II 41.30
0.0035	0.00350	10,0	0.99999	0,0	7.54407	1240,8	0.00000	0,0	0 12 or. 93
. 0036	. 00360		. 99999		. 55630	1206,4	. 00000		0 1222.55
. 0037	. 00370		. 99999		. 56820	1173,8	. 00000		01243.18
. 0038	.00380		. 99999		- 57978	I 142,9	. 00000		0 13 03.81
. 0039	. 00390		. 99999		. 59106	I I 13,6	. 00000		0 I3 24.43
0.0040	0.00400	10,0	0.99999	0,0	7.60206	1085,7	0.00000	0,0	01345.06
. 0041	. 00410		. 99999		.61278	1059,2	. 00000		0 1 1405.69
. 0042	. 00420		. 99999		. 62325	1034,0	. 00000		0 1426.31
. 0043	. 00430		. 99999		. 63347	1010,0	. 00000		0 O 1446.94
. 0044	. 00440		. 99999		. 64345	987,0	. 00000		01507.57
0.0045	0.00450	10,0	0.99999	0,0	7.65321	965, 1	0.00000	0,0	$\begin{array}{llll}0 & 15 & 28.19\end{array}$
. 0046	. 00460		. 99999		. 66276	944, I	. 00000		0 0 15 48.82
. 0047	. 00470		. 99999		. 67210	924,0	. 00000		0 l 1609.44
. 0048	. 00480		. 99999		. 68124	904,8	. 00000		01630.07
. 0049	. 00490		. 99999		. 69019	886,3	9.99999		01650.70
0.0050	0.00500	10,0	0.99999	0,0	7.69897	868,6	9.99999	0,0	01711.32
u	-isinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} 4$	ωF_{0}^{\prime}	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega F_{0}{ }^{\prime}$	u
0.0050	0.00500	10,0	0.99999	0,0	7.69897	868,6	9.99999	0,0	$0^{\circ} 17^{\circ} \mathrm{II} 1.32$
.005I	. 00510		- 99999	0,1	. 70757	851,6	-99999		0 17 31.95
. 0052	. 00520		. 99999		. 71600	835,2	. 99999		01752.58
. 0053	. 00530		. 99999		. 72427	819,4	.99999		0 I8 13.20
. 0054	. 00540		. 99999		-73239	804,2	. 99999		01833.83
0.0055	0.00550	10,0	0.99998	0,I	7.74036	789,6	9.99999	0,0	0 18 54.46
. 0056	. 00560		. 99998		. 74819	775,5	. 99999		0 I9 15.08
. 0057	. 00570		. 99998		. 75588	761,9	. 99999		0 O 1935.71
. 0058	. 00580		. 99998		. 76343	748,8	. 99999		O 1956.34
. 0059	. 00590		. 99998		. 77085	736,1	. 99999		02016.96
0.0060	0.00600	10,0	0.99998	O,I	7.77815	723,8	9.99999	0,0	02037.59
.006I	. 00610		. 99998		. 78533	711,9	. 99999		0 2058.22
. 0062	. 00620		. 99998		. 79239	700;5	. 99999		0 21 18.84
. 0063	. 00630		. 99998		-79934	689,3	. 99999		02139.47
. 0064	. 00640		. 99998		. 80618	678,6	. 99999		02200.09
0.0065	0.00650	10,0	0.99998	0,I	7.81291	668, I	9.99999	0,0	02220.72
. 0066	. 00660		. 99998		. 81954	658,0	. 99999		02241.35
. 0067	. 00670		. 99998		. 82607	648,2	. 99999		02301.97
. 0068	. 00680		. 99998		. 83251	638,7	. 99999		0 2322.60
. 0069	. 00690		. 99998		. 83885	629,4	. 99999		02343.23
0.0070	0.00700	10,0	0.99998	O,I	7.84509	620,4	9.99999	0,0	02403.85
. 0071	. 00710		. 99997		. 85125	$6 \mathrm{II}, 7$. 99999		0 2424.48
. 0072	. 00720		. 99997		. 85733	603,2	. 99999		02445.11
. 0073	. 00730		. 99997		. 86332	594,9	. 99999		02505.73
. 0074	. 00740		. 99997		. 86923	586,9	. 99999		02526.36
0.0075	0.00750	10,0	0.99997	0,I	7.87506	579,0	9.99999	0,0	02546.99
. 0076	. 00760		. 99997		. 8808 I	571,4	. 99999		0 2607.61
. 0077	. 00770		. 99997		. 88649	564,0	. 99999		02628.24
. 0078	. 00780		. 99997		. 89209	556,8	. 99999		- 2648.87
. 0079	. 00790		. 99997		. 89762	549,7	. 99999		02709.49
0.0080	0.00800	10,0	0.99997	0,1	7.90309	542,9	9.99999	0,0	02730.12
.008I	.00810		. 99997		. 90848	536,2	. 99999		02750.74
. 0082	. 00820		. 99997		.91381	529,6	. 99999		028 II. 37
. 0083	. 00830		. 99997		. 91907	523,2	. 99999		02832.00
. 0084	. 00840		. 99996		. 92427	517,0	. 99998		0 2852.62
0.0085	0.00850	10,0	0.99996	0,I	7.92941	510,9	9.99998	0,0	$\begin{array}{llll}0 & 29 & 13.25\end{array}$
. 0086	. 00860		. 99996		. 93449	505,0	. 99998		- 2933.88
. 0087	. 00870		. 99996		.9395I	499, 1	. 99998		o 2954.50
. 0088	. 00880		. 99996		. 94448	493,5	. 99998		- 30 15.13
. 0089	. 00890		. 99996		. 94938	488,0	. 99998		- 3035.76
0.0090	0.00900	10,0	0.99996	O,I	7.95424	482,5	9.99998	0,0	- 3056.38
.0091	.00910		. 99996		. 95904	477,2	. 99998		03117.01
. 0092	. 00920		. 99996		. 96378	472,0	. 99998		- 31 37.64
. 0093	. 00930		. 99996		. 96848	467,0	. 99998		03158.26
. 0094	. 00940		. 99996		. 97312	462,0	. 99998		- 32 18.89
0.0095	0.00950	10,0	0.99995	0,1	7.97772	457, 1	9.99998	0,0	- 3239.52
. 0096	. 00960		. 99995		. 98226	452,4	. 99998		- 3300.14
. 0097	. 00970		. 99995		. 98676	447,7	. 99998		03320.77
. 0098	. 00980		. 99995		.99122	443, I	. 99998		o 33. 41.40
. 0099	. 00990		. 99995		. 99563	438,7	-99998		03402.02
0.0100	0.01000	10,0	0.99995	O,I	7.99999	434,3	9.99998	0,0	- 3422.65
u	-isinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	Og cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega F_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0100	0.01000	10,0	0.99995	0,1	7.99999	434,3	9.99998	0,0	$0^{\circ} 344^{\prime} 22^{\prime \prime} 65$
. 0101	. 01010		. 99995		8.0043 I	430,0	. 99998		03443.27
. 0102	. 01020		. 99995		. 00859	425,8	. 99998		03503.90
. 0103	. 01030		. 99995		. 01283	421,6	. 99998		- 3524.53
. 0104	. 01040		. 99995		. 01703	417,6	. 99998		- 3545.15
0.0105	0.01050	10,0	0.99994	O,I	8.02118	413,6	9.99938	0,0	- 3605.78
. 0106	. 01060		. 99994		. 02530	409,7	. 99998		0 3626.41
. 0107	. 01070		. 99994		. 02938	405,9	. 99958		二 5647.03
. 0108	. 01080		. 99994		. 03342	402, I	. 99997		- 3707.66
. 0109	. 01090		. 99994		.03742	398,4	. 99997		- 3728.29
0.0110	0.01100	10,0	0.99994	0,1	8.04138	394,8	9.99997	0,0	- 3748.91
. OIII	. OIIIO		. 99994		.0453I	391,2	. 99997		- 3809.54
. OII2	. 01120		. 99994		.0492I	387,7	. 99997		- 3830.17
. OII3	. O1I30		. 99994		. 05307	384,3	. 99997		- 3850.79
.OII4	. OI I 40		-99994		. 05690	380,9	. 99997		0 39 II. 42
0.0115	0.01150	10,0	0.99993	O,I	8.06069	377,6	9.99997	0,0	03932.05
.OII6	. 01160		. 99993		. 06445	374,4	. 99997	O,I	- 3952.67
. 0117	. O1770		. 99993		.058I8	371,2	. 99997		- 40 I3.30
. 0118	. 01180		. 99993		. 07187	368,0	. 99997		0 4033.92
. OII9	. 01190		. 99993		. 07554	364,9	. 99997		- 4054.55
0.0120	0.01200	10,0	0.99993	O,I	8.07917	361,9	9.99997	O,I	$\begin{array}{lll}\text { o } 41 & 15.18\end{array}$
.OI2I	. 01210		. 99993		. 08277	358,9	. 99997		0 41 35.80
. 0122	. 01220		. 99993		.086,35	356,0	. 99997		o 4156.43
. 0123	. 01230		. 99992		. 08989	353, 1	. 99997		04217.06
. 0124	. 01240		. 99992		.0934I	350,2	. 99997		- 4237.68
0.0125	0.01250	10,0	0.99992	O,I	8.09690	347,4	9.99997	O, I	0 4258.3 I
. 0126	.01260		. 99992		. 10036	344,7	. 99997		04318.94
. 0127	. 01270		. 99992		. 10379	342,0	. 99995		o 4339.56
. 0128	. 01280		. 99992		. 10720	339,3	-99996		04400.19
. 0129	. 01290		. 99992		. I 1058	335,6	. 99996		04420.82
0.0130	0.01300	10,0	0.99992	0,1	8. II 393	334, I	9.99996	O,I	0 44 41.44
. O131	.01310		. 99991		. II726	331,5	. 99996		04502.07
. 0132	. O1320		. 99991		. I2056	329,0	. 99996		04522.70
. O133	.OI330		.9999I	.	. 12384	326,5	. 99996		0 4543.32
. 0134	. OI 340		.9999I		. 12709	324, I	. 99996		04603.95
0.0135	0.01350	10,0	0.99991	O,I	8.13032	321,7	9.99996	O,I	- 4624.57
.0136	. 01360		.9999I		. I3353	319,3	. 99996		0 4645.20
. 0137	. 01370		.9999I		. I3571	317,0	. 99996		0 4705.83
. 0138	. 01380		. 99990		. 13987	314,7	. 99996		0 0 7726.45
. 0139	. 01390		. 99990		. 14300	312,4	. 99996		04747.08
0.0140	0.01400	10,0	0.99990	O,I	8. I46II	310,2	9.99996	0,I	04807.71
. 0141	. 01410		. 99990		. 14920	308,0	. 99996		04828.33
. 0142	. O1420		. 99990		. 15227	305,8	. 99996		- 4848.96
. OI43	.01430		. 99990		. 15532	303,7	. 99996		- 4909.59
. 0144	. 01440		. 99990		. 15835	301,6	- 99995		04930.21
0.0145	0.01450	10,0	0.99989	O,I	8. 16I35	299,5	9.99995	O,I	- 4950.84
. 0146	. 01460		. 99989		. 16434	297,4	. 99995		O 50 II. 47
. 0147	. 01470		. 99989		. 16730	295,4	. 99995		0 5032.09
. 0148	. 01480		. 99989		. 17025	293,4	. 99995		05052.72
. 0149	. 01490		. 99989		. 17317	291,5	. 99995		0 51 13.35
0.0150	0.01500	10,0	0.99989	O,I	8.17608	289,5	9.99995	0,I	0 51 33.97
4	-isinh iu	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { c o s }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0150	0.01500	10,0	0.99989	O,I	8.17608	289,5	9.99995	O,I	$0^{\circ} 51 \times 33.97$
. OI5 1	.OI510		. 99989	0,2	. 17895	287,6	. 99995		05154.60
. 0152	. OI 520		. 99988		. 18183	285,7	. 99995		- 5215.23
. 0153	. 01530		. 99988		. 18467	283,8	. 99995		- 5235.85
. 0154	. OI 540		. 99988		. 18750	282,0	. 99995		- 5256.48
0.0155	0.01550	10,0	0.99988	0,2	8.1903I	280,2	9.99995	O,I	05317.10
.0156	. OI 560		. 99988		. 193II	278,4	. 99995		- 5337.73
. 0157	. OI 570		. 99988		. 19588	276,6	. 99995		- 5358.36
. 0158	. 01580		. 99988		. 19864	274,9	. 99995		- 5418.98
. OI'59	. OI 590		. 99987		. 20138	273, I	. 99995		05439.6 I
0.0160	0.01600	10,0	0.99987	0,2	8.20410	271,4	9.99994	0,I	05500.24
. 0161	. 01610		. 99987		. 2068I	269,7	. 99994		0 5520.86
. 0162	. 01620		. 99987		. 20950	268, I	. 99994		O 55 4I. 49
. 0163	. 01630		. 99987		.21217	266,4	. 99994		0 5602.12
. 0164	. 01640		. 99987		. 21482	264,8	. 99994		- 5622.74
0.0165	0.01650	10,0	0.99985	0,2	8.21746	263,2	9.99994	O,I	- $5643 \cdot 37$
. 0166	. 01660		. 99986		. 22009	26I,6	. 99994		- 5704.00
. 0167	. 01670		. 99986		. 22270	260,0	. 99994		- 5724.62
. 0168	. 01680		. 99985		. 22529	258,5	. 99994		O 5745.25
. 0169	. 01690		. 99986		. 22787	257,0	. 99994		- 5805.88
0.0170	0.01700	10,0	0.99986	0,2	8.23043	255,4	9.99994	0,I	0 5826.50
. 0171	. 01710		. 99985		. 23298	253,9	. 99994		05847.13
. 0172	. 01720		. 99985		. 23551	252,5	. 99994		0 5907.75
. 0173	. 01730		. 99985		. 23802	251,0	. 99994		- 5928.38
. 0174	. 01740		. 99985		. 24053	249,6	. 99993		- 5949.01
0.0175	0.01750	10,0	0.99985	0,2	8.24302	248, I	9.99993	O,I	$1 \begin{array}{llll}1 & 00 & 09.63\end{array}$
. 0176	. 01760		. 99985		. 24549	246,7	. 99993		1 l 0030.26
. 0177	. 01770		. 99984		. 24795	2.45,3	. 99993		10050.89
. 0178	. 01780		. 99984		. 25040	244,0	. 99993		1 OI II.5I
.0179	. 01790		. 99384		.25283	242,6	. 99993		I OI 32.14
0.0180	0.01800	10,0	0.99984	0,2	8.25525	241,2	9.99993	O,I	I OI 52.77
. 018 l	. 01810		. 99984		. 25766	239,9	. 99993		10213.39
. 0182	. 01820		. 99983		. 26005	238,6	. 99993		10234.02
. 0183	. 01830		. 99983		. 26243	237,3	. 99993		1 l 0254.65
. 0184	. 01840		. 99983		. 26479	236,0	. 99993		10315.27
0.0185	0.01850	10,0	0.99983	0,2	8.26715	234,7	9.99993	O, I	
. 0186	. 01860		. 99983		. 26949	233,5	. 99992		$\begin{array}{llll}\text { I } 0356.53 \\ \text { I } & 04 \\ \text { I }\end{array}$
. 0187	. 01870		. 99983		. 27182	232,2	-99992		I 0417.15
. 0188	. 01880		. 99982		. 27413	231,0	. 99992		$\begin{array}{lll}1 & 04 & 37.78 \\ \text { I } & 04 & 58.40\end{array}$
. 0189	. 01890		. 99982		. 27644	229,8	-99992		I 0458.40
0.0190	0.01900	10,0	0.99982	0,2	8.27873	228,5	9.99992	0,1	I 0519.03
. 0191	. 01910		. 99982		. 28101	227,4	. 99992		$\begin{array}{llll}\text { I } & 05 & 39.06 \\ \text { I } & 06 & 00.28\end{array}$
. 0192	. 01920		. 99982		. 28327	226,2 225,0	. 99992		$\begin{array}{lll}1 & 06 & 00.28 \\ \text { I } & 06 & 20.91\end{array}$
. 0193	. 01930		.9998I		. 288573	225,0 223,8	. 99992		$\begin{array}{llll}1 & 06 & 20.91 \\ 1 & 06 & 41.54\end{array}$
. 0194	. 01940		. 99981		. 28777	223,0	-99992		10641.54
0.0195	0.01950	10,0	0.99981	0,2	8.29001	222,7	9.99992	O,I	10702.16
. 0196	. 01960		.9998I		. 29223	22 I, 6	. 99992		I 0722.79
. 0197	. 01970		. 99981		. 29444	220,4	. 99992		I 0743.42
. 0198	. 01980		. 99980		. 29664	219,3	. 9999 I		$\begin{array}{lll}\text { I } & 08 & 04.04\end{array}$
. 0199	. 01990		. 99980		. 29882	218,2	.9999I		I 0824.67
0.0200	0.02000	10,0	0.99980	0,2	8.30100	217,1	9.99991	0, I	I 0845.30
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh \mathrm{iu}}{i}$	$\omega F_{0}{ }^{\prime}$	log cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0200	0.02000	10,0	0.99980	0,2	8.30100	217,1	9.99991	O,I	$\mathrm{I}^{\circ} 08^{\prime} 45^{\prime \prime} .30$
. 0201	. 02010		.99980		-30317	216,0	-9999I		10905.92
. 0202	. 02020		. 99980		. 30532	215,0	.9999I		10926.55
. 0203	. 02030		-99979		- 30747	213,9	. 99991		10947.18
. 0204	. 02040		. 99979		. 30960	212,9	. 99991		11007.80
0.0205	0.02050	10,0	0.99979	0,2	8.31172	211,8	9.99991	O,I	I 1028.43
. 0206	. 02060		. 99979		-31384	210,8	. 99991		I 1049.06
. 0207	.02070		. 99979		-31594	209,8	. 99991		1 II 09.68
. 0208	. 02080		. 99978		- 31803	208,8	. 99991		1 II 30.31
. 0209	. 02090		. 99978		-32012	207,8	. 99991		1 II 50.93
0.0210	0.02100	10,0	0.99978	0,2	8.32219	206,8	9.99990	O,I	11211.56
. 0211	.02110		. 99978		. 32425	205,8	. 99990		11232.19
. 0212	.02120		. 99978		. 32630	204,8	. 99990		11252.81
. 0213	. 02130		. 99977		- 32835	203,9	. 99990		$1 \begin{array}{lll}13 & 13.44\end{array}$
. 0214	.02140		. 99977		. 33038	202,9	. 99990		1 I 334.07
0.0215	0.02150	10,0	0.99977	0,2	8.3324I	202,0	9.99990	O,I	$1 \begin{array}{lll}13 & 54.69\end{array}$
. 0216	. 02160		. 99977		. 33442	201,0	. 99990		$1 \begin{array}{lll}14 & 15.32\end{array}$
.0217	. 02170		-99976		- 33643	200, I	. 99990		1 I4 35.95
. 0218	. 02180		. 99976		. 33842	199,2	. 99990		11456.57
. 0219	. 02190		. 99976		. 3404 I	198,3	. 99990		1 I5 17.20
0.0220	0.02200	10,0	0.99976	0,2	8.34239	197,4	9.99989	O, I	$1 \begin{array}{llll}1 & 15 & 37.83\end{array}$
.022I	. 02210		. 99976		. 34436	196,5	- 99989		11558.45
. 0222	. 02220		. 99975		- 34632	195,6	-99989		11619.08
. 0223	. 02230		. 99975		. 34827	194,7	. 99989		11639.71
. 0224	. 02240		. 99975		. 35021	193,8	-99989		11700.33
0.0225	0.02250	10,0	0.99975	0,2	8.35215	193,0	9.99989	0,1	I 1720.96
. 0226	. 02260		. 99974		. 35407	192,I	. 99989		1 I 74 4 .58
. 0227	. 02270		. 99974		- 35599	191,3	. 99989		11802.21
. 0228	. 02280		. 99974		- 35790	190,4	. 99989		11822.84
. 0229	. 02290		. 99974		- 35980	189,6	. 99989		I 1843.46
0.0230	0.02300	10,0	0.99974	0,2	8.36169	188,8	9.99989	O,I	I 1904.09
. 0231	. 02310		. 99973		. 36357	188,0	. 99988		I 19 24.72
. 0232	. 02320		. 99973		. 36545	187,2	. 99988		I 1945.34
. 0233	. 02330		. 99973		. 36732	186,4	. 99988		12005.97
. 0234	. 02340		. 99973		. 36918	185,6	. 99988		12026.60
0.0235	0.02350	10,0	0.99972	0,2	8.37103	184,8	9.99988	O,I	I 2047.22
. 0236	. 02360		. 99972		. 37287	184,0	. 99988		12107.85
. 0237	. 02370		. 99972		. 3747 I	183,2	. 99988		12128.48
. 0238	. 02380		. 99972		. 37654	182,4	. 99988		12149.10
. 0239	. 02390		. 9997 I		. 37836	181,7	. 99988		12209.73
0.0240	0.02400	10,0	0.9997 I	0,2	8.38017	180,9	9.99987	0,1	12230.36
. 0241	. 02410		. 9997 I		.38198	180,2	. 99987		12250.98
. 0242	. 02420		. 9997 I		. 38377	179,4	. 99987		12311.61
. 0243	. 02430		. 99970		. 38556	178,7	. 99987		12332.23
. 0244	. 02440		. 99970		. 38735	178,0	. 99987		12352.86
0.0245	0.02450	10,0	0.99970	0,2	8.38912	177,2	9.99987	O,I	I 2413.49
. 0246	. 02460		. 99970		. 39089	176,5	. 99987		12434.11
. 0247	. 02470		. 99969		- 39265	175,8	. 99987		I 2454.74
. 0248	. 02480		. 99969		. 3944 I	I75, I	. 99987		$\begin{array}{lll}1 & 25 & 15.37\end{array}$
. 0249	. 02490		. 99969		. 39615	174,4	. 99987		1 2535.99
0.0250	0.02500	10,0	0.99969	0,2	8.39789	173,7	9.99986	0,I	I 2556.62
u	-I sinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh \mathrm{iu}}{i}$	${ }^{\circ} \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

U	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega F_{0}{ }^{\prime}$	u
0.0250	0.02500	10,0	0.59969	0,2	8.39789	173,7	9.99986	O,I	$1{ }^{\circ} 25^{\prime} 56^{\prime \prime} .62$
. 0251	. 02510		. 99969	0,3	. 39963	173,0	. 99986		I 2617.25
. 0252	. 02520		. 99968		. 40135	172,3	. 99986		I 2637.87
. 0253	. 02530		. 99968		. 40307	171,6	. 99986		I 2658.50
. 0254	. 02540		. 99968		. 40479	170,9	. 99986		12719.13
0.0255	0.02550	10,0	0.99967	0,3	8.40649	170,3	9.99986	O,I	I 2739.75
. 0256	. 02560		. 99967		.40819	169,6	. 99986		I 2800.38
. 0257	. 02570		. 99967		. 40989	168,9	. 99986		I 282 I .01
. 0258	. 02580		. 99967		.41157	168,3	. 99986		I 2841.63
. 0259	. 02590		. 99966		. 41325	167,6	. 99985		I 2902.26
0.0260	0.02600	10,0	0.99966	0,3	8.41492	167,0	9.99985	O,I	I 2922.88
.0261	.02610		. 99966		. 41659	166,4	. 99985		I 2943.51
. 0262	. 02620		. 99966		. 41825	165,7	. 99985		I 3004.14
. 0263	. 02630		. 99965		. 41991	165, I	. 99985		I 3024.76
. 0264	. 02640		. 99965		. 42155	164,5	. 99985		I 3045.39
0.0265	0.02650	10,0	0.99965	0,3	8.42320	163,8	9.99985	O,I	13106.02
. 0266	. 02660		. 99965		. 42483	163,2	. 99985		13126.64
. 0267	. 02670		. 99964		. 42646	162,6	. 99985		I 31 47.27
. 0268	. 02680		. 99964		. 42808	162,0	. 99984		13207.90
. 0269	. 02690		. 99964		. 42970	161,4	. 99984		I 3228.52
0.0270	0.02700	10,0	0.99964	0,3	8.43131	160,8	9.99984	O,I	I 3249.15
. 0271	. 02710		. 99963		. 43292	160,2	. 99984		I 3309.78
. 0272	. 02720		. 99953		. 43452	I 59,6	. 99984		I 3330.40
. 0273	. 02730		. 99963		. 4361 I	159,0	. 99984		13351.03
. 0274	. 02740		-99962		. 43770	158,5	. 99984		I 34 II. 66
0.0275	0.02750	10,0	0.99962	0,3	8.43928	157,9	9.99984	O,I	$\begin{array}{llll}\text { I } & 34 & 32.28\end{array}$
. 0276	. 02760		. 99962		. 44085	157,3	. 99983		13452.91
. 0277	. 02770		. 99962		. 44242	156,7	. 99983		1 ll 13.54
. 0278	. 02780		.9996I		. 44399	I'56,2	. 99983		I 3534.16
. 0279	. 02790		.9996I		. 44555	155,6	- 99983		I 3554.79
0.0280	0.02800	10,0	0.99961	0,3	8.44710	155, 1	9.99983	0,I	$1{ }_{1} 3615.41$
.0281	. 02810		. 99961		. 44865	I 54,5	. 99983		13636.04
. 0282	. 02820		. 99960		. 45019	I54,0	. 99983		I 3656.67
. 0283	. 02830		. 99960		. 45173	I 53,4	. 99983		13717.29
. 0284	. 02840		. 99960		. 45326	I 52,9	. 99982		I 3737.92
0.0285	0.02850	10,0	0.99959	0,3	8.45479	152,3	9.99982	0,I	13758.55
. 0286	. 02860		. 99959		. 45631	151,8	. 99982		$\begin{array}{llll}1 & 38 & 19.17\end{array}$
. 0287	. 02870		. 99959		. 45782	151,3	. 99982		138839.80
. 0288	. 02880		. 99959		. 45933	150,8	. 99982		I 3900.43
.0289	. 02890		. 99958		. 46084	150,2	. 99982		I 3921.05
0.0290	0.02900	10,0	0.99958	0,3	8.46234	149,7	9.99982	O,I	I 3941.68
. 0291	. 02910		. 99958		.46383	149,2	. 99982		$1{ }^{1} 4002.31$
. 0292	. 02920		. 99957		.46532	148,7	. 99981		I 4022.93
. 0293	. 02930		. 99957		. 4668 I	148,2	. 99981		I 4043.50
. 0294	. 02940		. 99957		. 46828	147,7	-0998I		I 4104.19
0.0295	0.02950	10,0	0.99956	0,3	8.46976	147,2	9.9998I	0,I	$1{ }_{1} 4124.8 \mathrm{I}$
. 0296	. 02960		. 99956		. 47123	146,7	.9998I		I 4145.44
.0297	. 02970		. 99956		. 47269	146,2 1457	. 99981		I 4206.06 I 4226.60
. 0298	. 02980		. 99956		.47415	145,7 145,2	.9998I		$\begin{array}{llll}\text { I } 42 & 26.69 \\ \text { I } 4247.32\end{array}$
. 0299	. 02990		-99955		. 47561	145,2	. 99981		$14247 \cdot 32$
0.0300	0.03000	10,0	0.99955	0,3	8.47706	144,7	9.99980	O, I	I 4307.94
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0300	0.03000	10,0	0.99955	0,3	8.47706	144,7	9.99980	O,I	
. 0301	.03010		. 99955		. 47850	144,2	. 99980		I 4328.57
. 0302	. 03020		. 99954		. 47994	143.8	. 99980		I 4349.20
. 0303	. 03030		. 99954		. 48 I 38	143,3	. 99980		I 4409.82
. 0304	. 03040		. 99954		.4828I	I42,8	. 99980		I 4430.45
0.0305	0.03050	10,0	0.99953	0,3	8.48423	142,3	9.99980	O,I	I 4451.08
. 0306	. 03060		. 99953		. 48565	141,9	. 99980		I 4511.70
. 0307	. 03070		. 99953		. 48707	I4I,4	. 99980		I 4532.33
. 0308	.03080		. 99953		. 48848	I41,0	. 99979		I 4552.96
. 0309	. 03090		. 99952		. 48989	140,5	. 99979		I 4613.58
0.0310	0.03100	IO,0	0.99952	0,3	8.49129	I40, I	9.99979	O,I	I 4634.21
.03II	.03109		. 99952		. 49269	I 39,6	. 99979		I 4654.84
.0312	.03119		. 99951		. 49408	I 39,2	-99979		I 47 I5.46
.0313	.03129		.9995I		. 49547	138,7	. 99979		I 4736.09
.03I4	.03I39		. 99951		. 49686	138,3	. 99979		I 4756.71
0.0315	0.03149	10,0	0.99950	0,3	3.49824	137,8	9.99978	O,I	I 48 17.34
. 0316	.03159		. 99950		. 49961	137,4	. 99978		I 4837.97
.0317	.03169		. 99950		. 50099	137,0	. 99978		I 4858.59
. 0318	.03179		. 99949		. 50235	136,5	. 99978		14919.22
.0319	.03189		. 99949		. 50372	I36, I	.99978		I 4939.85
0.0320	0.03199	10,0	0.99949	0,3	8.50508	135,7	9.99978	O,I	I 5000.47
. 0321	. 03209		. 99948		. 50643	135,2	. 99978		I 502 I .10
. 0322	.03219		. 99948		. 50778	134,8	. 99977		I 504 I .73
. 0323	. 03229		. 99948		. 50913	134,4	. 99977		I 5102.35
. 0324	. 03239		. 99948		. 51047	I34,0	. 99977		I 5I 22.98
0.0325	0.03249	10,0	0.99947	0,3	8.51181	133,6	9.99977	0,1	I 5143.6 I
. 0326	. 03259		. 99947		.51314	133,2	. 99977		I 5204.23
. 0327	. 03269		. 99947		. 51447	132,8	. 99977		I 5224.86
. 0328	. 03279		. 99946		. 51580	I 32,4	. 99977		I 5245.49
. 0329	. 03289		. 99946		. 51712	132,0	. 99976		I 5306.11
0.0330	0.03299	10,0	0.99946	0,3	8.51844	131,6	9.99976	O,I	I 5326.74
. 033 I	. 03309		. 99945		. 51975	131,2	. 99976		I 5347.37
. 0332	. 03319		. 99945		. 52106	I 30,8	. 99976		I 5407.99
. 0333	. 03329		. 99945		. 52236	I30,4	. 99976		I 5428.62
. 0334	. 03339		. 99944		. 52367	130,0	. 99976		I 5449.24
0.0335	0.03349	10,0	0.99944	0,3	8.52496	129,6	9.99976	O,I	I 5509.87
. 0336	. 03359		. 99944		. 52626	129,2	. 99975		15530.50
. 0337	. 03369		. 99943	-	. 52755	128,8	. 99975		I 555 I .12
. 0338	. 03379		. 99943		. 52883	128,4	. 99975		$\begin{array}{llll}\text { I } & 56 & 11.75\end{array}$
. 0339	. 03389		. 99943		. 53012	128, I	. 99975		I 5632.38
0.0340	0.03399	10,0	0.99942	0,3	8.53:140	127,7	9.99975	O,I	I 5653.00
. 0341	. 03409		. 99942		. 53267	127,3	. 99975		15713.63
. 0342	.03419		. 99942		- 53394	126,9	. 99975		I 5734.26
. 0343	. 03429		. 9994 I		. 5352 I	126,6	. 99974		I 5754.88
. 0344	. 03439		. 9994 I		. 53647	126,2	. 99974		I 58 I5.51
0.0345	0.03449	10,0	0.99940	0,3	8.53773	125,8	9.99974	0,1	I 5836.14
. 0346	. 03459		. 99940		. 53899	125,5	. 99974	0,2	I 5856.76
. 0347	. 03469		. 99940		. 54024	I25, I	. 99974		I 5917.39
. 0348	. 03479		. 99939		. 54149	124,7	. 99974		I 5938.02
. 0349	.03489		. 99939		. 54274	124,4	. 99974		I 5958.64
0.0350	0.03499	10,0	0.99939	0,3	8.54398	124,0	9.99973	0,2	20019.27
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0350	0.03499	10,0	0.99939	0,3	8.54398	124,0	9.99973	0,2	$20^{\circ} 00^{\prime} 19.127$
. 0351	. 03509		. 99938	0,4	. 54522	123,7	. 99973		20039.89
. 0352	. 03519		. 99938		. 54645	123,3	. 99973		2 OI 00.52
. 0353	. 03529		. 99938		. 54768	I23,0	. 99973		2 OI 2I.15
. 0354	. 03539		. 99937		. 5489 I	I22,6	. 99973		2 O1 41.77
0.0355	0.03549	10,0	0.99937	0,4	8.55014	122,3	9.99973	0,2	20202.40
. 0355	. 03559		. 99937		. 55136	121,9	. 99972		20223.03
. 0357	. 03569		. 99936		- 55258	121,6	. 99972		20243.65
. 0358	. 03579		- 99936		. 55379	121,3	-99972		20304.28
. 0359	. 03589		. 99936		. 55500	120,9	. 99972		20324.91
0.0360	0.03599	10,0	0.99935	0,4	8.55621	120,6	9.99972	0,2	20345.53
. 0361	. 03609		. 99935		-5574I	I20,3	. 99972		20406.16
. 0362	.03619		. 99934		. 5586 I	I 19,9	. 99972		20426.79
. 0363	. 03629		. 99934		. 55981	I 19,6	. 9997 I		204 47.41
. 0364	. 03639		. 99934		.56101	119,3	. 9997 I		20508.04
0.0365	0.03649	10,0	0.99933	0,4	8.56220	I 18,9	9.99971	0,2	20528.67
. 0366	. 03659		. 99933		. 56338	I 18,6	. 9997 I		20549.29
. 0367	. 03669		. 99933		. 56457	I 18,3	. 9997 I		20609.92
. 0368	. 03679		. 99932		. 56575	118,0	. 9997 I		20630.54
. 0369	. 03689		. 99932		. 56693	117,6	. 99970		20651.17
0.0370	0.03699	10,0	0.99932	0,4	8.56810	II7,3	9.99970	0,2	2,07 11.80
. 0371	. 03709		. 9993 I		. 56927	I 17,0	. 99970		20732.42
. 0372	. 03719		. 9993 I		. 57044	116,7	. 99970		20753.05
. 0373	. 03729		. 99930		. 57161	I 16,4	. 99970		20813.68
. 0374	. 03739		. 99930		. 57277	I 16, 1	. 99970		20834.30
0.0375	0.03749	10,0	0.99930	0,4	8.57393	I 15,8	9.99969	0,2	20854.93
. 0376	. 03759		. 99929		. 57509	II 5,4	. 99969		20915.56
. 0377	. 03769		. 99929		. 57624	II5, I	. 99969		20936.18
. 0378	. 03779		. 99929		. 57739	II 4,8	. 99969		20956.81
. 0379	. 03789		. 99928		. 57854	I I 4,5	. 99969		2 IO 17.44
0.0380	0.03799	10,0	0.99928	0,4	8.57968	I 14,2	9.99969	0,2	21038.06
.038I	. 03809		. 99927		. 58082	I 13,9	. 99968		2 IO 58.69
. 0382	. 03819		. 99927		. 58195	II3,6	. 99968		2 II 19.32
.0383	. 03829		. 99927		. 58309	I 13,3	. 99968		2 II 39.94
. 0384	. 03839		. 99926		. 58422	I 13,0	. 99968		21200.57
0.0385	0.03849	10,0	0.99926	0,4	8.58535	112,7	9.99968	0,2	
. 0386	. 03859		. 99926		. 58548	112,5	. 99968		2 I2 41.82
. 0387	. 03869		. 99925		. 58760	I I 2,2	. 99967		$2 \begin{array}{llll}2 & 13 & 02.45\end{array}$
. 0388	. 03879		. 99925		. 58872	III,9	. 99967		$2 \begin{array}{llll}2 & 13 & 23.07\end{array}$
. 0389	. 03889		. 99924		. 58984	III,6	. 99967		21343.70
0.0390	0.03899	10,0	0.99924	0,4	8.59095	III,3	9.99967	0,2	$\begin{array}{llll}2 & 14 & 04.33\end{array}$
. 0391	. 03909		. 99924		. 59207	I I I, 0	. 99967		$2 \begin{array}{lll}2 & 14 & 24.95\end{array}$
. 0392	. 03919		. 99923		. 59317	110,7	. 999067		$\begin{array}{llll}2 & 14 & 45.58\end{array}$
. 0393	. 03929		. 99923		. 59428	I 10,5	. 99966		2 I5 06.21
. 0394	. 03939		. 99922		. 59538	1 10,2	- 99966		21526.83
0.0395	0.03949	10,0	0.99922	0,4	8.59648	109,9	9.99966	0,2	2 I5 47.46
. 0396	. 03959		. 99922		. 59758	109,6	. 99966		21608.09
. 0397	. 03969		. 9992 I		- 59868	109,3	. 99966		21628.71
. 0398	. 03979		. 9992 I		. 59977	109, 1	. 99966		$\begin{array}{llll}2 & 16 & 49.34\end{array}$
. 0399	. 03989		. 99920		. 60085	108,8	. 99965		21709.97
0.0400	0.03999	10,0	0.99920	0,4	8.60194	108,5	9.99965	0,2	21730.59
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0400	0.03999	10,0	0.99920	0,4	8.60194	108,5	9.99965	0,2	$2^{\circ} 177^{\prime} 30.159$
. 0401	. 04009		. 99920		. 60303	108,2	. 99965		21751.22
. 0402	.04019		. 99919		. 60411	108,0	. 99965		218 II. 85
. 0403	. 04029		.99919		. 60519	107,7	. 99965		21832.47
. 0404	. 04039		. 99918		. 60626	107,4	. 99965		2 I8 53.10
0.0405	0.04049	10,0	0.99918	0,4	8.60734	107,2	9.99964	0,2	2 I9 13.72
. 0406	. 04059		. 99918		. 6084 I	106,9	. 99964		2 I9 34.35
.0407	. 04069		.99917		. 60947	106,6	. 99964		2 I9 54.98
. 0408	. 04079		. 99917		. 61054	106,4	. 99964		22015.60
. 0409	. 04089		. 99916		.6II60	106, I	. 99964		22036.23
0.0410	0.04099	10,0	0.99916	0,4	8.61266	105,9	9.99963	0,2	22056.86
.04II	. 04109		. 99916		. 61372	105,6	. 99963		221517.48
.0412	.04II9		. 99915		.6I477	IO5,4	. 99963		22138.11
.04I3	. 04129		. 99915		.61583	105, I	. 99963		2 2158.74
.04II	.04139		.99914		.6I688	104,8	. 99963		22219.36
0.0415	0.04149	10,0	0.99914	0,4	8.61792	IO4,6	9.99963	0,2	22239.99
. 0416	.04I59		.99913		. 61897	104,3	. 99962		22300.62
.0417	.04169		.99913		. 62001	104, I	. 99962		223 2I.24
.0418	.04179		.99913		. 62105	103,8	. 99962		22341.87
.0419	.04189		. 99912		. 62209	103,6	. 99962		22402.50
0.0420	0.04199	10,0	0.99912	0,4	8.62312	103,3	9.99962	0,2	22423.12
. 042 I	. 04209		.999II		. 62415	103, I	. 99962		22443.75
. 0422	.04219		.999II		. 62518	102,9	. 99961		$\begin{array}{llll}2 & 25 & 04.37\end{array}$
.0423	. 04229		.999II		. 6262 I	102,6	.9996I		22525.00
. 0424	. 04239		. 99910		. 62724	102,4	. 9996 I		22545.63
0.0425	0.04249	10,0	0.99910	0,4	8.62826	102, I	9.9996I	0,2	22606.25
. 0426	. 04259		. 99909		. 62928	101,9	.9996I		22626.88
. 0427	. 04269		. 99909		. 63030	IOI,6	. 99960		22647.51
. 0428	.04279		. 99908		.63I3I	IOI,4	. 99960		22708.13
. 0429	. 04289		. 99908		. 63232	101,2	. 99960		22728.76
0.0430	0.04299	10,0	0.99908	0,4	8.63:333	100,9	9.99960	0,2	22749.39
.043I	. 04309		. 99907		. 63434	100,7	. 99960		228 IO.01
. 0432	.04319		. 99907		. 63535	100,5	. 99959		22830.64
. 0433	. 04329		. 99906		. 63635	100,2	. 99959		2285 I .27
. 0434	. 04339		. 99906		. 63735	100,0	. 99959		22911.89
0.0435	0.04349	10,0	0.99905	0,4	8.63835	99,8	9.99959	0,2	22932.52
. 0436	. 04359		. 99905		. 63935	99,5	. 99959		22953.15
. 0437	. 04369		. 99905		. 64034	99,3	. 99959		23013.77
. 0438	. 04379		. 99904		. 64134	99, I	. 99958		23034.40
. 0439	. 04389		. 99904		. 64233	98,9	. 99958		23055.02
0.0440	0.04399	10,0	0.99903	0,4	8.6433 I	98,6	9.99958	0,2	23115.65
. 0441	. 04409		. 99903		. 64430	98,4	. 99958		23136.28
. 0442	.04419		. 99902		. 64528	98,2	. 99958		23156.90
. 0443	. 04429		. 99902		.64626	98,0	. 99957		23217.53
. 0444	. 04439		.9990I		. 64724	97,7	. 99957		23238.16
0.0445	0.04449	10,0	0.99901	0,4	8.64822	97,5	9.99957	0,2	$2 \begin{array}{lll}2 & 32 & 58.78\end{array}$
. 0446	. 04459		. 99901		. 64919	97,3	. 99957		23319.41
. 0447	. 04469	\square	. 99900		.65016	97, I	. 99957		23340.04
. 0448	. 04479		. 99900		.65113	96,9	. 99956		23400.66
. 0.449	. 04488		. 99899		.65210	96,7	. 99956		23421.29
0.0450	0.04498	10,0	0.99899	0,4	8.65307	96,4	9.99956	0,2	234 41.92
u	-i sinh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega F_{0}{ }^{\prime}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { c o s }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega F_{0}{ }^{\prime}$	u
0.0450	0.04498	10,0	0.99899	0,4	8.65307	96,4	9.99956	0,2	$2^{\circ} 34^{\prime} 4 I^{\prime \prime} .92$
.045	. 04508		. 99898	0,5	. 65403	96,2	. 99956		23502.54
. 0452	. 04518		. 99898		. 65499	96,0	. 99956		23523.17
. 0453	. 04528		. 99897		. 65595	95,8	. 99955		23543.80
. 0454	. 04538		. 99897		.65691	95,6	. 99955		23604.42
0.0455	0.04548	10,0	0.99897	0,5	8.65786	95,4	9.99955	0,2	23625.05
. $04{ }^{\prime} 56$. 04558		. 99896		.6588I	95,2	. 99955		23645.68
. 0457	. 04568		. 99896		. 65976	95,0	. 99955		23706.30
. 0458	. 04578		. 99895		. 66071	94,8	. 99954		23726.93
. 0459	. 04588		. 99895		. 66166	94,6	. 99954		$23747 \cdot 55$
0.0460	0.04598	10,0	0.99894	0,5	8.66260	94,3	9.99954	0,2	23808.18
.046I	. 04608		. 99894		. 66355	94, I	. 99954		23828.81
. 0462	.04618		. 99893		. 66449	93,9	. 99954		23849.43
. 0463	. 04628		. 99893		. 66543	93,7	. 99953		23910.06
. 0464	.04638		. 99892		. 66636	93,5	. 99953		23930.69
0.0465	0.04648	10,0	0.99892	0,5	8.66730	93,3	9.99953	0,2	$2395 \mathrm{I} \cdot 3 \mathrm{I}$
. 0466	. 04658		. 99891		. 66823	93, I	. 99953		240 II. 94
. 0467	. 04668		. 99891		. 66916	92,9	. 99953		24032.57
. 0468	. 04678		. 99891		. 67009	92,7	. 99952		24053.19
. 0469	. 04688		. 99890		. 67101	92,5	. 99952		24113.82
0.0470	0.04698	10,0	0.99890	0,5	8.67194	92,3	9.99952	0,2	24134.45
. 0471	. 04708		. 99889		. 67286	92, I	. 99952		24155.07
. 0472	. 04718		. 99889		. 67378	91,9	. 99952		$\begin{array}{llll}2 & 42 & 15.70\end{array}$
. 0473	. 04728		. 99888		. 67470	91,7	. 9995 I		24236.33
. 0474	. 04738		. 99888		. 67562	91,6	. 99951		24256.95
0.0475	0.04748	10,0	0.99887	0,5	8.67653	91,4	9.99951	0,2	$2 \begin{array}{llll}2 & 43 & 17.58\end{array}$
. 0476	. 04758		. 99887		. 67744	91,2	. 9995 I		$243 \begin{array}{llll}28.20\end{array}$
. 0.477	. 04768		. 99886		. 67835	91,0	. 99951		24358.83
. 0478	. 04778		. 99886		. 67926	90,8	. 99950		24419.46
. 0479	. 04788		. 99885		. 68017	90,6	. 99950		24440.08
0.0480	0.04798	10,0	0.99885	0,5	8.68107	90,4	9.99950	0,2	24500.71
. 048 I	. 04808		. 99884		.68198	90,2	. 99950		24521.34
. 0482	. 04818		. 99884		. 68288	90,0	. 99950		24541.96
. 0483	. 04828		. 99883		. 68378	89,8	. 99949		24602.59
. 0484	. 04838		. 99883		. 68468	89,7	. 99949		24623.22
0.0485	0.04848	10,0	0.99882	0,5	8.68557	89,5	9.99949	0,2	$\begin{array}{llll}2 & 46 & 43.84\end{array}$
. 0486	. 04858		. 99882		. 68647	89,3	. 99949		$2 \begin{array}{llll}2 & 47 & 04.47\end{array}$
. 0487	. 04868		. 9988 I		. 68736	89, 1	. 99948		247 25.10
. 0488	. 04878		.9988I		. 68825	88,9	. 99948		24745.72
. 0489	. 04888		. 99880		.68914	88,7	. 99948		24806.35
0.0490	0.04898	10,0	0.99880	0,5	8.69002	88,6	9.99948	0,2	24826.98
. 0491	. 04908		. 99879		. 69091	88,4	. 99948		24847.60
. . 0492	. 04918		. 99879		.69179	88,2	. 99947		24908.23
. 0493	. 04928		. 99879		. 69267	88,0 87,8	. 99947		2 2 4928.85
. 0494	. 04938		. 99878		. 69355	87,8	-99947		24949.48
0.0495	0.04948	10,0	0.99878	0,5	8.69443	87,7	9.99947	0,2	25010.11
. 0496	. 04958		. 99877		. 69530	87,5	. 99947		25030.73
. 0497	. 04968		. 99877		. 69618	87,3	. 99946		2505 I .36
. 0498	. 04978		. 99876		. 69705	87,1 870	. 99946		$\begin{array}{llll}2 & 51 & 11.99 \\ 2 & 51 & 32.61\end{array}$
. 0499	. 04988		. 99876		. 69792	87,0	. 99946		2 5I 32.6I
0.0500	0.04998	10,0	0.99875	0,5	8.69879	86,8	9.99946	0,2	25153.24
u	-i sinh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0500	0.04998	10,0	0.99875	0,5	8.69879	85,8	9.99946	0,2	$2^{\circ} 51^{\prime} 53.24$
. 0501	. 05008		. 99875		. 69956	86,6	. 99945		25213.87
. 0502	. 05018		. 99874		. 70052	85,4	. 99945		25234.49
. 0503	. 05028		. 99874		. 70138	86,3	. 99945		25255.12
. 0504	. 05038		. 99873		. 70225	86, 1	. 99945		25315.75
0.0505	0.05048	10,0	0.99873	0,5	8.70311	85,9	9.99945	0,2	2.5336 .37
. 0506	. 05058		. 99872		. 70397	85,8	. 99944		25357.00
. 0507	. 05068		. 99872		. 70482	85,6	. 99944		25417.63
. 0508	. 05078		. 99871		. 70568	85,4	. 99944		254.38 .25
. 0509	. 05088		. 95870		. 70553	85,2	. 99944		25458.88
0.0510	0.05098	10,0	0.99870	0,5	8.70738	85, 1	9.99943	0,2	25519.51
.05II	.05108		. 99859		. 70823	84,9	. 99943		25540.13
. 0512	. 05118		. 99869		. 70908	84,7	. 99943		25600.76
.0513	.05128		. 99868		. 70993	84,6	. 99943		25621.38
.0514	.05138		. 99868		. 71077	84,4	. 99943		25642.01
0.0515	0.05148	10,0	0.95867	0,5	8.71162	84,3	9.99942	0,2	25702.64
. 0516	.05158		. 99867		. 712.46	84,1	. 99942		25723.26
. 0517	.05168		.95866		. 71330	83,9	. 99942		25743.89
.0518	.05178		. 99866		. 71414	83,8	. 99942		25804.52
.0519	.05188		. 99855		. 71497	83,6	.9994I		25825.14
0.0520	0.05198	10,0	0.99855	0,5	8.71581	83,4	9.9994I	0,2	25845.77
.052I	. 05208		. 99864		. 71654	83,3	. 9994 I		25906.40
. 0522	. 05218		. 99864		. 71747	83,1	. 9994 I		25927.02
.0523	. 05228		. 99863		.71830	83,0	. 9994 I		25947.65
. .0524	. 05238		. 99863		. 71913	82,8	. 99940		30008.28
0.0525	0.05248	10,0	0.99862	0,5	8.71996	82,6	9.99940	0,2	30028.90
. 0526	. 05258		. 99862		. 72079	82,5	. 99940		30049.53
. 0527	. 05268		. 99861		.7216I	82,3	. 99940		3 OI 10.16
. 0528	. 05278		.9986I		. 72243	82,2	. 99939		3 OI 30.78
. 0529	. 05288		. 99860		. 72325	82,0	. 99939		3 OI 5I.4I
0.0530	0.05298	10,0	0.99860	0,5	8.72407	81,9	9.99939	0,2	30212.03
. 0531	. 05308		. 99859		. 72489	81,7	. 99939		30232.66
. 0532	. 05317		. 99859		. 72571	81,6	. 99939		
. 0533	. 05327		.95858		. 72652	8r,4	. 99938		$\begin{array}{llll}3 & 03 & 13.91\end{array}$
. 0534	. 05337		. 99857		. 72733	81,3	. 99938		30334.54
0.0535	0.05347	10,0	0.99857	0,5	8.728I5	8I, I	9.99938	0,2	30355.17
. 0536	. 05357		. 99856		. 72896	80,9	. 99938		30415.79
. 0537	. 05367		. 99856		. 72977	80,8	. 99937		30436.42
. 0538	.C5377		. 99855		. 73057	80,6	. 99937		30457.05
. 0539	. 05387		. 99855		.73I38	80,5	. 99937		30517.67
0.0540	0.05397	10,0	0.99854	0,5	8.73218	80,3	9.99937	0,2	30538.30
. 0541	. 05407		. 99854		. 73299	80,2	. 99936		30558.93
. 0542	. 05417		. 99853		. 73379	80,0	. 99936		$\begin{array}{llll}3 & 06 & 19.55\end{array}$
. 0543	. 05427		. 99853		. 73459	79,9	. 99936		30640.18
. 0544	. 05437		. 99852		. 73538	79,8	. 99936		30700.81
0.0545	0.05447	10,0	0.99852	0,5	8.73618	79,6	9.99935	0,2	30721.43
. 0546	. 05457		. 9985		. 73608	79,5	. 99935		30742.06
. 0547	. 05467		. 99850		. 73777	79,3	. 99935		$\begin{array}{llll}3 & 08 & 02.68 \\ 3 & 08 & 23.31\end{array}$
. 0548	. 05477		. 99850		. 73856	79,2 79,0	. 99935		$\begin{array}{llll}3 & 08 & 23.31 \\ 3 & 08 & 43.94\end{array}$
. 0549	. 05487		-99849		. 73935	79,0	. 99935		$30843 \cdot 94$
0.0550	0.05497	10,0	0.99849	0,5	8.74014	78,9	9.99934	0,2	30904.56
ju:	-i sinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh$ iu	$\omega F_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	$\boldsymbol{\operatorname { l o g }} \sin u$	${ }_{\sim}^{\omega} \mathrm{F}_{0}{ }^{\prime \prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0550	0.05497	10,0	0.99849	0,5	8.74014	78,9	9.99934	0,2	$3^{\circ} 090004.56$
. 0551	. 051507		. 99848	0,6	. 74093	78,7	. 99934		30925.19
. 0552	. 05517		.95848		. 74172	78,6	. 99934		30945.82
. 0553	. 05527		. 99847		. 74250	78,5	. 99934		31006.44
. 0554	. 05537		.99847		. 74329	78,3	. 99933		31027.07
0.0555	0.05547	10,0	0.99846	0,6	8.74407	78,2	9.99933	0,2	31047.70
. 0556	. 05557		. 99845		. 74485	78,0	. 99933		3 II 08.32
. 0557	. 05567		. 99845		. 74563	77,9	. 99933		3 II 28.95
. 0558	. 05577		. 99844		. 7464 I	77,7	. 99993		3 II 49.58
. 0.559	. 05587		. 99844		. 74719	77,6	. 99932		31210.20
0.0560	0.05597	10,0	0.99843	0,6	8.74796	77,5	9.99932	0,2	$\begin{array}{llll}3 & 12 & 30.83\end{array}$
.0561	. 05607		. 99843		. 74873	77,3	. 99932		$\begin{array}{lllll}3 & 12 & 51.46\end{array}$
. 0562	.05617		. 99842		.74951	77,2	. 9993 I		$\begin{array}{llll}3 & 13 & 12.08\end{array}$
.0563	. 05627		. 99842		. 75028	77,I	. 9993 I		311332.71
. 0564	. 05637		. 99841		.75105	76,9	. 99931		$\begin{array}{llllllllllllllllllll}3 & 13 & 53.34\end{array}$
0.0565	0.05647	10,0	0.99840	0,6	8.75182	76,8	9.99931	0,2	3 I 4 I 3.96
. 0566	. 05657		. 99840		. 75258	76,6	. 99930		3 I4 34.59
. 0567	. 05667		. 99839		. 75335	76,5	. 99930		31455.21
.0568	. 05677		. 99839		.754II	76,4	. 99930		3 I
. 0569	. 05687		. 99838		. 75488	76,2	. 99930		3 I5 36.47
0.0570	0.05697	10,0	0.99838	0,6	8.75564	76,1	9.99929	0,2	31557.09
. 0571	.05707		. 99837		. 75640	76,0	. 99929		31617.72
. 0572	. 05717		. 99836		. 75716	75,8	. 99929		3 I6 38.35
. 0573	. 05727		. 99836		. 75792	75,7	. 99929		3 I6 58.97
. 0574	. 05737		. 998315		. 75867	75,6	. 99928		31719.60
0.0575	0.05747	10,0	0.9983'5	0,6	8.75943	75,4	9.99928	0,2	31740.23
. 0576	. 05757		. 99834		. 76018	75,3	. 99928	0,3	31800.85
. 0577	. 05767		. 99834		. 76093	75,2	. 99928		31821.48
. 0578	. 05777		. 99833		.76169	75,1	. 99927		3 I8 42.11
. 0579	. 05787		. 99832		. 76244	74,9	. 99927		31902.73
0.0580	0.05797	10,0	0.99832	0,6	8.76318	74,8	9.99927	0,3	31923.36
.0581	.05807		.9983I		. 76393	74,7	. 99927		3 I9 43.99
. 0582	.05817		.9983I		. 76468	74,5	. 99926		32004.61
.0583	. 05827		. 99830		.76542	74,4	. 99926		32025.24
. 0584	. 05837		. 99830		. 76617	74,3	. 99926		32045.86
0.0585	0.05847	10,0	0.99829	0,6	8.76691	74,2	9.99926	0,3	32106.49
. 0586	. 05857		. 99828		. 76765	74,0	. 99925		3 21 27.12
.0587	. 05867		. 99828		. 76839	73,9	. 99925		32147.74
. 0588	. 05877		. 99827		. 76913	73,8	. 99925		32208.37
. 0589	. 05887		. 99827		. 76986	73,6	. 99925		32229.00
0.0590	0.05897	10,0	0.99826	0,6	8.77060	73,5	9.99924	0,3	32249.62
.0591	. 05907		. 99825		.77133	73,4	. 99924		32310.25
. 0592	. 05917		. 99825		. 77207	73,3	. 99924		$\begin{array}{llll}3 & 23 & 30.88\end{array}$
. 0593	. 05927		. 99824		. 77280	73,2	. 99924		323 51.50
. 0594	. 05937		. 99824		. 77353	73,0	. 99923		32412.13
0.0595	0.05946	10,0	0.99823	0,6	8.77426	72,9	9.99923	0,3	32432.76
. 0596	. 05956		. 99822		. 77499	72,8	. 99923		32453.38
. 0597	. 05966		. 99822		. 77572	72,7	. 99923		32514.01
. 0598	.05976		. 9982 I		.77644	72,5	. 99922		32534.64
. 0599	. 05986		.9982I		. 77717	72,4	. 99922		32555.26
0.0500	0.05996	10,0	0.99820	0,6	8.77789	72,3	9.99922	0,3	32615.89
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	log cosh iu	$F_{0}{ }^{\prime}$	$u \div$

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0600	0.05996	10,0	0.99820	0,6	8.77789	72,3	9.99922	0,3	$3^{\circ} 26^{\prime} 15.189$
. 0601	.06006		. 99819		.77861	72,2	. 99922		32636.51
. 0602	. 06016		. 99819		. 77933	72,I	. 99921		32657.14
. 0603	. 06026		- 99818		. 78005	71,9	. 99921		$\begin{array}{lllll}3 & 27 & 17.77\end{array}$
. 0604	. 06036		. 9988		. 78077	71,8	. 99921		3 3
0.0605	0.06046	10,0	0.99817	0,6	8.78149	71,7	9.99920	0,3	32759.02
. 0606	. 05056		. 99816		. 7822 I	71,6	. 99920		32819.65
. 0607	. 06066		. 99816		. 78292	71,5	. 99920		32840.27
. 0608	. 05076		. 99815		. 78364	71,3	. 99920		32900.90
. 0609	. 06086		. 99815	,	. 78435	71,2	. 99919		329 21.53
0.0610	0.06096	10,0	0.99814	0,6	8.78506	71,1	9.99919	0,3	32942.15
. 06.611	.06106		.99813		. 78577	71,0	. 99919		33002.78
.0612	.06116		. 99813		. 78648	70,9	. 99919		33023.41
.0613	.06126		. 99812		. 78719	70,8	. 99918		33044.03
. 0614	.06136		. 99812		. 78790	70,6	. 99918		3 31 04.66
0.0615	0.06146	10,0	0.998 I I	0,6	8.78860	70,5	9.99918	0,3	33125.29
.0616	. 06156		. 99810		. 78931	70,4	. 99918		33145.91
. 0617	. 06166		. 99810		. 79001	70,3	-99917		$\begin{array}{lllll}3 & 32 & 06.54\end{array}$
. 0618	.06176		. 99809		. 7907 I	70,2	. 99917		33227.17
. 0619	.06I86		- 99808		.7914I	70,1	. 99917		33247.79
0.0620	0.06196	10,0	0.99808	0,6	8.7921 I	70,0	9.99916	0,3	33308.42
. 0621	. 06206		. 99807		.7928I	69,8	. 99916		33329.04
. 0622	. 06216		. 99807		. 7935 I	69,7	. 99916		3 3
. 0623	. 06226		. 99806		. 7942 I	69,6	-99916		3 34
. 0624	. 06236		. 99805		. 79490	69,5	. 99915		33430.92
0.0625	0.06246	10,0	0.99805	0,6	8.79560	69,4	9.99915	0,3	3.3451 .55
. 0626	. 06256		. 99804		. 79629	69,3	. 99915		33512.18
. 0627	. 06266		. 99804		. 79698	69,2	. 99915		33532.80
. 0628	. 06276		. 99803		. 79767	69,1	-99914		3 35535.43
. 0629	. 06286		. 99802		. 79836	69,0	. 99914		33614.06
0.0630	0.06296	10,0	0.99802	0,6	8.79905	68,8	9.99914	0,3	33634.68
. 0631	. 06306		. 99801		. 79974	68,7	. 99913		33655.31
. 0632	. 06316		- 99800		. 80043	68,6	- 99913		$\begin{array}{lllll}3 & 37 & 15.94\end{array}$
. 0633	. 05322		- 99800		. 80111	68,5	-99913		33736.56
. 0634	.06336		. 99799		. 80180	68,4	. 99913		33757.19
0.0635	0.06346	10,0		0,6	$\begin{array}{r}8.80248 \\ .80316 \\ \hline 8034\end{array}$		9.99912 .99912	0,3	
.0636 .0637	.06356		. 99798		. 80316	68,2 68,1	.99912		3 3 3 388 38
.0637	. 06366		. 999797		. 80453	68,0	. 999912		3 3 3 19 19.69
. 0639	. 06386		. 99796		. 80521	67,9	. 9991 I		33940.3^{2}
0.0640	0.06396	10,0	0.99795	0,6	8.80588	67,8	9.99911	0,3	34000.95
. 0641	. 06406		. 99795		. 80056	67,7	. 99911		34021.57
. 0642	.06416		. 99794		. 80724	67,6	- 99910		34042.20
. 0643	. 06426		- 99793		. 80791	67,4	-99910		$\begin{array}{llll}3 & 41 & 02.83 \\ 3 & 41 & 23.45\end{array}$
. 0644	. 06436		. 99793		. 80859	67,3	-99910		34123.45
	0.06446	10,0	0.99792	0,6	8.80926	67,2	9.99910	0,3	$\begin{array}{llll}3 & 41 \\ 3\end{array} 4.08$
. 06646	. 06456		.99791		. 80993	67, 1	- 99909		$\begin{array}{llll}3 & 42 & 04.71\end{array}$
. 0647	. 06465		. 99791		.81060	67,0	- 99909		$\begin{array}{llll}3 & 42 & 25.33 \\ 3 & 42 & 45.96\end{array}$
. 0648	. 06475		- 99770		.81127 .8194	66,9 66,8	. 99909		34245.96 34306.59
. 0649	. 06485		. 99789		.8II94	66,8	-99908		34300.59
0.0650	0.06495	10,0	0.99789	0,6	8.81261	66,7	9.99908	0,3	34327.21
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh \text { iu }}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh$ iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0650	0.06495	10,0	0.99789	0,6	8.81261	66,7	9.99908	0,3	$3^{\circ} 433^{\prime} 27^{\prime \prime} .21$
. 0651	. 06505		. 99788	0,7	.81327	66,6	. 99908	0,3	$\begin{array}{llll}3 & 43 & 47.84\end{array}$
. 0652	. 06515		. 99788		.81394	66,5	. 99908		$\begin{array}{llll}3 & 44 & 08.47\end{array}$
. 0653	. 06525		. 99787		. 81460	66,4	. 99907		34429.09
. 0654	. 06535		. 99786		. 81527	66,3	. 99907		34449.72
0.0655	0.06545	10,0	0.99786	0,7	8.81593	66,2	9.99907	0,3	345 IO. 34
. 0656	. 06555		. 99785		. 81659	66,	. 99906		34530.97
. 0657	. 06565		. 99784		.81725	66,0	. 99906		34551.60
. 0658	. 06575		. 99784		. 81791	65,9	. 99906		34612.22
. 0659	. 06585		.99783		.81857	65,8	. 99906		34632.85
0.0660	0.06595	10,0	0.99782	0,7	8.81923	65,7	9.99905	0,3	34653.48
.0661	.06605		. 99782		. 81989	65,6	. 99905		34714.10
. 0662	. 06615		.9978I		. 82054	65,5	. 99905		34734.73
. 0663	. 06625		. 99780		. 82120	65,4	. 99904		34755.36
. 0664	. 06635		. 99780		. 82185	65,3	. 99904		$3 \quad 48 \quad 15.98$
0.0665	0.06645	10,0	0.99779	0,7	8.82250	65,2	9.99904	0,3	34836.61
. .0666	. 06655		. 99778	,	.82315	65, 1	. 99904		34857.24
. 0667	. 06665		. 99778.		. 82380	65,0	. 99903		34917.86
. 0668	. 06675		. 99777		. 82445	64,9	. 99903		34938.49
. 0669	. 06685		. 99776		. 82510	64,8	. 99903		34959.12
0.0670	0.06695	10,0	0.99776	0,7	8.82575	64,7	9.99902	0,3	35019.74
. 0671	. 06705		. 99775		. 82640	64,6	. 99902		35040.37
. 0672	. 06715		. 99774		. 82704	64,5	. 99902		3 51 00.99
. 0673	. 06725		. 99774		. 82769	64,4	. 99902		35121.62
. 0674	. 06735		. 99773		. 82833	64,3	.9990I		35142.25
0.0675	0.06745	10,0	0.99772	0,7	8.82897	64,2	9.99901	0,3	35202.87
. 0676	. 067515		. 99772		. 82962	64, 1	. 99901		35223.50
. 0677	. 06765		. 99771		. 83026	64,1	. 99900		35244.13
. 0678	. 06775		. 99770		. 83090	64,0	. 99900		35304.75
. 0679	. 06785		. 99770		.83154	63,9	. 99900		35325.38
0.0680	0.06795	10,0	0.99769	0,7	8.83217	63,8	9.99900	0,3	35346.01
.068I	. 06805		. 99768		.8328I	63,7	. 99899		35406.63
. 0682	.068I5		. 99768		. 83345	63,6	. 99899		35427.26
. 0683	. 06825		.99767		. 83408	63,5	. 99899		35447.89
. 0684	. 06835		. 99766		. 83472	63,4	. 99898		35508.5 I
0.0685	0.06845	10,0	0.99765	0,7	8.83535	63,3	9.99898	0,3	35529.14
. 0686	. 06855		. 99765		. 83598	63,2	. 99898		35549.77
. 0687	. 06865		. 99764		. 83662	63,1	-99897		35610.39
. 0688	. 06875		. 99763		. 83725	63,0	. 99897		35631.02
. 0689	. 06885		. 99763		. 83788	62,9	. 99897		35651.65
0.0690	0.06895	10,0	0.99762	0,7	8.83850	62,8	9.99897	0,3	35712.27
. 0691	. 06905		. 99761		. 83913	62,8	. 99896		35732.90
. 0692	. 06914		. 99761		. 83976	62,7	-99896		35753.52
. 0693	. 06924		. 99760		. 84039	62,6	-99896		358 I4.15
. 0694	. 06934		. 99759		.84101	62,5	. 99895		35834.78
0.0695	0.06944	10,0	0.99759	0,7	8.84164	62,4	9.99895	0,3	35855.40
. 0696	. 06954		. 99758		. 84226	62,3	. 99895		35916.03
. 0597	. 06964		. 99757		. 84288	62,2	. 99894		35936.66
. 0699	. 06974		. 99756		. 84350	62,1	. 99894		35957.28
. 0699	. 06984		. 99756		. 84412	62,0	. 99894		40017.91
0.0700	0.06994	10,0	0.99755	0,7	8.84474	61,9	9.99894	0,3	40038.54
u	-isinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0700	0.06994	10,0	0.99755	0,7	8.84474	6I,9	9.99894	0,3	$40^{\circ} 00^{\prime} 38^{\prime \prime} .54$
.0701	. 07004		. 99754		. 84536	6I,9	. 99893		40059.16
. 0702	.07014		. 99754		. 84598	6I,8	. 99893		4 OI 19.79
. 0703	. 07024		. 99753		. 84660	61,7	. 99893		4 OI 40.42
. 0704	. 07034		. 99752		. 84721	6I,6	. 99892		40201.04
0.0705	0.07044	10,0	0.99752	0,7	8.84783	61,5	9.99892	0,3	40221.67
. 0706	. 07054		. 99751		. 84844	6I, 4	. 99892		40242.30
. 0707	. 07064		. 99750		. 84906	6I,3	. 9989 I		40302.92
. 0708	. 07074		. 99749		. 84967	$6 \mathrm{I}, 2$. 9989 I		$403 \quad 23.55$
. 0709	. 07084		. 99749		. 85028	6I,2	. 99891		40344.17
0.0710	0.07094	10,0	0.99748	0,7	8.85089	6I, 1	9.99890	0,3	40404.80
. 0711	. 07104		. 99747		.85150	$6 \mathrm{I}, 0$. 99890		40425.43
. 0712	. 07114		. 99747		. 8521 I	60,9	. 99890		40446.05
. 0713	. 07124		. 99746		. 85272	60,8	. 99890		40506.68
. 0714	. 07134		. 99745		. 85333	60,7	. 99889		40527.3 I
0.0715	0.07144	10,0	0.99744	0,7	8.85394	60,6	9.99889	0,3	40547.93
. 0716	. 07154		. 99744		. 85454	60,6	. 99889		40608.56
.0717	.07164		. 99743		. 85515	60,5	. 99888		40629.19
. 0718	. 07174		. 99742		. 85575	60,4	. 99888		40649.8 I
. 0719	. 07184		. 99742		. 85635	60,3	. 99888		40710.44
0.0720	0.07194	10,0	0.99741	0,7	8.85696	60,2	9.99887	0,3	40731.07
.0721	. 07204		. 99740		. 85756	60, I	. 99887		40751.69
. 0722	. 07214		. 99739		. 85816	60,0	. 99887		40812.32
.0723	. 07224		. 99739		. 85876	60,0	. 99886		40832.95
. 0724	. 07234		. 99738		. 85936	59,9	. 99886		40853.57
0.0725	0.07244	10,0	0.99737	0,7	8.85996	59,8	9.99886	0,3	40914.20
. 0726	. 07254		. 99737		. 86056	59,7	. 99885		40934.82
. 0727	. 07264		. 99736		.86II5	59,6	. 99885		40955.45
. 0728	. 07274		. 99735		. 86175	59,6	. 99885		4 10 16.08
. 0729	. 07284		. 99734		. 86234	59,5	. 99884		4 Io 36.70
0.0730	0.07294	10,0	0.99734	0,7	8.86294	59,4	9.99884	0.3	41057.33
.0731	. 07303		. 99733		. 86353	59,3	. 99884		4 II 17.96
. 0732	.07313		. 99732		. 86412	59,2	. 99884		4 II 38.58
. 0733	. 07323		.9973I		. 86472	59, I	. 99883		4 II 59.2 I
. 0734	. 07333		.9973I		. 8653 I	59, I	. 99883		41219.84
0.0735	0.07343	10,0	0.99730	0,7	8.86590	59,0	9.99883	0,3	41240.46
. 0736	. 07353		. 99729		. 86649	58,9	. 99882		41301.09
. 0737	. 07363		. 99729		. 86707	58,8	. 99882		4 I3 21.72
. 0738	. 07373		. 99728		. 86766	58,7	. 99882		4 I3 42.34
. 0739	. 07383		. 99727		. 86825	58,7	.9988I		41402.97
0.0740	0.07393	10,0	0.99726	0,7	8.86884	58,6	9.9988I	0,3	41423.60
. 0741	. 07403		. 99726		. 86942	58,5	.9988I		41444.22
. 0742	. 07413		. 99725		. 87001	58,4	. 99880		$4{ }^{4} 1504.85$
. 0743	. 07423		. 99724		. 87059	58,3	. 99880		$\begin{array}{llll}4 & 15 & 25.48\end{array}$
. 0744	. 07433		. 99723		.87117	58,3	. 99880		4 I5 46.10
0.0745	0.07443	10,0	0.99723	0,7	8.87175	58,2	9.99879	0,3	41606.73
. 0746	. 07453		. 99722		. 87234	58,1	. 99879		41627.35
. 0747	. 07463		. 99721		. 87292	58,0	. 99879		41647.98
. 0748	. 07473		. 99720		.87350 .87408	58,0 57,9	. 99878		$\begin{array}{llll}4 & 17 & 08.61 \\ 4 & 17 & 29.23\end{array}$
. 0749	. 07483		. 99720		. 87408	57,9	-99878		41729.23
0.0750	0.07493	10,0	0.99719	0,7	8.87465	57,8	9.99878	0,3	41749.86
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega F_{0}{ }^{\prime}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

4	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cos 4	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0750	0.07493	10,0	0.99719	0,7	8.87465	57,8	9.99878	0,3	$4^{\circ} 17^{\prime} 49.48$
. 0751	. 07503		. 99718	0,8	. 87523	57,7	. 99877		41810.49
. 0752	. 07513		. 99717		.87581	57,6	. 99877		4183 I .11
. 0753	. 07523		. 99717		. 87638	57,6	. 99877		41851.74
. 0754	. 07533		. 99716		. 87696	57,5	. 99876		41912.37
0.0755	0.07543	10,0	0.99715	- 0,8	8.87753	57,4	9.99876	0,3	41932.99
. 0756	. 07553		. 99714		. 87811	57,3	. 99876		41953.62
. 0757	. 07563		. 99714		. 87858	57,3	- 99875		42014.25
. 0758	. 07573		. 99713		. 87925	57,2	. 99875		42034.87
. 0759	. 07583		-99712		. 87982	57,I	. 99875		42055.50
0.0760	0.07593	10,0	0.99711	0,8	8.88040	57,0	9.99874	0,3	42116.13
. 0761	. 07603		. 9971 I		. 88097	57,0	. 99874		42136.75
. 0762	. 07613		. 99710		. 88153	56,9	. 99874		42157.38
. 0763	. 07623		. 99709		. 88210	56,8	. 99873		42218.00
. 0764	. 07633		-99708		. 88267	56,7	. 99873		42238.63
0.0765	0.07643	10,0	0.99708	0,8	8.88324	56,7	9.99873	0,3	42259.26
. 0766	. 07653		. 99707		. 88380	56,6	. 99872		42319.88
. 0767	. 07662		-99706		. 88437	56,5	. 99872		42340.51
. 0768	. 07672		. 99705		. 88493	56,4	. 99872		424 OI. I4
. 0769	. 07682		. 99704		. 88550	56,4	. 99871		42421.76
0.0770	0.07692	10,0	0.99704	0,8	8.88606	56,3	9.99871	0,3	42442.39
. 0771	. 07702		. 99703		. 88562	56,2	. 99871		42503.02
. 0772	. 07712		. 99702		. 88719	56,I	. 99870		42523.64
. 0773	. 07722		. 99701		. 88775	56,I	. 99870		42544.27
. 0774	. 07732		.99701		. 8883 I	56,0	. 99870		42604.90
0.0775	0.07742	10,0	0.99700	0,8	8.88887	55,9	9.99869	0,3	42625.52
. 0776	. 07752		. 99699		. 88943	55,9	. 99869		42646.15
. 0777	. 07762		. 99698		. 88998	55,8	. 99869		42706.78
. 0778	. 07772		. 99698		. 89054	55,7	. 99868		42727.40
. 0779	. 07782		-99697		. 89110	55,6	. 99858		42748.03
0.0780	0.07792	10,0	0.99696	0,8	8.89165	55,6	9.99868	0,3	42808.65
. 0781	. 07802		. 99695		. 8922 I	55,5	. 99867		42829.28
. 0782	. 07812		. 99694		. 89276	55,4	. 99867		42849.91
. 0783	. 07822		. 99694		. 89332	55,4	. 99867		429 10. 53
. 0784	. 07832		. 99693		. 89387	55,3	-99866		42931.16
0.0785	0.07842	10,0	0.99692	0,8	8.89442	55,2	9.99866	0,3	42951.79
. 0785	. 07852		. 99691		. 89498	55, I	. 99866		43012.41
. 0787	. 07882		. 99690		. 89553	55, 1	. $9986{ }^{\circ}$		43033.04
. 0788	. 07872		. 99690		. 89608	55,0	. 99865		43053.67
. 0789	. 07882		. 99689		. 89653	54,9	. 99865		43114.29
0.0790	0.07892	10,0	0.99688	0,8	8.89718	54,9	9.99864	0,3	43134.92
. 0791	. 07902		. 99687		. 89772	54,8	. 99864		43155.55
. 0792	. 07912		. 99687		. 89827	54,7	. 99864		432 16.17
. 0793	. 07922		- 99686		. 89882	54,7	. 99863		43236.80
. 0794	. 07932		- 99685		. 89936	54,6	. 99863		43257.43
0.0795	0.07942	10,0	0.99684	0,8	8.89991	54,6	9.99853	0,3	43318.05
. 0796	. 07952		. 99683		. 90045	54,4	. 99862		43338.68
. 0797	. 07962		. 99683		. 90100	54,4	. 99862		433 59.31
. 0798	. 07972		- 99682		. 90154	54,3	. 99862	-	43419.93
. 0799	. 07982		. 99681		.90208	54,2	. 99861		43440.56
0.0800	0.07991	10,0	0.99680	0,8	8.90263	54,2	9.9986I	0,3	435 or. 18
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	100 cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cos 4	$\omega \mathrm{F}_{0}{ }^{\circ}$	$\log \sin u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0800	0.07991	10,0	0.99680	0,8	8.90263	54,2	9.99861	0,3	$4^{\circ} 35^{\circ}$ ог". ${ }^{\text {r }}$
. 0801	. 08001		. 99679		. 90317	54, 1	. 99861		435 21.81
. 0802	. 08011		. 99679		. 9037 I	54,0	. 99860		43542.44
. 0803	. 08021		. 99678		. 90425	54,0	. 99860		43603.06
. 0804	. 08031		. 99677		. 90479	53,9	. 99859		43623.69
0.0805	0.08041	10,0	0.99676	0,8	8.90533	- 53,8	9.99859	0,4	43644.32
. 0806	. 08051		. 99675		. 90586	53,8	. 99859		43704.94
. 0807	. 08061		. 99675		. 90640	53,7	. 99858		43725.57
. 0808	. 08071		. 99674		. 90694	53,6	. 99858		43746.20
. 0809	.0808I		. 99673		. 90747	53,6	. 99858		43806.82
0.0810	0.08091	10,0	0.99672	0,8	8.90801	53,5	9.99857	0,4	43827.45
.08II	.08101		. 99671		. 90854	53,4	. 99857		43848.08
.0812	.081II		. $9967{ }^{\text {- }}$. 90908	53,4	. 99857		43908.70
.0813	.0812I		-99970		. 90951	53,3	. 99856		43929.33
. 0814	.08131		-99669		.91014	53,2	. 99856		43949.96
0.0815	0.08141	10,0	0.99668	0,8	8.91068	53,2	9.99856	0,4	44010.58
. 0816	.08151		. 99667		.91121	53,1	. 99855		44031.21
. 0817	.0816I		. 99666		.91174	53,0	- 99855		44051.83
. 0818	.08171		. 99666		. 91227	53,0	. 99855		44112.46
. 0819	.08181		. 99665		. 91280	52,9	. 99854		44133.09
0.0820	0.08191	10,0	0.99664	0,8	8.91333	52,8	9.99854	0,4	44153.71
. 0821	. 08201		. 99663		. 91386	52,8	. 99853		44214.34
. 0822	. 08211		. 99662		.91438	52,7	- 99853		44234.97
. 0823	. 08221		-99662		.91491	52,7	- 99853		44255.59
. 0824	.0823I		-99661		. 91544	52,6	- 99852		44316.22
0.0825	0.0824 I	10,0	0.99660	0,8	8.91596	52,5	9.99852	0,4	44336.85
. 0826	. 08251		. 99659		. 91649	52,5	- 99852		443.57 .47
. 0827	. 08261		- 99658		-91701	52,4	- 9985 s		444 18.10
. 0828	. 08271		. 99657		.91753	52,3	. 9985 s		44438.73
. 0829	.0828I		-99657		.91806	52,3	. 9985 I		44459.35
0.0830	0.08290	10,0	0.99656	0,8	8.91858	52,2	9.99850	0,4	44519.98
. 0831	. 08300		. 99655		. 91910	52,1	. 99850		44540.61
. 0832	. 08310		. 99654		. 91962	52,1	. 99850		446 or. 23
. 0833	. 08320		. 99653		. 92014	52,0	. 99849		446 21.86
. 0834	. 08330		. 99652		. 92066	52,0	- 99849		44642.48
0.0835	0.08340	10,0	0.99652	0,8	8.92118	51,9	9.99848	0,4	44703.11
. 0836	. 08350		. 99651		. 92170	51,8	. 99848		44723.74
. 0837	. 08360		- 99650		.92222	51,8	- 99848		44744.36
. 0838	. 08370		. 99649		. 922274	51,7	- 99847		44804.99
. 0839	. 08380		. 99648		. 92325	51,6	- 99847		44825.62
0.0840	0.08390	10,0	0.99647	0,8	8.92377	51,6	9.99847	0,4	44846.24
. 0841	. 08400		. 99647		. 92428	51,5	. 99846		44906.87
. 0842	. 08410		- 99646		. 92480	51,5	- 99846		44927.50
. 0843	. 08420		. 99645		.9253I	51,4	. 99846		449 48. 12
. 0844	. 08430		. 99644		. 92583	51,3	- 99845		45008.75
0.0845	0.08440	10,0	0.99643	o,8	8.92634	51,3	9.99845	0,4	45029.38
. 0846	. 08450		. 99642		. 92685	51,2	. 99844		45050.00
. 0847	. 08460		. 99642		. 92736	51,2	- 99844		45110.63
. 0848	. 08470		. 99641		. 92788	51,1	- 99844		45131.26
. 0849	. 08480		. 99640		. 92839	51,0	. 99843		45151.88
0.0850	0.08490	10,0	0.99639	0,8	8.92890	151,0	9.99843	0,4	452 12.51
u	-i sinh iu	$\omega \mathrm{FF}^{\prime}$	cosh iu	$\omega^{\text {F }}{ }^{\prime}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{Fo}^{\prime}$	log cosh iu	$\omega \mathrm{Fo}^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0850	0.08490	10,0	0.99639	0,8	8.92890	51,0	9.99843	0,4	$4^{\circ} 52^{\prime} 12.51$
. 0851	. 08500		. 99638	0,8	.9294I	50,9	. 99843		45233.14
. 0852	. 08510		. 99637	0,9	.92991	50,9	. 99842		45253.76
. 0853	. 08520		. 99636		. 93042	50,8	. 99842		45314.39
. 0854	. 08530		. 99636		. 93093	50,7	. 9984 I		45335.01
0.0855	0.08540	10,0	0.99635	0,9	8.93144	50,7	9.9984 I	0,4	45355.64
. 0856	. 08550		. 99634		.93194	50,6	. 99841		45416.27
. 0857	. 08560		. 99633		. 93245	50,6	. 99840		45436.89
. 0858	. 08569		. 99632		. 93295	50,5	. 99840		45457.52
. 0859	. 08579		.9963I		. 93346	50,4	. 99840		455 18.15
0.0860	0.08589	10,0	0.99630	0,9	8.93396	50,4	9.99839	0,4	45538.77
.086I	. 08599		. 99630		. 93447	50,3	. 99839		45559.40
. 0862	. 08609		. 99629		. 93497	50,3	. 99838		45620.03
. 0863	.08619		. 99628		. 93547	50,2	. 99838		45640.65
. 0864	. 08629		. 99627		. 93597	50, I	. 99838		457 OI. 28
0.0865	0.08639	10,0	0.99626	0,9	8.93647	50,1	9.99837	0,4	45721.91
. 0866	. 08649		. 99625		. 93697	50,0	. 99837		45742.53
. 0867	. 08659		. 99624		. 93747	50,0	. 99837		45803.16
. 0868	. 08669		. 99624		. 93797	49,9	. 99836		45823.79
. 0869	. 08679		. 99623		. 93847	49,9	. 99836		$45844 \cdot 41$
0.0870	0.08689	10,0	0.99622	0,9	8.93897	49,8	9.99835	0,4	45905.04
. 0871	. 08699	,	. 9962 I		. 93947	49,7	. 99835		45925.66
. 0872	. 08709		. 99620		. 93997	49,7	. 99835		45946.29
. 0873	. 08719		.99619		. 94046	49,6	. 99834		50006.92
. 0874	. 08729		. 99618		. 94096	49,6	. 99834		50027.54
0.0875	0.08739	10,0	0.99617	0,9	8.94145	49,5	9.99834	0,4	50048.17
. 0876	. 08749		.99617		. 94195	49,5	. 99833		5 OI 08.80
. 0877	. 08759		. 99616		. 94244	49,4	. 99833		5 OI 29.42
. 0878	. 08769		.996I5		. 94294	49,3	. 99832		5 OI 50.05
. 0879	. 08779		.99614		. 94343	49,3	. 99832		50210.68
0.0880	0.08789	10,0	0.99613	0,9	8.94392	49,2	9.99832	0,4	50231.30
.088I	. 08799		. 99612		. 9444	49,2	. 99831		5025 I .93
. 0882	. 08809		.996II		.9449I	49, I	.9983I		$\begin{array}{llll}5 & 03 & 12.56\end{array}$
. 0883	.08819		.996io		. 94540	49, I	. 99830		50333.18
. 0884	. 08828		.99610		. 94589	49,0	. 99830		503 53.8I
0.0885	0.08838	10,0	0.99609	0,9	8.94638	48,9	9.99830	0,4	50414.44
. 0886	. 08848		. 99608		. 94687	48,9	. 99829		50435.06
. 0887	. 08858		. 99607		. 94735	48,8	. 99829		50455.69
. 0888	. 08868		. 99606		. 94784	48,8	. 99829		505 16.3I
. 0889	. 08878		. 99605		. 94833	48,7	. 99828		50536.94
0.0890	0.08888	10,0	0.99604	0,9	8.94882	48,7	9.99828	0,4	$505 \quad 57.57$
.0891	. 08898		. 99603		. 94930	48,6	. 99827		50618.19
. 0892	. 08008		. 99602		. 94979	48,6	. 99827		50638.82
. 0893	. 08918		. 99602		. 95027	48,5	. 99827		50659.45
. 0894	. 08928		.9960I		. 95076	48,4	. 99826		50720.07
0.0895	0.08938	10,0	0.99600	0,9	8.95124	48,4	9.99826	0,4	50740.70
. 0896	. 08948		. 99599		. 95173	48,3	. 99825		508 OI. 33
. 0897	. 08958		. 99598		. 9522 I	48,3	. 99825		50821.95
.0898	. 08968		. 99597		.95269	48,2	. 99825		$\begin{array}{llll}5 & 08 & 42.58 \\ 5 & 00 & 03.21\end{array}$
. 0899	. 08978		. 99596		.95317	48,2	. 99824		50903.21
0.0900	0.08988	10,0	0.99595	0,9	8.95366	48, I	9.99824	0,4	50923.83
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	10 cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { c o s }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4
0.0900	0.08988	10,0	0.99595	0,9	8.95366	48,1	9.99824	0,4	$5^{\circ} 099^{\prime} 23.83$
. 0901	. 08998		. 99594		. 95414	48, I	. 99823		50944.46
. 0902	. 09008		. 99593		. 95462	48,0	. 99823		51005.09
. 0903	.09018		. 99593		.95510	48,0	. 99823		5 10 25.71
. 0904	. 09028		. 99592		. 95558	47,9	. 99822		51046.34
0.0905	0.09038	10,0	0.99591	0,9	8.95606	47,9	9.99822	0,4	5 II 06.96
. 0906	. 09048		. 99590		. 95653	47,8	. 99822		5 II 27.59
. 0907	. 09058		. 99589		.95701	47,8	. 99821		5 II 48.22
. 0908	. 09068		. 99588		. 95749	47,7	. 99821		51208.84
. 0909	. 09077		. 99587		. 95797	47,6	. 99820		51229.47
0.0910	0.09087	10,0	0.99586	0,9	8.95844	47,6	9.99820	0,4	51250.10
. 0911	. 09097		. 99585		. 95892	47,5	. 99820		51310.72
.0912	.09107		. 99584		. 95939	47,5	.99819		5 13 3I. 35
.0913	.09117		. 99584		. 95987	47,4	.99819		5 I3 51.98
. 0914	. 09127		. 99583		. 96034	47,4	.998I8		51412.60
0.0915	0.09137	10,0	0.99582	0,9	8.9608I	47,3	9.99818	0,4	5 I4 33.23
.0916	. 09147		.99581		.96I29	47,3	.99818		51453.86
.0917	. 09157		. 99580		.96176	47,2	.99817		
. 0918	. 09167		. 99579		.96223	47,2	.99817		5 I5 35.11
. 0919	.09177		. 99578		. 96270	47, 1	.99816		51555.74
0.0920	0.09187	10,0	0.99577	0,9	8.96317	47,1	9.99816	0,4	516 ı6.36
.0921	. 09197		. 99576		.96365	47,0	.998i6		$5 \begin{array}{llll}5 & 16 & 36.99\end{array}$
. 0922	. 09207		. 99575		.96412	47,0	.99815		51657.62
. 0923	.09217		. 99574		. 96458	46,9	. 99815		$\begin{array}{lllll}5 & 17 & 18.24\end{array}$
. 0924	. 09227		. 99573		. 96505	46,9	.998I4		51738.87
0.0925	0.09237	10,0	0.99572	0,9	8.96552	46,8	9.99814	0,4	51759.49
. 0926	. 09247		. 99572		. 96599	46,8	.99814		51820.12
. 0927	.09257		.9957I		. 96646	46,7	.99813		$5 \quad 1840.75$
. 0928	. 09267	,	. 99570		.96602	46,7	.99813		51901.37
. 0929	. 09277		. 99569		. 96739	46,6	. 99812		51922.00
0.0930	0.09287	10,0	0.99568	0,9	8.95786	46,6	9.99812	0,4	51942.63
. 0931	.09297		. 99567		. 96832	46,5	.99812		$\begin{array}{llll}5 & 20 & 03.25\end{array}$
. 0932	.09307		. 99566		. 96879	46,5	.998II		52023.88
. 0933	.09316		. 99565		. 96925	46,4	.998II		52044.5 I
. 0934	. 09326		. 99564		. 96972	46,4	.99810		52105.13
0.0935	0.09336	10,0	0.99563	0,9	8.97018	46,3	9.99810	0,4	52125.76
. 0936	. 09346		. 99562		. 97064	46,3	.99809		5 21 46.39
. 0937	. 09356		.9956I		.971 10	46,2	. 99809		52207.01
. 0938	. 09366		. 99560		. 97157	46,2	. 99809		52227.64
. 0939	. 09376		-99559		.97:203	46,1	. 99808		52248.27
0.0940	0.09386	10,0	0.99559	0,9	8.97249	46, I	9.99808	0,4	$\begin{array}{llll}5 & 23 & 08.89\end{array}$
. 0941	.09396		. 99558		. 97295	46,0	. 99807		$\begin{array}{llll}5 & 23 & 29.52\end{array}$
. 0942	. 09406		. 99557		. 5734 I	46,0	. 99807		523 50.14
. 0943	.09416		. 99556		. 97387	45,9	. 99807		
. 0944	. 09426		. 99555		. 97433	45,9	. 99806		52431.40
0.0945	0.09436	10,0	0.99554	0,9	8.97479	45,8	9.99806	0,4	
. 0946	. 09446		. 99553		. 97524	45,8	. 99805		52512.65
. 0947	. 09456		. 99552		. 97570	45,7	.99805		52533.28
. 0948	. 09466		. 99551		.97616	45,7	. 99805		52553.90
. 0949	.09476		. 99550		.9766I	45,6	. 99804		52614.53
0.0950	0.09486	10,0	0.99549	0,9	8.97707	45,6	9.99804	0,4	52635.16
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0950	0.09486	10,0	0.99549	0,9	8.97707	45,6	9.99804	0,4	$5^{\circ} 26^{\prime} 355^{\prime \prime} .16$
. 095I	. 09496		. 99548	0,9	. 97753	45,5	. 99803		$\begin{array}{llll}5 & 2655.78\end{array}$
. 0952	. 09506		. 99547	1,0	. 97798	45,5	. 99803		527 16.41
. 0953	.09516		. 99546		. 97844	45,4	. 99802		52737.04
. 0954	. 09526		. 99545		. 97889	45,4	.99802		52757.66
0.0955	0.09535	10,0	0.99544	1,0	8.97934	45,3	9.99802	0,4	52818.29
. 0956	. 09545		. 99543		. 97980	45,3	. 99801		52838.92
. 0957	. 09555		. 99542		.98025	45,2	. 99801		$5 \begin{array}{llll}5 & 28 & 59.54\end{array}$
. 0958	. 09565		.9954I		. 98070	45,2	. 99800		529 20.17
. 0959	. 09575		.9954I		98II5	45, I	. 99800		52940.79
0.0960	0.09585	10,0	0.99540	1,0	8.98160	45, I	9.99800	0,4	530 OI .42
.096I	. 09595		. 99539		. 98205	45, I	. 99799		53022.05
. 0962	. 09605		. 99538		.9825I	45,0	. 99799		53042.67
. 0963	. 09615		. 99537		. 98295	45,0	. 99798		53103.30
. 0964	. 09625		. 99536		. 98340	44,9	. 99798		53123.93
0.0965	0.09635	10,0	0.99535	1,0	8.98385	44,9	9.99797	0,4	5 3I 44.55
. 0966	. 09645		. 99534		. 98430	44,8	. 99797		53205.18
. 0967	. 09655		. 99533		. 98475	44,8	. 99797		53225.81
. 0968	. 09665		. 99532		. 98520	44,7	. 99796		53246.43
. 0969	. 09675		.9953I		. 98564	44,7	. 99796		53307.06
0.0970	0.09685	10,0	0.99530	1,0	8.98609	44,6	9.99795	0,4	$\begin{array}{lll}5 & 33 & 27.69\end{array}$
. 0971	. 09695		. 99529		. 98554	44,6	. 99795		53348.3 I
. 0972	. 09705		. 99528		. 98698	44,5	. 99795		53408.94
. 0973	. 09715		. 99527		. 98743	44,5	. 99794		53429.57
. 0974	. 09725		. 99526		. 98787	44,4	. 99794		53450.19
0.0975	0.09735	10,0	0.99525	1,0	8.98832	44,4	9.99793	0,4	53510.82
. 0976	. 09745		. 99524		. 98876	44,4	. 99793		53531.45
. 0977	. 09754		. 99523		. 98920	44,3	. 99792		53552.07
. 0978	.09764		. 99522		. 98965	44,3	. 99792		53612.70
. 0979	. 09774		.9952I		. 99009	44,2	. 99792		53633.32
0.0980	0.09784	10,0	0.99520	1,0	8.99053	44,2	9.99791	0,4	
.0981	. 09794		.99519		. 99097	44, I	. 99791		53714.58
. 0982	. 09804		.99518		.9914I	44, I	. 99790		53735.20
.0983	.09814		. 99517		. 99185	44,0	. 99790		53755.83
. 0984	. 09824		. 99516		. 99229	44,0	. 99789		53816.46
0.0985	0.09834	10,0	0.99515	1,0	8.99273	43,9	9.99789	0,4	
. 0986	. 09844		. 99514		. 99317	43,9	. 99789		$\begin{array}{lllllllllll}5 & 38 & 57.71\end{array}$
. 0987	. 09854		.99513		. 99361	43,9	. 99788		53918.34
. 0988	. 09864		. 99512		. 99405	43,8	. 99788		53938.96
. 0989	. 09874		.995II		-99449	43,8	. 99787		53959.59
0.0990	0.09884	10,0	0.99510	I, 0	8.99493	43,7	9.99787	0,4	
.0991	. 09894		. 99509		. 99536	43,7	. 99786		54040.84
. 0992	. 09904		. 99508		. 99580	43,6	. 99786		541101.47
. 0993	. 09914		. 99507		. 99624	43,6	. 99786		54122.10
. 0994	. 09924		. 99506		. 99667	43,5	. 99785		54142.72
0.0995	0.09934	10,0	0.99505	I,O	8.997II	43,5	9.99785	0,4	54203.35
. 0996	. 09944		. 99504		. 99754	43,5	. 99784		54223.97
. 0997	. 09953		. 99503		. 99798	43,4	. 99784		54244.60
. 0998	. 09963		. 99502		.9984	43,4	.99783		$\begin{array}{lll}5 & 43 & 05.23 \\ 5 & 43 & 25.85\end{array}$
. 0999	. 09973		.99501		. 99884	43,3	. 99783		54325.85
0. 1000	0.09983	10,0	0.99500	1,0	8.99928	43,3	9.99782	0,4	54346.48
u	-isinhiu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	© $\mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	u
0.100	0.09983	99,5	0.99500	10,0	8.99928	432,8	9.99782	4,4	$5^{\circ} 433^{\prime} 46^{\prime \prime} .48$
. IOI	. 10083	99,5	. 99490	10,1	9.00358	428,5	. 99778	4,4	54712.75
. 102	. 10182	99,5	. 99480	10,2	. 00785	424,3	. 99774	4,4	55039.01
. 103	. 10282	99,5	. 99470	10,3	. 01207	420,2	. 99769	4,5	55405.28
. 104	. 10381	99,5	.99460	10,4	. 01625	416,1	. 99765	4,5	557 3I. 54
0.105	0.1048I	99,4	0.99449	10,5	9.02039	412,I	9.99760	4,6	60057.80
. 106	. 10580	99,4	. 99439	10,6	. 02449	408,2	. 99756	4,6	60424.07
. 107	. 10580	99,4	. 99428	10,7	. 02855	404,3	. 99751	4,7	60750.33
. 108	. 10779	99,4	. 99417	10,8	. 03258	400,6	. 99746	4,7	6 II 16.60
. 109	. 10878	99,4	. 99407	10,9	. 03657	396,9	.9974I	4,8	6 I4 42.86
O. 110	0.10978	99,4	0.99396	II,0	9.04052	393,2	9.99737	4,8	6 18 09.13
. III	. 11077	99,4	. 99385	II, I	. 04443	389,6	. 99732	4,8	6 21 35.39
. 112	. I I I 77	99,4	. 99373	II,2	.0483I	386, 1	. 99727	4,9	62501.66
. II3	. 11276	99,4	. 99362	I I, 3	. 05215	382,7	. 99722	4,9	62827.92
. II4	. I I375	99,4	.9935I	I I, 4	. 05596	379,3	. 99717	5,0	63154.19
0. 115	O. II475	99,3	0.99339	II,5	9.05974	376,0	9.99712	5,0	63520.45
. 116	. II574	99,3	. 99328	I 1,6	. 06348	372,7	. 99707	5, I	63846.72
. 117	. 11673	99,3	. 99316	II,7	.06719	369,5	. 99702	5, I	64212.98
. II8	. II773	99,3	. 99305	I I, 8	. 07087	366,3	. 99697	5, I	64539.25
. 119	. 11872	99,3	. 99293	II,9	. 07452	363,2	. 99692	5,2	649 05.5I
0.120	O. 11971	99,3	0.9928 I	12,0	9.07814	360,2	9.99687	5,2	6523 I .78
. 121	. 12070	99,3	. 99269	12,I	.08173	357,2	.9968I	5,3	65558.04
. 122	. 12170	99,3	. 99257	12,2	. 08528	354,2	. 99676	5,3	659 24.3I
. 123	. 12269	99,2	. 99245	12,3	.0888I	351,3	. 99671	5,4	70250.57
. 124	. 12368	99,2	. 99232	12,4	.0923I	348,4	. 99665	5,4	70616.84
0.125	0.12467	99,2	0.99220	12,5	9.09578	345,6	9.99660	5,5	70943.10
. 126	. 12567	99,2	. 99207	12,6	. 09922	342,9	. 99654	5,5	
. 127	. I2666	99,2	. 99195	12,7	. 10264	340, 1	. 99649	5,5	$7 \quad 1635.63$
. 128	. 12765	99,2	.99182	12,8	. 10602	337,4	. 99643	5,6	72001.90
. 129	. 12864	99,2	.99169	12,9	. 10938	334,8	. 99638	5,6	723 28.16
0.130	0.12963	99,2	0.99156	13,0	9. 11272	332,2	9.99632	5,7	72654.42
. 131	. 13063	99,1	. 99143	13, I	. 11603	329,6	. 99626	5,7	73020.69
. 132	. 13162	99, I	.99130	13,2	. I 193I	327,1	.99621	5,8	73346.95
. I33	. 13261	99, I	.99117	13,3	. 12257	324,6	.996I5	5,8	73713.22
. 134	. 13360	99, I	.99104	I3,4	. 12580	322,2	. 99609	5,9	74039.48
0.135	0.13459	99, I	0.99090	13,5	9.12901	319,7	9.99603	5,9	74405.75
. I36	. 13558	99, I	. 99077	13,6	. I3220	317,4	. 99597	5,9	74732.01
. 137	. 13657	99,1	. 99063	13,7	. 13536	$3 \mathrm{I} 5,0$. 99591	6,0	75058.28
. 138	. 13756	99,0	. 99049	13,8	. 13850	312,7	. 99585	6,0	75424.54
. 139	. 13855	99,0	. 99036	13,9	. 14162	310,4	. 99579	6,1	75750.81
0.140	0.13954	99,0	0.99022	14,0	9.1447 I	308,2	9.99573	6,1	8 O1 17.07
. I4I	. I4053	99,0	. 99008	I4,I	. 14778	306,0	. 99567	6,2	80443.34
. 142	. 14152	99,0	. 98993	14,2	. 15083	303,8	. 99561	6,2	80809.60
. 143	. I425I	99,0	. 98979	14,3	. 15385	301,6	. 99554	6,3	8 II 35.87
. 144	. 14350	99,0	.98965	14,4	. 15686	299,5	. 99548	6,3	8 I5 02.13
	0.14449	99,0	0.98951	14,4	9. 15985	297,4	9.99542	6,3	81828.40
. 146	. 14548	98,9	. 98936	14,5	. 1628 I	295,3	. 99535	6,4	82154.66
. 147	. 14647	98,9	.98921	14,6	. 16575	293,3	. 99529	6,4	82520.93
. 148	. 14746	98,9	. 98907	14,7	. 16868	291,3	. 99523	6,5	82847.19
. 149	. 14845	98,9	. 98892	14,8	. 17158	289,3	. 99516	6,5	832 I3.46
0.150	0.14944	98,9	0.98877	14,9	9. 17446	287,4	9.99510	6,6	83539.72
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.150	0. 14944	98,9	0.98877	14,9	9.17446	287,4	9.99510	6,6	$8^{\circ} 35^{\prime} 39.72$
. 151	. 15043	98,9	. 98862	15,0	. 17733	285,4	. 99503	6,6	83905.99
. 152	. 15142	98,8	. 98847	J5,1	. 18017	283,5	. 99496	6,7	84232.25
. 153	. 15240	98,8	. 98832	15,2	. 18300	28I,6	. 99490	6,7	84558.52
. 154	. 15339	98,8	.988I7	15,3	. 18580	279,8	. 99483	6,7	84924.78
0.155	0. 15438	98,8	0.98801	15,4	9.18859	277,9	9.99476	6,8	85251.04
. 156	. 15537	98,8	. 98786	15,5	-.19136	276, 1	. 99469	6,8	856 I7.3I
. 157	. 15636	98,8	. 98770	15,6	. 19411	274,3	. 99463	6,9	85943.57
. 158	. 15734	98,8	. 98754	15,7	. 19685	272,6	. 99456	6,9	90309.84
. 159	. 55833	98,7	. 98739	I5,8	. 19957	270,8	. 99449	7,0	90636.10
0.160	0.15932	98,7	0.98723	15,9	9.20227	269, 1	9.99442	7,0	91002.37
. 161	. 1603 I	98,7	. 98707	16,0	. 20495	267,4	. 99435	7,1	91328.63
. 162	. 16129	98,7	. 98691	16, I	. 20761	265,7	. 99428	7,1	91654.90
. 163	. 16228	98,7	. 98674	16,2	. 21026	264, I	. 99420	7,1	92021.16
. 164	. 16327	98,7	. 98658	16,3	.21290	262,4	. 99413	7,2	92347.43
0. 165	0.16425	98,6	0.98642	16,4	9.21551	260,8	9.99406	7,2	92713.69
. 166	. 16524	98,6	. 98625	16,5	.218II	259,2	. 99399	7,3	93039.96
.167	. 16622	98,6	. 98609	16,6	. 22070	257,6	. 99392	7,3	93406.22
. 168	. 16721	98,6	. 98592	16,7	. 22326	256,1	. 99384	7,4	93732.49
.169	. 16820	98,6	. 98575	16,8	. 22582	254,5	. 99377	7,4	94058.75
0.170	0.16918	98,6	0.98558	16,9	9.22836	253,0	9.99369	7,5	94425.00
. 171	.17017	98,5	. 98542	17,0	. 23088	251,5	. 99362	7,5	94751.28
. 172	. 17115	98,5	. 98524	17,1	. 23338	250,0	. 99354	7,5	95117.55
. 173	. 17214	98,5	. 98507	17,2	. 23588	248,5	. 99347	7,6	95443.81
. 174	. 17312	98,5	.98490	17,3	. 23836	247, I	. 99339	7,6	95810.08
0.175	0.17411	98,5	0.98473	17,4	9.24082	245,6	9.99332	7,7	10 or 36.34
. 176	. 17509	98,5	. 98455	17,5	. 24327	244,2	. 99324	7,7	100502.61
$\therefore 177$. I7608	98,4	. 98438	17,6	. 24570	242,8	.99316	7,8	
. 178	. 17706	98,4	. 98420	17,7	. 24812	241,4	. 99308	7,8	IO II 55.14
. 179	. 17805	98,4	. 98402	17,8	. 25053	240,0	. 99300	7,9	IO 1521.40
0.180	0.17903	98,4	0.98384	17,9	9.25292	238,7	9.99293	7,9	10 $18 \quad 47.67$
. 181	. 18001	98,4	. 98366	18,0	. 25530	237,3	. 99285	7,9	$\begin{array}{llll}10 & 22 & 13.93\end{array}$
. 182	. 18100	98,3	. 98348	18,1	. 25767	236,0	. 99277	8,0	102540.19
. 183	. 18198	98,3	. 98330	18,2	. 26002	234,7	.99269	8,0	IO 2906.46
. 184	. 18296	98,3	.98312	18,3	. 26236	233,4	.9926I	8, I	IO $32 \quad 32.72$
. 0185	0. 18395	98,3	0.98294	18,4	9.26469	232,I	9.99253	8,I	10 $35 \quad 58.99$
. 186	. 18493	98,3	. 98275	18,5	. 26701	230,8	. 99244	8,2	10 3925.25
. 187	. 18591	-98,3	. 98257	18,6	. 26931	229,5	. 99236	8,2	104251.52
. 188	. 18689	98,2	. 98238	18,7	. 27160	228,3	. 99228	8,3	10 4617.78
. 189	. 18788	98,2	. 98219	18,8	. 27387	227,0	. 99220	8,3	IO 4944.05
0.190	0.18886	98,2	0.98200	18,9	9.27614	225,8	9.992 I	8,4	105310.31
. 191	. 18984	98,2	.98181	19,0	. 27839	224,6	. 99203	8,4	Io 5636.58
. 192	. 19082	98,2	.98162	19,I	. 28063	223,4	.99195	8,4	II 0002.84
. 193	. 19180	98, 1	.98143	19,2	. 28286	222,2	.99186	8,5	$\text { II } 0329.1 \mathrm{I}$
. 194	. 19279	98,1	.98124	19,3	. 28507	221,0	.99178	8,5	II 0655.37
0.195	0.19377	98, 1	0.98105	19,4	9.28728	219,9	9.99169	8,6	II 1021.64
. 196	. 19475	98, 1	. 98085	19,5	. 28947	218,7	. 99160	8,6	II I I3 47.90
. 197	. 19573	98, 1	. 98066	19,6	.29165	217,6	.99152	8,7	
. 198	. 19671	98,0	. 98046	19,7 19,8	. 29382	216,5 215,3	.99143	8,7 8,8	$\begin{array}{lll}\text { II } & 20 & 40.43 \\ \text { II } & 24 & 06.70\end{array}$
. 199	. 19769	98,0	. 98026	19,8	. 29598	215,3	-99134	8,8	II 2400.70
0.200	0. 19867	98,0	0.98007	19,9	9.29813	214,2	9.99126	8,8	II 2732.96
u	-i sinh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$100 \cosh$ iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega F_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.200	0. 19867	98,0	0.98007	19,9	9.29813	214,2	9.99126	8,8	II ${ }^{\circ} 27^{\prime} 32.96$
. 20I	. 19965	98,0	. 97987	20,0	. 30027	213, 1	.99117	8,8	II 3059.23
. 202	. 20063	98,0	. 97967	20,1	. 30239	212, I	.99108	8,9	II 3425.49
. 203	. 2016I	97,9	. 97947	20,2	-3045I	211,0	. 99099	8,9	II 3751.76
. 204	. 20259	97,9	. 97926	20,3	. 3066 I	209,9	. 99090	9,0	II 4118.02
0.205	0.20357	97,9	0.97906	20,4	9.30871	208,9	9.99081	9,0	II 4444.29
. 206	. 20455	97,9	. 97886	20,5	. 31079	207,8	. 99072	9,1	II 4810.55
. 207	. 20552	97,9	. 97865	20,6	. 31286	206,8	. 99063	9,	II 5136.8 i
. 208	. 20650	97,8	. 97845	20,7	. 31493	205,8	. 99054	9,2	II 5503.08
. 209	. 20748	97,8	. 97824	20,7	. 31698	204,8	. 99044	9,2	II 5829.34
0.210	0.20846	97,8	0.97803	20,8	9.31902	203,8	9.99035	9,3	12 or 55.6 I
. 211	. 20944	97,8	. 97782	20,9	. 32106	202,8	. 99026	9,3	1205121.87
. 212	. 21042	97,8	.9776I	21,0	. 32308	201,8	.99017	9,3	120848.14
. 213	. 21 139	97,7	. 97740	2I, I	- 32509	200,8	. 99007	9,4	$\begin{array}{llll}12 & 12 & 14.40\end{array}$
. 214	. 21237	97,7	. 97719	21,2	. 32709	199,8	. 98998	9,4	121540.67
0.215	0.21335	97,7	0.97698	21,3	9.32909	198,9	9.98988	9,5	121906.93
. 216	. 21432	97,7	. 97676	2I,4	. 33107	197,9	. 98979	9,5	122233.20
.217	. 21530	97,7	. 97655	21,5	. 33305	197,0	. 98969	9,6	122559.46
. 218	. 21628	97,6	. 97633	21,6	. 33501	196,0	. 98960	9,6	122925.73
. 219	. 21725	97,6	. 97612	21,7	. 33697	195, I	. 98950	9,7	123251.99
0.220	0.21823	97,6	0.97590	21,8	9.33891	194,2	9.98940	9,7	123618.26
. 221	.21921	97,6	. 97568	21,9	. 34085	193,3	.9893I	9,8	123944.52
. 222	. 22018	97,5	. 97546	22,0	- 34278	192,4	.9892I	9,8	124310.79
.223	.22116	97,5	. 97524	22,1	. 34470	191,5	.9891 I	9,8	124637.05
. 224	. 22213	97,5	. 97502	22,2	. 34661	190,6	.98901	9,9	$12 \quad 50 \quad 03.32$
0.225	0.223 II	97,5	0.97479	22,3	9.34851	189,8	9.98891	9,9	1253129.58
. 226	. 22408	97,5	. 97457	22,4	. 3504 I	188,9	.9888I	10,0	125655.85
. 227	. 22506	97,4	. 97435	22,5	. 35229	188,0	.9887I	10,0	130022.11
. 228	. 22603	97,4	.97412	22,6	-35417	187,2	.9886I	10,1	130348.38
. 229	. 22700	97,4	. 97389	22,7	. 35603	186,3	. 98851	10,1	I3 0714.64
0.230	0.22798	97,4	0.97367	22,8	9.35789	185,5	9.98841	10,2	131040.91
. 231	. 22895	97,3	. 97344	22,9	. 35974	184,7	. 98831	10,2	131407.17
. 232	. 22992	97,3	.9732I	23,0	-36158	183,8	. 98821	10,3	13 I7 33.44
. 233	. 23090	97,3	. 97298	23,1	. 36342	183,0	.98810	10,3	I3 2059.70
. 234	. 23187	97,3	. 97275	23,2	. 36525	182,2	. 98800	10,4	$13 \quad 2425.96$
0.235	0.23284	97,3	0.97251	23,3	9.36706	181,4	9.98790	10,4	1312752.23
. 236	. 23382	97,2	. 97228	23,4	. 36887	180,6	. 98779	10,4	13 31 18.49
. 237	. 23479	97,2	. 97205	23,5	- 37068	179,8	. 98769	10,5	I3 3444.76
. 238	. 23576	97,2	.97181	23,6	- 37247	I79,0	. 98758	10,5	1338 II. 02
. 239	. 23673	97,2	.97I58	23,7	. 37426	178,2	. 98748	10,6	I3 4137.29.
0.240	0.23770	97, I	0.97134	23,8	9.37603	177,5	9.98737	10,6	134503.55
. 241	. 23867	97, I	. 97110	23,9	. 37780	176,7	. 98726	10,7	I3 4829.82
. 242	. 23964	97, 1	. 97086	24,0	. 37957	175,9	. 98716	10,7	13 51 56.08
.243	. 24062	97, I	. 97062	24,1	. 38132	175,2	. 98705	10,8	I3 5522.35
. 244	. 24159	97,0	. 97038	24,2	. 38307	174,4	. 98694	10,8	I3 5848.61
0.245	0.24256	97,0	0.97014	24,3	9.3848 I	173,7	9.98683	10,9	$14 \quad 0214.88$
. 246	. 24353	97,0	. 96989	24,4	. 38655	173,0	. 98672	10,9	14054 I .14
. 247	. 24450	97,0	. 96965	24,4	. 38827	I72,2	. 98662	I I,O	140907.41
. 248	. 24547	96,9	. 96941	24,5	- 38999	171,5	.9865I	I I, 0	$\begin{array}{llll}14 & 12 & 33.67\end{array}$
. 249	. 24643	96,9	.96916	24,6	. 39170	170,8	. 98640	II,O	1415159.94
0.250	0.24740	96,9	0.96891	24,7	9.3934 I	170, I	9.98528	II, I	$\begin{array}{lll}14 & 19 & 26.20\end{array}$
u	-i sinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	10 sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh$ iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

4	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	008 u	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.250	0.24740	96,9	0.96891	24,7	9.39341	170, 1	9.98628	II,I	$14{ }^{\circ} 19 \times 26^{\prime \prime} 20$
.25I	. 24837	96,9	. 96866	24,8	. 39510	169,4	. 98617	II, I	$14 \quad 22 \quad 52.47$
. 252	. 24934	96,8	. 96842	24,9	. 39679	168,7	. 98606	II,2	$14 \quad 2618.73$
. 253	. 2503 I	96,8	.96817	25,0	- 39848	168,0	. 98595	II,2	142945.00
. 254	.25128	96,8	. 96792	25, I	. 40015	167,3	. 98584	II,3	1433 II. 26
0.255	0.25225	96,8	0.96766	25,2	9.40182	166,6	9.98572	II,3	143637.53
. 256	. 25321	96,7	.96741	25,3	. 40349	165,9	. 98561	II,4	144003.79
. 257	. 25418	96,7	. 96716	25,4	. 40514	165,2	. 98550	II,4	144330.06
. 258	. 25515	96,7	. 96690	25,5	. 40679	164,6	. 98538	II,5	144656.32
. 259	.256II	96,7	.96665	25,6	. 40843	163,9	. 98527	11,5	145022.58
0.260	0.25708	96,6	0.96639	25,7	9.41007	163,3	9.98515	II, 6	$14 \quad 5348.85$
. 261	. 25805	96,6	. 966I3	25,8	. 41170	162,6	. 98504	II,6	145715.11
. 262	. 25901	96,6	. 96587	25,9	.41332	162,0	. 98492	II,6	150041.38
. 263	. 25998	96,6	.96561	26,0	. 41494	161,3	. 98480	II,7	150407.64
. 264	. 26094	96,5	. 96535	26, I	.41655	160,7	.98469	II,7	150733.91
0.265	0.26191	96,5	0.96509	26,2	9.41815	160,0	9.98457	II, 8	I5 II 00.17
. 266	. 26287	96,5	. 96483	26,3	.41975	159,4	. 98445	II,8	151426.44
. 267	. 26384	96,5	. 96457	26,4	. 42134	158,8	. 98433	II,9	151752.70
. 268	. 26480	96,4	. 96430	26,5	. 42292	158,2	. 9842 I	I 1,9	15 21 18.97
. 269	. 26577	96,4	. 96404	26,6	. 42450	157,5	. 98409	12,0	$15 \quad 2445.23$
0.270	0.26673	96,4	0.96377	26,7	9.42607	156,9	9.98397	12,0	$15 \quad 28$ II. 50
. 271	. 26770	96,4	. 96350	26,8	. 42764	156,3	. 98385	12,I	15 31 37.76
. 272	. 26866	96,3	. 96324	26,9	. 42920	155,7	. 98373	12,I	153504.03
. 273	. 26962	96,3	. 96297	27,0	. 43075	I55, I	.9836I	12,2	153830.29
. 274	. 27058	96,3	. 96270	27,1	. 43230	154,5	. 98349	12,2	I5 4I 56.56
0.275	0.27155	96,2	0.96243	27,2	9.43384	I 53,9	9.98337	12,3	$1545 \quad 22.82$
. 276	. 2725I	96,2	. 96215	27,3	. 43538	153,3	. 98324	12,3	I5 4849.09
:277	. 27347	96,2	.96188	27,3	. 4369 I	152,8	.98312	12,3	$15 \quad 5215.35$
. 278	. 27443	96,2	.9616I	27,4	. 43844	I52,2	. 98300	12,4	155541.62
. 279	. 27539	96, 1	.96I33	27,5	. 43996	151,6	. 98287	12,4	I5 5907.88
0.280	0.27636	96, 1	0.96106	27,6	9.44147	151,0	9.98275	12,5	160234.15
.281	. 27732	96, I	. 96078	27,7	. 44298	150,5	. 98262	12,5	160600.41
. 282	. 27828	96,	. 96050	27,8	. 44448	149,9	. 98250	12,6	160926.68
.283	. 27924	96,0	. 96022	27,9	. 44597	149,3	. 98237	12,6	161252.94
. 284	. 28020	96,0	. 95994	28,0	. 44746	148,8	. 98225	12,7	16 16 19.20
0.285	0.28116	96,0	0.95966	28,1	9.44895	148,2	9.98212	12,7	16 19 45.47
. 286	. 28212	95,9	. 95938	28,2	. 45043	147,7	.98199	12,8	$16 \quad 2311.73$
. 287	. 28308	95,9	. 95910	28,3	. 45190	147, 1	.98186	12,8	162638.00
. 288	. 28404	95,9	.9588I	28,4	. 45337	146,6	.98173	12,9	163004.26
. 289	. 28499	95,9	. 95853	28,5	. 45484	146, 1	.9816I	12,9	I6 3330.53
0.290	0.28595	95,8	0.95824	28,6	9.45629	145,5	9.98148	13,0	163656.79
. 291	. 28691	95,8	. 95796	28,7	. 45775	I45,0	.98135	I 3,0	164023.06
. 292	. 28787	95,8	. 95767	28,8	. 45919	144,5	.98122	13,1	164349.32
. 293	. 28883	95,7	. 95738	28,9	. 46064	144,0	.98109	13,1	164715.59
. 294	. 28978	95,7	. 95709	29,0	. 46207	143,4	. 98095	13,1	165041.85
0.295	0.29074	95,7	0.95680	29,1	9.46350	142,9	9.98082	13,2	165408.12
. 296	. 29170	95,7	.95651	29,2	. 46493	142,4	. 98069	13,2	165734.38
.297	. 29265	95,6	. 95622	29,3	$.46635$	141,9	$.98056$	13,3	$\text { I7 OI } 00.65$
. 298	. 29361	95,6	. 95593	29,4 29,5	. 46777	141,4 140,9	. 98042	I 3,3 I 3,4	$\begin{array}{llll}17 & 04 & 26.91 \\ \text { I7 } & 07 & 53.18\end{array}$
. 299	. 29456	95,6	-95563	29,5	. 46918	140,9	.98029	13,4	I7 0753.18
0.300	0.29552	95,5	0.95534	29,6	9.47059	I40,4	9.98016	13,4	I7 II 19.44
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	10 cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \sin \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	u
0.300	0.29552	95,5	0.95534	29,6	9.47059	140,4	9.98016	I3,4	17 ${ }^{\circ} 11 \times 19.44$
. 301	. 29648	95,5	. 95504	29,6	. 47199	139,9	. 98002	13,5	171445.71
- 302	. 29743	95,5	. 95474	29,7	. 47339	139,4	. 97989	13,5	171811.97
. 303	. 29838	95,4	. 95445	29,8	. 47478	138,9	. 97975	13,6	I7 2138.24
. 304	. 29934	95,4	. 95415	29,9	. 47616	I 38,4	. 97962	13,6	172504.50
0.305	0.30029	95,4	0.95385	30,0	9.47755	137,9	9.97948	13,7	$\begin{array}{llll}17 & 28 & 30.77\end{array}$
. 306	. 30125	95,4	. 95355	30,1	. 47892	1 37,5	. 97934	13,7	173157.03
. 307	. 30220	95,3	-95324	30,2	. 48029	${ }^{1} 37,0$. 97920	I3,8	
. 308	. 30315	95,3	. 95294	30,3	.48166	136,5	. 97907	I3,8	$17 \quad 3849.56$
. 309	. 304 II	95,3	. 95264	30,4	. 48303	136,0	. 97893	I 3,9	I7 4215.83
0.310	0.30506	95,2	0.95233	30,5	9.48438	135,6	9.97879	13,9	I7 4542.09
. 3 II	. 30601	95,2	. 95203	30,6	. 48574	135, 1	. 97865	14,0	174908.35
-312	. 30696	95,2	.95172	30,7	. 48709	134,7	. 97851	14,0	175234.62
. 313	. 30791	95, 1	.9514I	30,8	. 48843	134,2	. 97837	14,I	175600.88
. 314	. 30887	95, I	.95III	30,9	. 48977	133,7	. 97823	I4, I	175927.15
0.315	0.30982	95,1	0.95080	31,0	9.49110	I 33,3	9.97809	14,2	180253.4 I
. 316	. 31077	95,0	. 95049	31,1	. 49244	132,8	. 97795	14,2	180619.68
. 317	. 31172	95,0	. 95017	3I, 2	. 49376	132,4	. 97780	14,2	180945.94
. 318	. 31267	95,0	. 94986	3r,3	. 49508	131,9	. 97766	14,3	I8 1312.21
. 319	. 31362	95,0	. 94955	31,4	. 49640	I3I,5	. 97752	I4,3	I8 I6 38.47
0.320	0.31457	94,9	0.94924	31,5	9.49771	I3I, 1	9.97737	14,4	$\begin{array}{llll}18 & 20 & 04.74\end{array}$
. 321	. 31552	94,9	. 94892	31,6	. 49902	130,6	. 97723	14,4	$18 \quad 23 \quad 31.00$
. 322	. 31646	94,9	. 94860	31,6	. 50032	I30,2	. 97709	14.5	18 2657.27
. 323	. 31741	94,8	. 94829	31,7	. 50162	129,7	. 97694	14,5	$18 \quad 3023.53$
. 324	.31836	94,8	. 94797	31,8	. 50292	129,3	. 97679	14,6	I8 3349.80
0.325	0.31931	94,8	0.94765	31,9	9.5042 I	128,9	9.97665	14,6	$18 \quad 37$ 16.06
. 326	. 32026	94,7	. 94733	32,0	. 50550	128,5	. 97650	14,7	184042.33
. 327	. 32120	94,7	. 94701	32,I	. 50678	128,0	. 97635	14,7	184408.59
. 328	. 32215	94,7	. 94669	32,2	. 50806	127,6	. 97621	14,8	$18 \quad 4734.86$
. 329	. 32310	94,6	. 94637	32,3	. 50933	127,2	. 97606	14,8	185 I OI. 12
0.330	0.32404	94,6	0.94604	32,4	9.51060	126,8	9.97591	I4,9	$18 \quad 5427.39$
. 331	. 32499	94,6	. 94572	32,5	. 51187	126,4	. 97576	I4,9	$18 \quad 5753.65$
. 332	. 32593	94,5	. 94539	32,6	. 51313	126,0	. 9756 I	15,0	19 OI 19.92
. 333	. 32688	94,5	. 94507	32,7	. 51439	125,6	. 97546	15,0	190446.18
. 334	. 32782	94,5	. 94474	32,8	. 51564	125,2	. 9753 I	15, I	190812.45
0.335	0.32877	94,4	0.94441	32,9	9.51689	124,8	9.97516	15,I	19 II 38.71
. 336	. 32971	94,4	. 94408	33,0	. 51814	124,4	. 97501	I5,2	19 15 04.97
. 337	. 33066	94,4	. 94375	33,1	. 51938	124,0	. 97486	I5,2	19 I8 31.24
. 338	. 33160	94,3	. 94342	33,2	. 52062	123,6	. 97470	15,3	19 21 57.50
. 339	. 33254	94,3	. 94309	33,3	. 52185	123,2	. 97455	15,3	192523.77
0.340	0.33349	94,3	0.94275	33,3	9.52308	122,8	9.97440	15,4	192850.03
. 34 I	. 33443	94,2	. 94242	33,4	. 52430	122,4	. 97424	I5,4	1932 I 6.30
. 342	. 33537	94,2	. 94209	33,5	. 52553	122,0	. 97409	15,5	19 3542.56
- 343	. 33631	94,2	. 94175	33,6	. 52674	121,6	. 97394	15,5	193908.83
. 344	. 33726	94, I	.94I4I	33,7	. 52796	121,2	. 97378	15,6	194235.09
0.345	0.33820	94, I	0.94108	33,8	9.52917	120,8	9.97362	15,6	1946 O1. 36
. 346	. 33914	94, I	. 94074	33,9	. 53038	120,5	. 97347	15,7	194927.62
. 347	. 34008	94,0	. 94040	34,0	. 53158	120, I	. 9733 I	15,7	195253.89
. 348	. 34102	94,0	. 94006	34,1	. 53278	II9,7	. 97315	15,8	1956
. 349	. 34196	94,0	. 93972	34,2	. 53397	1 19,3	. 97300	15,8	I9 5946.42
0.350	0.34290	93,9	0.93937	34,3	9.53516	I 19,0	9.97284	I 5,9	$20 \quad 0312.68$
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables
198

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.350	0.34290	93,9	0.93937	34.3	9.53516	I 19,0	9.97284	15,9	$20^{\circ} 033^{\prime} 12.06$
. 351	. 34384	93,9	. 93903	34,4	. 53635	I 18,6	. 97268	I 5,9	200638.95
. 352	. 34478	93,9	. 93869	34,5	. 53754	1 18,2	. 97252	16,0	201005.21
- 353	. 34571	93,8	. 93834	34,6	. 53872	I 17,9	. 97236	16,0	20 I3 31.48
- 354	. 34665	93,8	. 93799	34,7	. 53989	I 17,5	. 97220	16, 1	201657.74
0.355	0.34759	93,8	0.93765	34,8	9.54107	II7,2	9.97204	16,1	202024.01
. 356	. 34853	93,7	. 93730	34,9	. 54224	I 16,8	. 97188	16,1	202350.27
. 357	. 34946	93,7	. 93695	34,9	. 54340	I 16,4	.97172	16,2	202716.54
- 358	. 35040	93,7	. 93660	35,0	. 54457	II6, I	.97I 55	16,2	203042.80
- 359	. 35134	93,6	. 93625	35, I	- 54573	I 15,7	. 97139	16,3	203409.07
0.360	0.35227	93,6	0.93590	35,2	9.54688	II 5,4	9.97123	16,3	$2037 \quad 35.33$
. 361	. 3532 I	93,6	. 93554	35,3	. 54803	I I 5,0	. 97106	16,4	2041 OI. 60
. 362	. 35415	93,5	.93519	35,4	. 54918	II4,7	. 97090	16,4	204427.86
. 363	. 35508	93,5	. 93484	35,5	. 55033	114,3	. 97074	16,5	204754.12
. 364	.35601	93,4	. 93448	35,6	. 55147	II 4,0	. 97057	16,5	205120.39
0.365	0.35695	93,4	0.93412	35,7	9.5526I	113,7	9.97040	16,6	205446.65
. 366	. 35788	93,4	. 93377	35,8	. 55374	113,3	. 97024	16,6	$20 \quad 5812.92$
. 367	. 35882	93,3	.9334I	35,9	- 55487	113,0	. 97007	16,7	21 OI 39.18
. 368	. 35975	93,3	. 93305	36,0	. 55600	II2,6	. 96990	16,7	210505.45
. 369	. 36068	93,3	. 93269	36,1	. 55713	112,3	. 96974	16,8	210831.71
0.370	0.36162	93,2	0.93233	36,2	9.55825	I 12,0	9.96957	16,8	21 II 57.98
. 371	. 36255	93,2	. 93197	36,3	. 55937	II I, 6	. 96940	16,9	2 I I5 24.24
. 372	. 36348	93,2	.93160	36,3	. 56048	III, 3	. 96923	16,9	2 I 18 50.51
. 373	. 3644 I	93, 1	.93124	36,4	. 56159	I I I, 0	. 96906	17,0	212216.77
. 374	. 36534	93, I	. 93087	36,5	. 56270	I 10,7	. 96889	17,0	21 2543.04
0.375	0.36627	93,1	0.93051	36,6	9.56380	1 10,3	9.96872	17,I	212909.30
. 376	. 36720	93,0	. 93014	36,7	. 56491	I 10,0	. 95855	17,I	213235.57
:377	. 36813	93,0	. 92977	36,8	. 56600	109,7	. 96838	17,2	21 3601.83
. 378	. 36906	92,9	. 92940	36,9	. 56710	109,4	. 96820	17,2	21 3928.10
- 379	. 36999	92,9	. 92904	37,0	. 56819	109,0	. 96803	17,3	214254.36
0.380	0.37092	92,9	0.92866	37, I	9.56928	108,7	9.96786	17,3	214620.63
. 381	. 37185	92,8	. 92829	37,2	. 57037	108,4	. 96769	I7,4	21 4946.89
. 382	. 37278	92,8	. 92792	37,3	. 57145	108, 1	. 9675 I	17;4	215313.16
.383	. 37370	92,8	. 92755	37,4	. 57253	107,8	.95734	17,5	215639.42
. 384	. 37463	92,7	. 92717	37,5	. 57361	107,5	. 96716	17,5	220005.69
0.385	0.37556	92,7	0.92680	37,6	9.57468	107,2	9.96699	17,6	$\begin{array}{llll}22 & 03 & 31.95\end{array}$
. 386	. 37649	92,6	. 92642	37,6	. 57575	106,9	.9668I	17,6	220658.22
. 387	. 37741	92,6	.92605	37,7	. 57682	106,6	. 96663	17,7	22 10 24.48
. 388	. 37834	92,6	. 92567	37,8	. 57788	106,3	. 95646	17,8	22 13 50.74
. 389	. 37926	-92,5	. 92529	37,9	. 57894	106,0	. 96628	17,8	$2217 \begin{array}{lllllll} & 17\end{array}$
0.390	0.38019	92,5	0.92491	38,0	9.58000	105,7	9.96610	17,9	$\begin{array}{llll}22 & 20 & 43.27\end{array}$
. 391	.38III	92,5	. 92453	38,1	. 58105	105,4	. 96592	17,9	$\begin{array}{lllll}22 & 24 & 09.54\end{array}$
. 392	. 38204	92,4	. 92415	38,2	. 5821 II	105, 1	. 96574	18,0	222735.80
. 393	. 38296	92,4	. 92376	38,3	. 58316	104,8	.96556	18,0	223102.07
- 394	. 38389	92,3	. 92338	38,4	. 58420	104,5	. 96538	18,1	223428.33
0.395	0.38481	92,3	0.92300	38,5	9.58524	104,2	9.96520	18,1	$\begin{array}{llll}22 & 3754.60\end{array}$
. 396	. 38573	92,3	.9226I	38,6	. 58628	103,9	. 96502	18,2	224120.86
. 397	. 38665	92,2	. 92223	38,7	. 58732	103,6	. 96484	18,2	2244 47.13
. 398	. 38758	92,2 $92, \mathrm{I}$. 92184	38,8 38,8	. 58836	103,3 103,0	.96465	18,3 18,3	$\begin{array}{llll}22 & 48 & 13.39 \\ 22 & 51 & 39.66\end{array}$
- 399	- 38850	92,I	.92145	38,8	-58939	103,0	-96447	18,3	225139.66
0.400	0.38942	92, I	0.92106	38,9	9.59042	102,7	9.96429	18,4	225505.92
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	100 cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.400	0.38942	92, I	0.92106	38,9	9.59042	102,7	9.96 .429	18,4	$22^{\circ} 55^{\prime} 05^{\prime \prime} .92$
. 401	. 39034	92, I	. 92067	39,0	. 59144	102,4	.96410	18,4	225832.19
. 402	- 39126	92,0	. 92028	39, I	. 59247	102,2	. 96392	18,5	23 OI 58.45
. 403	- 39218	92,0	.91989	39,2	. 59349	IOI,9	. 96374	18,5	
. 404	. 39310	91,9	. 91950	39,3	. 59450	101,6	. 96355	18,6	230850.98
0.405	0.39402	91,9	0.91910	39,4	9.59552	101,3	9.96336	18,6	$\begin{array}{lll}23 & 12 & 17.25\end{array}$
. 406	. 39494	91,9	.9187I	39,5	. 59653	IOI, 0	. 963 I 8	18,7	23 I5 43.51
. 407	. 39586	9I,8	.9183I	39,6	. 59754	100,7	. 96299	18,7	$\begin{array}{llllllllllllllllllll}23 & 19 & 09.78\end{array}$
. 408	- 39677	9I,8	.91792	39,7	. 59854	100,5	. 96280	I8,8	$23 \quad 2236.04$
. 409	. 39769	91,8	.91752	39,8	. 59955	100,2	. 96262	18,8	232602.31
0.410	0.3986I	91,7	0.91712	39,9	9.60055^{\prime}	99,9	9.96243	18,9	$\begin{array}{lll}23 & 29 & 28.57\end{array}$
. 411	. 39953	91,7	. 91672	40,0	. 60155	99,6	. 96224	18,9	$\begin{array}{lllll}23 & 32 & 54.84\end{array}$
. 412	. 40044	91,6	.91632	40,0	. 60254	99,4	. 96205	19,0	2336 21.10
. 413	. 40136	91,6	.91592	40,1	. 60353	99, I	.96186	19,0	233947.36
. 414	. 40227	91,6	.91552	40,2	. 60452	98,8	. 96167	19, I	234313.63
0.415	0.40319	91,5	0.91512	40,3	9.60551	98,6	9.96148	19, I	234639.89
. 416	. 40410	91,5	.91471	40,4	. 60649	98,3	. 96128	19,2	235006.16
.417	. 40502	9I,4	.9143I	40,5	. 60748	98,0	. 96109	19,2	235332.42
. 418	. 40593	9I,4	.91390	40,6	. 60845	97,8	. 96090	19,3	235658.69
.419	. 40685	91,3	. 91350	40,7	. 60943	97,5	.9607I	19,3	240024.95
0.420	0.40776	91,3	0.91309	40,8	9.61041	97,3	9.96051	19,4	240351.22
. 42 I	. 40867	91,3	.91268	40,9	.61138	97,0	. 96032	19,4	240717.48
. 422	. 40959	91,2	. 91227	41,0	. 61234	96,7	. 96012	19,5	24 IO 43.75
. 423	. 41050	9I,2	.91186	41,0	.6I33I	96,5	. 95993	19,6	241410.01
. 424	. 4 II 41	9I, 1	.91145	4I, I	.61427	96,2	. 95973	19,6	241736.28
0.425	0.41232	91, I	0.91104	41,2	9.61524	96,0	9.95954	19,7	242102.54
. 426	. 41323	9I, I	. 91063	4I,3	.61619	95,7	. 95934	19,7	242428.81
.427	. 41414	91,0	.9102I	4I,4	. 61715	95,5	.95914	19,8	242755.07
. 428	. 41505	91,0	. 90980	41,5	.61810	95,2	. 95894	19,8	24 31 21.34
.429	. 41596	90,9	. 90938	41,6	. 61905	94,9	. 95875	19,9	243447.60
0.430	0.41687	90,9	0.90897	41,7	9.62000	94,7	9.95855	19,9	243813.87
. 431	. 41778	90,9	. 90855	41,8	. 62095	94,4	. 95835	20,0	244140.13
. 432	. 41869	90,8	.908I3	41,9	. 62189	94,2	.95815	20,0	244506.40
. 433	. 41960	90,8	. 90771	42,0	. 62283	94,0	. 95795	20, I	244832.66
. 434	. 42050	90,7	. 90729	42, I	. 62377	93,7	. 95775	20, I	245158.93
0.435	0.42141	90,7	0:90687	42, I	9.62471	93,5	9.95755	20,2	2455 25.19
. 436	. 42232	90,6	. 90645	42,2	. 62564	93,2	. 95734	20,2	2458 51.46
. 437	. 42322	90,6	. 90603	42,3	. 62657	93,0	. 95714	20,3	250217.72
. 438	. 42413	90,6	. 90560	42,4	. 62750	92,8	. 95694	20,3	$\begin{array}{lllll}25 & 05 & 43.99\end{array}$
. 439	. 42503	90,5	. 90518	42,5	. 62842	92,5	. 95673	. 20,4	250910.25
0.440	0.42594	90,5	0.90475	42,6	9.62935	92,2	9.95653	20,4	251236.51
. 44 I	. 42684	90,4	. 90433	42,7	. 63027	92,0	. 95632	20,5	$\begin{array}{lllll}25 & 16 & 02.78\end{array}$
. 442	.42775	90,4	. 90390	42,8	.63119	91,8	.956I2	20,6	$\begin{array}{llll}25 & 19 & 29.04\end{array}$
. 443	. 42865	90,3	. 90347	42,9	. 63210	91,5	.95591	20,6	$25 \quad 22 \quad 55.31$
. 444	. 42956	90,3	. 90304	43,0	. 63302	91,3	.95571	20,7	252621.57
0.445	0.43046	90,3	0.90261	43,0	9.63393	91, I	9.95550	20,7	$25 \quad 2947.84$
.446	. 43136	90,2	. 90218	43, I	. 63484	90,8	. 95529	20,8	$25 \quad 3314.10$
. 447	. 43226	90,2	. 90175	43,2	. 63575	90,6	. 95509	20,8	253640.37
. 448	. 43316	90, I	.90132	43,3	. 63665	90,4	. 65488	20,9	$\begin{array}{llll}25 & 40 & 06.63\end{array}$
. 449	. 43406	90, 1	. 90088	43,4	. 63755	90, I	.95467	20,9	254332.90
0.450	0.43497	90,0	0.90045	43,5 ${ }^{\circ}$	9.63845	89,9	9.95446	21,0	254659.16
u	-i sinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{s i n} 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \cos u$	$\omega F_{0}{ }^{\prime}$	u
0.450	0.43497	90,0	0.90045	43,5	9.63845	89,9	9.95446	21,0	$25^{\circ} 46^{\prime} 59.16$
.45I	. 43587	90,0	.9000I	43,6	. 63935	89,7	. 95425	21,0	255025.43
. 452	. 43677	90,0	. 89958	43,7	. 64025	89,4	. 95404	21,1	2553 51. 69
. 453	. 43766	89,9	. 89914	43,8	. 64114	89,2	. 95383	21,1	$25 \quad 5717.96$
. 454	. 43856	89,9	. 89870	43,9	. 64203	89,0	.95361	21,2	260044.22
0.455	0.43946	89,8	0.89826	43,9	9.64292	88,8	9.95340	21,2	260410.49
. 456	. 44036	89,8	. 89782	44,0	.64381	88,5	.95319	21,3	260736.75
. 457	. 44126	89,7	. 89738	44, I	.64469	88,3	. 95298	21,4	26 II 03.02
. 458	. 44216	89,7	. 89694	44,2	. 64557	88, 1	. 95276	21,4	261429.28
. 459	.44305	89,6	. 89650	44,3	. 64645	87,9	. 95255	21,5	26 I7 55.55
0.460	0.44395	89,6	0.89605	44,4	9.64733	87,7	9.95233	21,5	26 21 2I.8I
. 461	. 44484	89,6	. 89561	44,5	.64821	87,4	.95212	21,6	262448.08
. 462	. 44574	89,5	. 89516	44,6	. 64908	87,2	. 95190	21,6	$26 \quad 2814.34$
. 463	. 44663	89,5	. 89472	44,7	. 64995	87,0	.95169	21,7	26 31 40.6I
. 464	. 44753	89,4	. 89427	44,8	. 65082	86,8	.95147	21,7	263506.87
0.465	0.44842	89,4	0.89382	44,8	9.65169	86,6	9.95125	21,8	2638 33.13
. 466	. 44932	89,3	. 89337	44,9	. 652515	86,4	. 95103	21,8	264159.40
.467	. 4502 I	89,3	. 89292	45,0	.6534I	86, I	.9508I	21,9	264525.66
. 468	.451 10	89,2	. 89247	45, I	. 65428	85,9	. 95059	22,0	264851.93
.469	.45199	89,2	. 89202	45,2	. 65513	85,7	. 95037	22,0	2652 18.19
0.470	0.45289	89,2	0.89157	45,3	9.65599	85,5	9.95015	22,I	265544.46
. 471	. 45378	89, I	.891 II	45,4	. 65684	85,3	. 94993	22, I	265910.72
. 472	. 45467	89, I	. 89066	45,5	. 65769	85, 1	. 9497 I	22,2	270236.99
. 473	. 45556	89,0	. 8902 I	45,6	. 65854	84,9	. 94949	22,2	270503.25
. 474	. 45645	89,0	. 88975	45,6	. 65939	84,7	. 94927	22,3	270929.52
0.475	0.45734	88,9	0.88929	45,7	9.66024	84,4	9.94904	22,3	$27 \quad 12 \quad 55.78$
. 476	. 45823	88,9	. 88883	45,8	. 66108	84,2	. 94882	22,4	271622.05
. 477	. 45912	88,8	. 88838	45,9	. 66192	84,0	. 94850	22,4	27 19 48.31
. 478	. 46000	88,8	. 88792	46,0	.66276	83,8	. 94837	22,5	2723 I4.58
. 479	. 46089	88,7	. 88746	46,1	. 66360	83,6	.94815	22,6	272640.84
0.480	0.46178	88,7	0.88699	46,2	9.66443	83,4	9.94792	22,6	273007.11
.48I	. 46267	88,7	. 88653	46,3	. 66527	83,2	. 94769	22,7	$2733 \quad 33.37$
. 482	. 46355	88,6	. 88607	46,4	. 66510	83,0	. 94747	22,7	273659.64
.483	. 46444	88,6	.8856I	46,4	.66693	82,8	. 94724	22,8	274025.90
. 484	. 46532	88,5	. 88514	46,5	. 66775	82,6	.94701	22,8	274352.17
0.485	0.46621	88,5	0.88467	46,6	9.66858	82,4	9.94678	22,9	$27 \quad 47 \quad 18.43$
. 486	. 46709	88,4	. 8842 I	46,7	. 66940	82,2	. 94655	22,9	275044.70
.487	. 46798	88,4	. 88374	46,8	. 67022	82,0	. 94633	23,0	275410.96
. 488	. 46886	88,3	. 88327	46,9	. 67104	81,8	. 94609	23, I	275737.23
.489	. 46974	88,3	. 88280	47,0	. 67186	8ı,6	. 94586	23, I	28 O1 03.49
0.490	0.47063	88,2	0.88233	47,I	9.67268	81,4	9.94563	23,2	280429.76
. 491	.47151	88,2	.88I86	47,2	. 67349	81,2	. 94540	23,2	280756.02
. 492	. 47239	88, I	.88I 39	47,2	. 67430	$8 \mathrm{I}, 0$. 94517	23,3	28 II 22.28
. 493	. 47327	88,1	. 88092	47,3	.675II	80,8	. 94493	23,3	28 I4 48.55
. 494	. 47415	88,0	. 88044	47,4	. 67592	80,6	. 94470	23,4	28 I8 I4.8I
0.495	0.47503	88,0	0.87997	47,5	9.67672	80,5	9.94447	23,4	28 21 4 I .08
. 496	. 47591	87,9	. 87949	47,6	. 67753	80,3	. 94423	23,5	$28 \quad 2507.34$
. 497	.47679	87,9	. 87902	47,7	. 67833	80,1	. 94400	23,6	
. 498	. 47767	87,9 878	. 87854	47,8	. 67913	79,9	. 94376	23,6	$\begin{array}{llll}28 & 31 & 59.87\end{array}$
. 499	. 47855	87,8	. 87806	47,9	. 67993	79,7	. 94352	23,7	$28 \quad 3526.14$
0.500	0.47943	87,8	0.87758	47,9	9.68072	79,5	9.94329	23,7	283852.40
u	-i sinh iu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.500	0.47943	87,8	0.87758	47,9	9.68072	79,5	9.94329	23,7	$28^{\circ} 38^{\prime} 52.40$
. 501	. 48030	87,7	. 87710	48,0	.68152	79,3	. 94305	23,8	$28 \quad 42$ 18.67
. 502	.48i 18	87,7	. 87662	48, I	.6823I	79,1	.9428I	23,8	284544.93
. 503	. 48206	87,6	. 87614	48,2	. 68310	78,9	. 94257	23,9	2849 II. 20
. 504	. 48293	87,6	. 87566	48,3	. 68389	78,7	. 94233	24,0	$285237 \cdot 46$
0.505	0.4838 I	87,5	0.87517	48,4	9.68467	78,6	9.94209	24,0	285603.73
. 506	. 48.468	87,5	. 87469	48,5	. 68546	78,4	. 94185	24, I	285929.99
. 507	. 48556	87,4	. 8742 I	48,6	. 68624	78,2	. 94161	24, I	290256.26
. 508	. 48643	87,4	. 87372	48,6	. 68702	78,0	.94I37	24,2	290622.52
. 509	. 48730	87,3	. 87323	48,7	. 68780	77,8	.94II3	24,2	290948.79
0.510	0.488 I 8	87,3	0.87274	48,8	9.68858	77,6	9.94089	24,3	29 I3 15.05
. 511	. 48905	87,2	. 87226	48,9	. 68935	77,5	. 94064	24,3	291641.32
. 512	. 48992	87,2	. 87177	49,0	. 69013	77,3	. 94040	24,4	292007.58
. 513	. 49079	87,	. 87128	49, I	. 69090	77, 1	. 94016	24,5	292333.85
. 514	. 49166	87, 1	. 87078	49,2	. 69167	76,9	. 9399 I	24,5	2927 00. II
0.515	0.49253	87,0	0.87029	49,3	9.69244	76,7	9.93967	24,6	$2930 \quad 26.38$
. 516	. 49340	87,0	. 86980	49,3	. 69320	76,6	. 93942	24,6	293352.64
. 517	. 49427	86,9	. 86931	49,4	. 69397	76,4	. 93917	24,7	293718.90
. 518	. 49514	86,9	.8688I	49,5	. 69473	76,2	. 93893	24,8	294045.17
. 519	. 49601	86,8	. 86832	49,6	. 69549	76,0	. 93858	24,8	2944 II. 43
0.520	0.49688	86,8	0.86782	49,7	9.69625	75,9	9.93843	24,9	294737.70
. 521	. 49775	86,7	. 86732	49,8	. 69701	75,7	. 93818	24,9	29 51 03.96
. 522	. 4986 I	86,7	. 86682	49,9	. 69777	75,5	. 93793	25,0	295430.23
. 523	. 49948	86,6	. 86632	49,9	. 69852	75,3	. 93768	25,0	295756.49
. 524	. 50035	86,6	. 86582	50,0	. 69927	75,2	. 93743	25, I	30 OI 22.76
0.525	0.50121	86,5	0.86532	50, I	9.70002	75,0	9.93718	25,2	300449.02
. 526	. 50208	86,5	. 86482	50,2	. 70077	74,8	. 93693	25,2	$30 \quad 0815.29$
. 527	. 50294	86,4	. 86432	50,3	. 70152	74,6	. 93667	25,3	30 II 41.55
. 528	. 5038 I	86,4	. 86382	50,4	. 70226	74,5	. 93642	25,3	301507.82
. 529	. 50467	86,3	. 86331	50,5	. 70301	74,3	.936I7	25,4	$30 \quad 18 \quad 34.08$
0.530	0.50553	86,3	0.8628I	50,6	9.70375	74,I	9.93:591	25,4	302200.35
. 531	. 50640	86,2	. 86230	50,6	. 70449	74,0	. 93566	25,5	$30 \quad 25 \quad 26.6 \mathrm{I}$
. 532	. 50726	86,2	. 86179	50,7	. 70523	73,8	. 93540	25,6	$30 \quad 2852.88$
. 533	. 50812	86, I	. 86129	50,8	. 70597	73,6	.93515	25,6	$3032 \begin{array}{llll}30 & 19\end{array}$
. 533	. 50898	86, I	. 86078	50,9	. 70670	73,4	. 93489	25,7	303545.41
0.535	0.50984	86,0	0.86027	51,0	9.70743	73,3	9.93463	25,7	$30 \quad 39$ II. 67
. 536	. 51070	86,0	. 85976	5I, I	. 70817	73, 1	. 93438	25,8	304237.94
. 537	. 51156	85,9	. 85925	51,2	. 70890	72,9	. 93412	25,9	$30 \quad 4604.20$
. 538	. 51242	85,9	. 85874	51,2	. 70963	72,8	. 93386	25,9	$30 \quad 4930.47$
. 539	. 51328	85,8	. 85822	51,3	. 71035	72,6	. 93360	26,0	305256.73
0.540	0.51414	85,8	0.85771	51,4	9.71108	72,5	9.93334	26,0	305623.00
. 541	. 51499	85,7	. 85719	51,5	. 71180	72,3	. 93308	26, 1	305949.26
. 542	. 51585	85,7	. 85668	51,6	. 71252	72,1	. 93282	26,2	3103 I 5.52
. 543	. 51671	85,6	. 85616	51,7	. 71324	72,0	. 93256	26,2	3 I of 41.79
. 544	. 51756	85,6	. 85565	51,8	. 71396	71,8	. 93229	26,3	311008.05
0.545	0.51842	85,5	0.85513	51,8	9.71468	71,6	9.93203	26,3	3 I I3 $34 \cdot 32$
. 546	. 51927	85,5	. 85461	51,9	. 71540	71,5	.93177	26,4	3117700.58
. 547	. 52013	85,4	. 85409	52,0	.71611	71,3	.93150	26,4	$\begin{array}{llll}31 & 20 & 26.85\end{array}$
. 548	. 52098	85,4	. 85357	52,1	. 71682	71,2	.93124	26,5	$\begin{array}{llll}31 & 23 & 53.11 \\ 31 & 27 & 19.38\end{array}$
. 549	. 52183	85,3	. 85305	52,2	.71753	71,0	. 93097	26,6	312719.38
0.550	0.52269	85,3	0.85252	52,3	9.71824	70,8	9.93071	26,6	313045.64
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega F_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega F_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.550	0.52269	85,3	0.85252	52,3	9.71824	70,8	9.93071	26,6	$31^{\circ} 30^{\prime} 45.64$
. 551	. 52354	85,2	. 85200	52,4	. 71895	70,7	. 93044	26,7	313411.91
. 552	. 52439	85, I	. 85148	52,4	. 71966	70,5	. 93017	26,7	313738.17
. 553	. 52524	85,1	. 85095	52,5	. 72036	70,4	. 92991	26,8	3 I 4 I 04.44
. 554	. 52609	85,0	. 85043	52,6	. 72106	70,2	. 92964	26,9	3I 4430.70
0.555	0.52694	85,0	0.84990	52,7	9.72176	70,0	9.92937	26,9	314756.97
. 556	. 52779	84,9	. 84937	52,8	. 72246	69,9	. 92910	27,0	315123.23
. 557	. 52864	84,9	. 84884	52,9	. 72316	69,7	. 92883	27,0	315449.50
. 558	. 52949	84,8	.84832	52,9	. 72386	69,6	. 92856	27, I	315815.76
. 559	. 53034	84,8	. 84779	53,0	. 72455	69,4	. 92829	27,2	32 O1 42.03
0.560	O.53II9	84,7	0.84726	53, I	9.72525	69,3	9.92801	27,2	320508.29
. 56 I	. 53203	84,7	. 84672	53,2	. 72594	69,1	. 92774	27,3	
. 562	. 53288	84,6	.846I9	53,3	. 72663	69,0	. 92747	27,3	321200.82
. 563	. 53373	84,6	. 84566	53,4	. 72732	68,8	. 92719	27,4	$\begin{array}{lllll}32 & 15 & 27.09\end{array}$
. 564	. 53457	84,5	. 84512	53,5	. 72801	68,7	.92692	27,5	32 I8 53.35
0.565	0.53542	84,5	0.84459	53,5	9.72869	68,5	9.92665	27,5	$\begin{array}{llll}32 & 22 & 19.62\end{array}$
. 566	. 53626	84,4	. 84405	53,6	. 72938	68,4	. 92637	27,6	322545.88
. 567	. 53710	84,4	. 84352	53,7	. 73006	68,2	. 92609	27,7	322912.15
. 568	. 53795	84,3	. 84298	53,8	. 73074	68, 1	. 92582	27,7	$3232 \begin{array}{llll}38.41\end{array}$
.569	. 53879	84,2	. 84244	53,9	.73142	67,9	. 92554	27,8	$\begin{array}{llll}32 & 36 & 04.67\end{array}$
0.570	0.53963	84,2	0.84190	54,0	9.73210	67,8	9.92526	27,8	323930.94
. 571	. 54047	84, I	. 84136	54,0	. 73277	67,6	. 92498	27,9	324257.20
. 572	.5413I	84, I	. 84082	54,1	. 73345	67,5	. 92470	28,0	$\begin{array}{lllll}32 & 46 & 23.47\end{array}$
. 573	. 54216	84,0	. 84028	54,2	. 73412	67,3	. 92442	28,0	324949.73
. 574	. 54300	84,0	. 83974	54,3	. 73480	67,2	.924I4	28, 1	325316.00
0.575	0.54383	83,9	0.83919	54,4	9.73547	67,0	9.92386	28, I	$\begin{array}{llll}32 & 56 & 42.26\end{array}$
. 576	. 54467	83,9	. 83865	54,5	. 73614	66,9	. 92358	28,2	330008.53
. 577	. 5455 I	83,8	.83810	54,6	. 73680	66,7	. 92330	28,3	
. 578	. 54635	83,8	. 83756	54,6	. 73747	66,6	. 92301	28,3	330701.06
. 579	. 54719	83,7	. 83701	54,7	.73814	66,4	. 92273	28,4	33 Io 27.32
0.580	0.54802	83,6	0.83646	54,8	9.73880	66,3	9.92245	28,5	33 I3 53.59
. 58 I	. 54886	83,6	. 83591	54,9	. 73946	66,2	. 92216	28,5	$\begin{array}{lllll}33 & 17 & 19.85\end{array}$
. 582	. 54970	83,5	. 83536	55,0	. 74012	66,0	. 922188	28,6	332046.12
. 583	. 55053	83,5	. 8348 I	55, I	. 74078	65,9	.92I 59	28,6	$\begin{array}{llll}33 & 24 & 12.38\end{array}$
. 584	. 55137	83,4	. 83426	55, I	.74144	65,7	.92130	28,7	332738.65
0.585	0.55220	83,4	0.83371	55,2	9.74210	65,6	9.92102	28,8	333104.91
. 586	. 55303	83,3	. 83316	55,3	. 74275	65,4	.92073	28,8	3334 3I.18
. 587	. 55387	83,3	. 8326 I	55,4	. 74340	65,3	. 92044	28,9	333757.44
. 588	. 55470	83,2	. 83205	55,5	. 74406	65,1	. 92015	29,0	334123.71
. 589	. 55553	83,1	. 83150	55,6	. 74471	65,0	.91986	29,0	334449.97
0.590	0.55636	83,1	0.83094	55,6	9.74536	64,9	9.91957	29, I	334816.24
. 591	. 55719	83,0	. 83038	55,7	. 74600	64,7	. 91928	29, I	33 51 42.50
. 592	. 55802	83,0	. 82983	55,8	.74665	64,6	. 91899	29,2	335508.77
. 593	. 55885	82,9	. 82927	55,9	. 74730	64,4	.91869	29,3	335835.03
. 594	- 55968	82,9	. 82871	56,0	. 74794	64,3	.91840	29,3	3402 OI. 29
0.595	0.56051	82,8	0.828 I5	56, I	9.74858	64,2	9.91811	29,4	340527.56
. 596	. 56134	82,8	. 82759	56, I	. 74922	64,0	.91781	29,5	$\begin{array}{llll}34 & 08 & 53.82\end{array}$
. 597	. 56216	82,7	. 82703	56,2	. 74986	63,9	.91752	29,5	341220.09
. 598	. 56299	82,6	. 82646	56,3	. 75050	63,8	-91722	29,6	$\begin{array}{llll}34 & \text { I5 } & 46.35 \\ 34 & \text { I9 } & \text { I2.62 }\end{array}$
. 599	. 56382	82,6	. 82590	56,4	.75II4	63,6	.91693	29,6	3419 I 2.62
0.600	0.56464	82,5	0.82534	56,5	9.75177	63,5	9.91663	29,7	342238.88
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega F_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.600	0.56464	82,5	0.82534	56,5	9.75177	63,5	9.91663	29,7	$34^{\circ} 222^{\prime} 38^{\prime \prime} .88$
. 601	. 56547	82,5	. 82477	56,5	. 7524 I	63,3	. 91633	29,8	342605.15
. 602	. 56629	82,4	. 82420	56,6	. 75304	63,2	. 91604	29,8	3429 31.4I
. 603	. 56712	82,4	. 82364	56,7	. 75367	63,1	.91574	29,9	$3432 \quad 57.68$
. 604	. 56794	82,3	. 82307	56,8	. 75430	62,9	.91544	30,0	343623.94
0.605	0.56876	82,3	0.82250	56,9	9.75493	62,8	9.91514	30,0	343950.2 I
. 606	. 56958	82,2	. 82193	57,0	. 75556	62,7	.91484	30,1	344316.47
. 607	. 57041	82,I	. 82136	57,0	. 75618	62,5	. 91454	30,2	344642.74
. 608	. 57123	82,I	. 82079	57, I	. 7568 I	62,4	. 91423	30,2	345009.00
. 609	. 57205	82,0	. 82022	57,2	. 75743	62,3	.91393	30,3.	345335.27
0.610	0.57287	82,0	0.81965	57,3	9.75805	62, 1	9.91363	30,4	3457 OI. 53
.6II	. 57369	81,9	.81907	57,4	. 75867	62,0	. 91332	30,4	350027.80
. 612	. 5745 I	81,9	. 81850	57,5	. 75929	6I,9	. 91302	30,5	350354.05
. 613	. 57532	8r,8	.81793	57,5	. 75991	6I,7	.9127I	30,5	350720.33
.614	. 57614	8r,7	.81735	57,6	.76053	61,6	.9124I	30,6	35 IO 46.59
0.615	0.57696	81,7	0.81677	57,7	9.76II4	6I,5	9.91210	30,7	$\begin{array}{llll}35 & 14 & 12.86\end{array}$
. 616	. 57778	81,6	. 81620	57,8	. 76176	6I,4	.91179	30,7	35 I7 39.12
.6I7	. 57859	81,6	.81562	57,9	. 76237	6I,2	.91149	30,8	35 21 05.39
. 618	. 57941	8I,5	.81504	57,9	. 76298	6I,	-91II8	30,9	352431.65
. 619	. 58022	8I, 4	. 81446	58,0	. 763159	6I,0	. 91087	30,9	$35 \quad 2757.92$
0.620	0.58104	8r,4	0.81388	58, I	9.76420	60,8	9.91056	31,0	353124.18
. 62 I	. 58185	8r,3	.81330	58,2	. 7648 I	60,7	.91025	3I, I	353450.44
. 622	. 58266	81,3	.8127I	58,3	. 76542	60,6	. 90994	31,I	3538 16.71
. 623	. 58347	81,2	.812I3	58,3	. 76602	60,4	. 90963	31,2	354142.97
. 624	. 58429	8I,2	. 81155	58,4	. 76663	60,3	.9093I	31,3	354509.24
0.625	0.58510	$8 \mathrm{r}, \mathrm{I}$	0.81096	58,5	9.76723	60,2	0.90900	3I,3	$\begin{array}{llll}35 & 48 & 35.50\end{array}$
. 626	. 58591	81,0	.81038	58,6	. 76783	60, I	. 90869	3I,4	3552 OI. 77
. 627	. 58672	81,0	. 80979	58,7	. 76843	59,9	. 90837	31,5	355528.03
. 628	. 58753	80,9	. 80920	58,8	. 76903	59,8	. 90806	31,5	$35 \quad 58 \quad 54.30$
. 629	. 58834	80,9	. 80862	58,8	. 76963	59,7	. 90774	31,6	360220.56
0.630	0.58914	80,8	0.80803	58,9	9.77022	59,6	9.90743	31,7	360546.83
. 631	. 58995	80,7	. 80744	59,0	. 77082	59,4	. 90711	$3 \mathrm{I}, 7$	$36 \quad 0913.09$
. 632	. 59076	80,7	. 80685	59, I	. 77141	59,3	. 90679	31,8	361239.36
. 633	. 59157	80,6	. 80626	59,2	. 77200	59,2	. 90647	31,9	$36 \quad 1605.62$
. 634	. 59237	80,6	. 80566	59,2	. 77259	59, I	.906I5	31,9	36 19 31.89
0.635	0.59318	80,5	0.80507	59,3	9.77318	58,9	9.90583	32,0	362258.15
. 636	. 59398	80,4	. $80+48$	59,4	. 77377	58,8	.9055I	32,I	$3626 \quad 24.42$
. 637	. 59479	80,4	. 80388	59,5	. 77436	58,7	. 90519	32, I	362950.68
. 638	. 59559	80,3	. 80329	59,6	. 77495	58,6	. 90487	32,2	36 33. 16.95
. 639	. 59639	80,3	. 80269	59,6	. 77553	58,5	. 90455	32,3	363643.21
0.640	0.59720	80,2	0.80210	59,7	9.77612	58,3	9.90423	32,3	364009.48
. 641	. 59800	80, 1	. 80150	59,8	. 77670	58,2	. 90390	32,4	$3643 \quad 35.74$
. 642	. 59880	80, 1	. 80090	59,9	. 77728	58, I	. 90358	32,5	364702.01
. 643	. 59960	80,0	. 80030	60,0	. 77786	58,0	. 90325	32,5	365028.27
. 644	. 60040	80,0	. 79970	60,0	. 77844	57,8	. 90293	32,6	$365354 \cdot 54$
0.645	0.60120	79,9	0.79910	60, 1	9.77902	57,7	9.90260	32,7	365720.80
. 646	. 60200	79,8	. 79850	60,2	. 77959	'57,6	. 90227	32,7	370047.06
. 647	. 60280	79,8	. 79790	60,3	. 78017	57,5	.90195	32,8	370413.33
. 648	. 60359	79,7	. 79729	60,4	. 78074	57,4	. 90162	32,9	$3707 \begin{array}{llll}39 & 39 & 59\end{array}$
. 649	. 60439	79,7	. 79669	60,4.	. 78132	57,2	. 90129	32,9	37 II 05.86
0.650	0.60519	79,6	0.79608	60,5	9.78189	57, I	9.90096	33,0	37 I4 32.12
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh$ iu	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.650	0.60519	79,6	0. 79608	60,5	9.78189	57,I	9.90096	33,0	$37^{\circ} 144^{\prime} 32^{\prime \prime} .12$
. 651	. 60598	79,5	. 79548	60,6	. 78246	57,0	. 90063	33,1	371758.39
. 652	. 60678	79,5	. 79487	60,7	. 78303	56,9	. 90030	33,2	372124.65
. 653	. 60757	79,4	. 79426	60,8	. 78360	56,8	. 89997	33,2	372450.92
. 654	. 60837	79,4	. 79366	60,8	. 78416	56,7	. 89963	33,3	$37 \quad 28$ 17.18
0.655	0.60916	79,3	0.79305	60,9	9.78473	56,5	9.89930	33,4	373143.45
. 656	. 60995	79,2	. 79244	61,0	. 78530	56,4	. 89897	33,4	373509.71
. 657	. 61074	79,2	. 79183	61,1	. 78586	56,3	. 89853	33,5	373835.98
. 658	. 61154	79,1	. 79122	61,2	. 78642	56,2	. 89830	33,6	$3742 \quad 02.24$
. 659	.61233	79,1	. 79060	61,2	. 78698	56, I	. 89796	33,6	3745 28,51
0.660	0.61312	79,0	0.78999	61,3	9.78754	56,0	9.89762	33,7	374854.77
. 661	.61391	78,9	. 78938	61,4	. 78810	55,8	. 89729	33,8	375221.04
. 662	. 61470	78,9	. 78876	61,5	. 78866	55,7	. 89695	33,8	$375547 \cdot 30$
. 663	. 61548	78,8	. 78815	61,5	. 78922	55,6	. 89661	33,9	$37 \quad 5913.57$
. 664	. 61627	78,8	. 78753	61,6	. 78977	55,5	. 89627	34,0	380239.83
0.665	0.61706	78,7	0.78692	61,7	9.79033	55,4	9.89593	34, 1	380606.10
. 666	. 61785	78,6	. 78630	61,8	. 79088	55,3	. 89559	34,	380932.36
. 667	. 61853	78,6	. 78568	61,9	. 79143	55,2	. 89525	34,2	381258.63
. 668	.61942	78,5	. 78506	61,9	- 79198	55,0	. 89490	34,	381624.89
. 669	. 62020	78,4	. 78444	62,0	. 79253	54,9	. 89456	34,3	3819 51.16
0.670	0.62099	78,4	0.78382	62,1	9.79308	54,8	9.89422	34,4	$38 \quad 2317.42$
. 671	. 62177	78,3	. 78320	62,2	. 79363	54,7	. 89387	34,5	$38 \quad 2643.68$
. 672	. 62255	78,3	. 78258	62,3	. 79418	54,6	. 89353	34,	383009.95
. 673	. 62333	78,2	. 78196	62,3	. 79472	54,5	. 89318	34,6	3833 36.21
. 674	. 62412	78, 1	. 78133	62,4	. 79527	54,4	. 89284	34,7	383702.48
0.675	0.6249	78,1	0.78071	62,5	9.79581	54,3	9.89249	34,8	384028.74
. 676	. 62568	78,0	. 78008	62,6	. 79635	54, I	. 89214	34,8	3843 55.01
. 677	. 62646	77,9	. 77946	62,6	. 79689	54,0	. 89179	34,9	3847 21.27
. 678	. 62724	77,9	. 77883	62,7	. 79743	53,9	. 89144	35,0	385047.54
. 679	. 62802	77,8	. 77820	62,8	. 79797	53,8	. 89109	35,0	3854 I3.80
0.680	0.62879	77,8	0.77757	62,9	9.79851	53,7	9.89074	35,1	385740.07
.681	. 62957	77,7	. 77694	63,0	. 79904	53,6	. 89039	35,2	39 or 06.33
. 682	. 63035	77,6	.77631	63,0	. 79958	53,5	. 89004	35,3	390432.60
. 683	. 63112	77,6	. 77568	63,1	. 80011	53,4	. 88968	35,3	390758.86
. 684	. 63190	77,5	. 77505	63,2	. 80065	53,3	. 88933	35,4	39 II 25.13
0.685	0.63267	77,4	0.77442	63,3	9.80118	53,2	9.88898	35,5	39 I4 51.39
. 686	. 63345	77,4	. 77379	63,3	. 80171	53,1	. 88852	35,6	391817.66
. 687	. 63422	77,3	. 77315	63,4	. 80224	52,9	. 88826	35,6	392143.92
. 688	. 63499	77,3	. 77252	63,5	. 80277	52,8	.88791	35,7	3925 10.19
. 689	. 63577	77,2	. 77188	63,6	. 80330	52,7	. 88755	35,8	392836.45
0.690	0.63654	77,I	0.77125	63,7	9.80382	52,6	9.83719	35,8	393202.72
. 691	. 63731	77,1	. 77061	63,7	. 80435	52,5	. 88683	35,9	393528.98
. 692	. 63808	77,0	. 76997	63,8	. 80487	52,4	. 88547	36,0	393855.25
. 693	. 63885	76,9	. 76933	63,9	. 80540	52,3	.885ir	36,1	3942 21.51
. 694	. 63962	76,9	. 76869	64,0	. 80592	52,2	. 88575	36, 1	394547.78
0.695	0.64039	76,8	0.76805	64,0	9.80644	52, I	9.88539	36,2	394914.04
. 696	. 64115	76,7	. 76741	64, 1	. 80695	52,0	. 88503	36,3	395240.31
. 697	. 64192	76,7	. 76677	64,2	. 80748	51,9	. 88467	36,4	395606.57
. 698	. 64269	76,6	. 76613	64,3	. 80800	51,8	. 88430	36,4	395932.83
. 699	. 64345	76,5	. 76549	64,3	. 80852	51,7	. 88394	36,5	400259.10
0.700	0.64422	76,5	0.76484	64,4	9.80903	51,6	9.88357	36,6	400625.36
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	4
0.700	0.64422	76,5	0.76484	64,4	9.80903	51,6	9.88357	36,6	$40^{\circ} 06^{\prime} 25^{\prime \prime} 36$
. 701	. 64498	76,4	. 76420	64,5	. 80955	51,5	.88321	36,7	400951.63
. 702	. 64575	76,4	. 76355	64,6	.81006	5II,4	. 88284	36,7	401317.89
. 703	. 64651	76,3	. 76291	64,7	.81057	51,2	. 88247	36,8	401644.16
. 704	. 64727	76,2	. 76226	64,7	.8i 109	51, 1	. 88210	36,9	402010.42
0.705	0.64803	76,2	0.76161	64,8	9.81160	51,0	9.88 I 73	37,0	$\begin{array}{llll}40 & 23 & 36.69\end{array}$
. 706	. 64880	76,1	. 76096	64,9	.8I2II	50,9	.88ı36	37,0	402702.95
. 707	. 64956	76,0	. 76031	65,0	.81262	50,8	. 88099	37, I	$40 \quad 30 \quad 29.22$
. 708	. 65032	76,0	. 75966	65,0	.81312	50,7	. 88352	37,2	$40 \quad 33 \quad 55.48$
. 709	. 65108	75,9	. 75901	65, 1	.81363	50,6	. 88025	37,3	403721.75
0.710	0.65183	75,8	0.75836	65,2	9.81414	50,5	9.87988	37,3	404048.01
.711	. 65259	75,8	. 75771	65,3	.81464	50,4	. 87950	37,4	$40 \quad 4414.28$
. 712	. 65335	75,7	. 75706	65,3	.81515	50,3	. 87913	37,5	404740.54
. 713	. 654 II	75,6	. 75640	65,4	.8I565	50,2	. 87875	37,6	40 51 06.8r
.714	.65486	75,6	. 75575	65,5	.8I6I5	50, I	. 87838	37,6	40.5433 .07
0.715	0.65562	75,5	0.75509	65,6	9.81665	50,0	9.87800	37,7	$40 \quad 5759.34$
. 716	. 65637	75,4	. 75444	65,6	.81715	49,9	. 87762	37,8	41 OI 25.60
. 717	. 65713	75,4	. 75378	65,7	.81765	49,8	. 87724	37,9	$4 \mathrm{l} 045 \mathrm{5I} .87$
. 718	. 65788	75,3	. 75312	65,8	.81815	49,7	. 87687	37,9	410818.13
. 719	. 65863	75,2	. 75246	65,9	.8I864	49,6	. 87649	38,0	4I II 44.40
0.720	0.65938	75,2	0.7518 r	65,9	9.81914	49,5	9.8761 I	38,1	4 I I5 10.66
. 721	. 66014	75, 1	.75115	66,0	. 81963	49,4	. 87572	38,2	4 I I8 36.93
. 722	. 66089	75,0	. 75049	66, r	. 82013	49,3	. 87534	38,2	412203.19
. 723	. 66164	75,0	. 74982	66,2	. 82052	49,2	. 87496	38,3	$4125 \quad 29.45$
.724	. 66239	74,9	. 74916	66,2	.82III	49, I	. 87458	38,4	412855.72
0.725	0.66314	74,8	0.74850	66,3	9.82160	49,0	9.87419	38,5	413221.98
. 726	. 66388	74,8	. 74784	66,4	. 82209	48,9	.87381	38,6	4 I 3548.25
. 727	. 66463	74,7	. 74717	66,5	. 82258	48,8	. 87342	38,6	4 I 3914.51
. 728	. 66538	74,7	. 74651	66,5	. 82307	48,7	. 87303	38,7	41 4240.78
.729	. 66612	74,6	. 74584	66,6	. 82356	48,6	. 87265	38,8	41 4607.04
0.730	0.66687	74,5	0.74517	66,7	9.82404	48,5	9.87226	38,9	$414933 \cdot 31$
. 731	.6676I	74,5	. 7445 I	66,8	. 82453	48,4	. 87187	38,9	415259.57
. 732	. 66836	74,4	. 74384	66,8	. 82501	48,3	. 87148	39,0	415625.84
. 733	. 66910	74,3	. 74317	66,9	. 82549	48,2	. 87109	39, I	4 I 5952.10
. 734	. 66984	74,3	. .74250	67,0	. 82597	48, I	. 87070	39,2	420318.37
0.735°	0.67059	74,2	0.74183	67, r	9.82646	48,0	9.87030	39,3	$42 \quad 0644.63$
. 736	. 67133	74,1	. 74116	67, 1	. 82694	47,9	. 86991	39,3	42 10 10.90
. 737	. 67207	74,0	. 74049	67,2	. 82741	47,9	. 86952	39,4	42 I3 37.16
. 738	. 67281	74,0	. 73982	67,3	. 82789	47,8	. 86912	39,5	$\begin{array}{llllll}42 & 17 & 03.43\end{array}$
. 739	. 67355	73,9	. 73914	67,4	. 82837	47,7	.85873	39,6	$42 \quad 20 \quad 29.69$
0.740	0.67429	73,8	0.73847	67,4	9.82885	47,6	9.86833	39,7	$42 \quad 23 \quad 55.96$
. 741	. 67503	73,8	. 73779	67,5	. 82932	47,5	. 86794	39,7	422722.22
. 742	. 67576	73,7	. 73712	67,6	. 82979	47,4	. 85754	39,8	423048.49
.743	. 67650	73,6	. 73644	67,7	. 83027	47,3	. 86714	39,9	423414.75
. 744	. 67724	73,6	. 73577	67,7	. 83074	47,2	. 86674	40,0	423741.02
0.745	0.67797	73,5	0.73509	67,8	9.831211	47, I	9.86634	40,0	424107.28
. 746	. 6787 I	73,4	. 7344 I	67,9	. 83168	47,0	. 86594	40, I	$424433 \cdot 55$
. 747	. 67944	73,4	. 73373	67,9	. 83215	46,9	. 86554	40,2	4247 59.81
-748	. 68017	73,3	. 73305	68,0	. 83262	46,8	. 86513	40,3	425126.08
. 749	.68091	73,2	. 73237	68,1	.83309	46,7	. 86473	40,4	425452.34
0.750	0.68164	73,2	0.73169	68,2	9.83355	46,6	9.86433	40,5	$42 \quad 58 \quad 18.60$
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$100 \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.750	0.68164	73,2	0.73169	68,2	9.83355	46,6	9.86433	40,5	$42 \quad 58 \quad 18.60$
.751	. 68237	73, 1	. 73101	68,2	. 83402	46,5	. 86392	40,5	43 O1 44.87
. 752	.68310	73,0	. 73032	68,3	. 83448	46,4	. 86352	40,6	4305 II. 13
. 753	. 68383	73,0	. 72964	68,4	. 83495	46,3	. 86311	40,7	430837.40
. 754	. 68456	72,9	. 72896	68,5	. 8354 I	46,2	. 86270	40,8	431203.66
0.755	0.68529	72,8	0.72827	68,5	9.83587	46,2	9.86229	40,9	431529.93
. 756	. 68602	72,8	. 72759	68,6	. 83633	46, I	.86I88	40,9	4318 56.19
. 757	. 68674	72,7	. 72690	68,7	.83679	46,0	. 86147	41,0	432222.46
. 758	. 68747	72,6	. 72621	68,7	. 83725	45,9	. 86106	4I, I	432548.72
. 759	. 68820	72,6	. 73552	68,8	. 83771	45,8	. 86065	41,2	$43 \quad 2914.99$
0.760	0.68892	72,5	0.72484	68,9	9.83817	45,7	9.86024	41,3	433241.25
. 761	. 68965	72,4	. 72415	69,0	. 83863	45,6	. 85983	4I,4	$43 \quad 3607.52$
. 762	. 69037	72,3	. 72346	69,0	. 83908	45,5	. 8594 I	41,4	$43 \quad 3933.78$
. 763	. 69109	72,3	. 72277	69,1	. 83954	45,4	. 85900	41,5	434300.05
. 764	. 69182	72,2	. 72207	69,2	. 83999	45,3	. 85858	41,6	434626.3 l
0.765	0.69254	72, I	0.72138	69,3	9.84044	45,2	9.85817	41,7	434952.58
. 766	. 69326	72, 1	. 72069	69,3	. 84089	45, I	. 85775	41,8	$43 \quad 5318.84$
.767	. 69398	72,0	. 72000	69,4	. 84135	45, I	. 85733	41,9	435645.11
. 768	. 69470	71,9	. 71930	69,5	. 84180	45,0	.85691	$4 \mathrm{I}, 9$	440011.37
. 769	. 69542	71,9	. 7186 I	69,5	. 84225	44,9	. 85649	42,0	$44 \quad 37.64$
0.770	0.69614	71,8	0.71791	69,6	9.84269	44,8	9.85607	42, I	440703.90
. 771	. 69685	71,7	. 71721	69,7	. 84314	44,7	. 85565	42,2	44 10 30.17
. 772	. 69757	71,7	. 71652	69,8	. 84359	44,6	. 85523	42,3	44 I3 56.43
. 773	. 69829	71,6	. 71582	69,8	. 84403	44,5	. 85480	42,4	441722.70
. 774	. 69900	71,5	. 71512	69,9	. 84448	44,4	. 85438	42,5	442048.96
0.775	0.69972	71,4	0.71442	70,0	9.84492	44,3	9.85395	42,5	442415.22
. 776	. 70043	71,4	. 71372	70,0	. 845336	44,3	. 85353	42,6	442741.49
. 777	. 70114	71,3	. 71302	70,1	.8458I	44,2	.85310	42,7	44 31 07.75
. 778	. 70186	71,2	. 71232	70,2	. 84625	44, I	. 85267	42,8	443434.02
. 779	. 70257	71,2	. 71162	70,3	. 84669	44,0	. 85225	42,9	443800.28
0.780	0.70328	71,1	0.71091	70,3	9.84713	43,9	9.85182	43,0	444126.55
.781	. 70399	71,0	. 71021	70,4	. 84757	43,8	. 85139	43,0	4444 52.81
. 782	. 70470	71,0	. 70951	70,5	. 84800	43,7	. 85096	43, I	444819.08
. 783	. 70541	70,9	. 70880	70,5	. 84844	43,6	. 85052	43,2	445145.34
. 784	. 70612	70,8	. 70809	70,6	. 84888	43,6	. 85009	43,3	4455 II.6I
0.785	0.70683	70,7	0.70739	70,7	9.84931	43,5	9.84966	43,4	$44 \quad 5837.87$
. 786	. 70753	70,7	. 70668	70,8	. 84975	43,4	. 84922	43,5	450204.14
.787	. 70824	70,6	. 70597	70,8	. 85018	43,3	. 84879	43,6	450530.40
. 788	. 70894	70,5	. 70526	70,9	.8506I	43,2	. 84835	43,7	450856.67
. 789	. 70965	70,5	. 70456	71,0	. 85104	43, I	. 84792	43,7	$45 \quad 1222.93$
0.790	0.71035	70,4	0.70385	71,0	9.85147	43,0	9.84748	43,8	451549.20
. 791	. 71106	70,3	. 70313	71, 1	. 85190	42,9	. 84704	43,9	$45 \quad 1915.46$
. 792	. 71176	70,2	. 70242	71,2	. 85233	42,9	. 84660	44,0	452241.73
. 793	. 71246	70,2	. 70171	71,2	. 85276	42,8	. 84616	44, I	$45 \quad 26 \quad 07.99$
. 794	. 71316	70,1	. 70100	71,3	.85319	42,7	. 84572	44,2	$45 \quad 2934.26$
0.795	0.71386	70,0	0.70028	71,4	9.85362	42,6	9.84527	44,3	453300.52
. 796	. 71456	70,0	. 69957	71,5	. 85404	42,5	. 84483	44,4	$45 \quad 3626.79$
. 797	. 71526	69,9	. 69886	71,5	. 85447	42,4	. 84439	44,4	453953.05
. 798	. 71596	69,8	. 69814	71,6	. 85489	42,3	. 84394	44,5	$\begin{array}{lllllllllll}45 & 43 & 19.32\end{array}$
. 799	. 71656	69,7	. 69742	71,7	.8553I	42,3	. 84350	44,6	$454645 \cdot 58$
0.800	0.71736	69,7	0.69671	71,7	9.85573	42,2	9.84305	44,7	$45 \quad 50 \quad 11.84$
u	-isinhiu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$.	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

u	$\boldsymbol{s i n} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	u
0.800	0.71736	69,7	0.69671	71,7	9.85573	42,2	9.84305	44,7	$45^{\circ} 50^{\prime} 11.1 .84$
. 801	. 71805	69,6	. 69599	71,8	. 85616	42,1	. 84260	44,8	4553 38.11
. 802	. 71875	69,5	. 69527	71,9	. 85658	42,0	. 84215	44,9	$45 \quad 57 \quad 04.37$
. 803	. 71944	69,5	. 69455	71,9	. 85700	41,9	. 84170	45,0	460030.64
. 804	. 72014	69,4	. 69383	72,0	. 85742	41,8	. 84125	45, 1	460356.90
0.805	0.72083	69,3	0.69311	72, 1	9.85783	41,8	9.84080	45,2	460723.17
. 806	. 72152	69,2	. 69239	72,2	. 85825	41,7	. 84035	45,3	46 10 49.43
. 807	. 72222	69,2	. 69167	72,2	. 85867	41,6	. 83990	45,3	$46 \quad 1415.70$
. 808	. 72291	69, 1	. 69095	72,3	. 85908	41,5	. 83944	45,4	46 I7 41.96
. 809	. 72360	69,0	. 69022	72,4	. 85950	4'I,4	. 83899	45,5	462108.23
0.810	0.72429	68,9	0.68950	72,4	9.85991	41,3	9.83853	45,6	$46 \quad 2434.49$
.8II	. 72498	68,9	. 68877	72,5	. 86032	4I,3	. 83808	45,7	$4628 \quad 00.76$
. 8 I 2	. 72566	68,8	. 68805	72,6	. 86074	4I,2	. 83762	45,8	463127.02
. 813	. 72635	68,7	. 68732	72,6	.86II5	41, I	. 83716	45,9	463453.29
.814	.72704	68,7	. 68660	72,7	.85ı56	41,0	. 83670	46,0	4638 19.55
0.815	0.72773	68,6	0.68587	72,8	9.86197	40,9	9.83624	46, 1	464145.82
.816	. 72841	68,5	. 68514	72,8	. 86238	40,8	. 83578	46,2	$46 \quad 45 \quad 12.08$
. 817	. 72910	68,4	. 68441	72,9	. 86278	40,8	. 83532	46,3	464838.35
. 818	. 72978	68,4	. 68368	73,0	. 85319	40,7	. 83485	46,4	465204.61
. 819	. 73046	68,3	. 68295	73,0	. 86360	40,6	. 83439	46,5	465530.88
0.820	$0.73 \mathrm{I} 5^{5}$	68,2	0.68222	73, 1	9.86400	40,5	9.83393	46,5	465857.14
. 821	. 73183	68, 1	.68149	73,2	. 86441	40,4	. 83346	46,6	$47 \quad 0223.41$
. 822	. 7325 I	68, I	. 68076	73,3	.8648I	40,4	. 83299	46,7	470549.67
. 823	. 73319	68,0	. 68002	73,3	. 86522	40,3	. 83252	46,8	$47 \quad 09 \quad 15.94$
. 824	. 73387	67,9	. 67929	73,4	. 86562	40,2	. 83206	46,9	47 I2 42.20
0.825	0.73455	67,9	0.67856	73,5	9.86602	40, I	9.83159	47,0	$47 \quad 16 \quad 08.47$
. 826	. 73523	67,8	. 67782	73,5	. 86642	40,0	.83112	47, 1	47 I9 34.73
. 827	. 73590	67,7	. 67709	73,6	. 86682	40,0	. 83064	47,2	$47 \quad 2300.99$
. 828	. 73658	67,6	. 67635	73,7	. 86722	39,9	. 83017	47,3	$47 \quad 26 \quad 27.26$
. 829	. 73726	67,6	. 67561	73,7	. 86762	39,8	. 82970	47,4	472953.52
0.830	0.73793	67,5	0.67488	73,8	9.86802	39,7	9.82922	47,5	473319.79
. 83 I	. 7386 r	67,4	. 67414	73,9	. 8684 I	39,6	. 82875	47,6	473646.05
. 832	. 73928	67,3	. 67340	73,9	.8588I	39,6	. 82827	47,7	$47 \quad 40$ 12.32
. 833	. 73995	67,3	. 67266	74,0	. 85920	39,5	. 82779	47,8	474338.58
. 834	. 74062	67,2	. 67192	74, 1	. 86960	39,4	. 82732	47,9	$47 \quad 4704.85$
0.835	0.74130	67, 1	0.67118	74, I	9.86999	39,3	9.82684	48,0	47503 I .11
. 836	. 74197	67,0	. 67044	74,2	. 87038	39,2	. 82636	48,1	475357.38
. 837	. 74264	67,0	. 66969	74,3	. 87078	39,2	. 82588	48,2	4757523.64
. 838	. 74331	66,9	. 66895	74,3	. 87117	39, 1	. 82539	48,3	480049.91
. 839	. 74398	66,8	. 6682 I	74,4	. 87156	39,0	.82491	48,4	4804 I6.17
0.840	0.74464	66,7	0.66746	74,5	9.87195	38,9	9.82443	48,5	$48 \quad 0742.44$
. 841	. 74531	66,7	. 66672	74,5	. 87234	38,8	. 82394	48,5	48 II 08.70
. 842	. 74598	66,6	. 66597	74,6	. 87273	38,8	. 82346	48,6	48 I4 34.97
. 843	. 74664	66,5	. 66523	74,7	.873II	38,7	. 82297	48,7	48 I8 or. 23
. 844	. 74731	66,4	. 66448	74,7	. 87350	38,6	. 82248	48,8	482127.50
0.845	0.74797	66,4	0.66373	74,8	9.87388	38,5	9.82199	48,9	482453.76
. 8.46	. 74863	66,3	. 66298	74,9	. 87427	38,5	. 82150	49,0	$4828 \quad 20.03$
. 847	. 74930	66,2	. 66223	74,9	. 87465	38,4	. 82 IOI	49,1	48 31 46.29
. 848	.74996	66, 1	. 66148	75,0	. 87504	38,4	. 82052	49,2	$48 \quad 35 \quad 12.56$
. 849	. 75062	66, I	.66073	75, 1	. 87542	38,2	. 82003	49,3	$48 \quad 38 \quad 38.82$
0.850	0.75128	66,o	0.65998	75, I	9.87580	38,2	9.81953	49,4	484205.09
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{s i n} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.850	0.75128	66,0	0.65998	75,I	9.87580	38,2	9.81953	49,4	$48^{\circ} 42^{\prime} 05^{\prime \prime} .09$
. 851	. 75194	65,9	. 65923	75,2	. 87618	38, 1	. 81904	49,5	484531.35
. 852	. 75260	65,8	. 65848	75,3	. 87656	38,0	. 81854	49,6	484857.61
. 853	. 75326	65,8	. 65773	75,3	. 87694	37,9	. 81805	49,7	485223.88
. 854	.75391	65,7	. 65697	75,4	. 87732	37,8	. 81755	49,8	4855 50.14
0.855	0.75457	65,6	0.65622	75,5	9.87770	37,8	9.81705	49,9	4859 16.41
. 856	. 75523	65,5	. 65546	75,5	. 87808	37,7	. 81655	50,0	490242.67
. 857	. 75588	65,5	. 65471	75,6	. 87845	37,6	. 81605	50, I	490608.94
. 858	. 75654	65,4	. 65395	75,7	. 87883	37,5	. 81555	50,2	490935.20
. 859	. 75719	65,3	. 65320	75,7	. 87920	37,5	. 81504	50,3	49 I3 or. 47
0.860	0.75784	65,2	0.65244	75,8	9.87958	37,4	9.81454	50,4	491627.73
.86I	. 75849	65,2	. 65168	75,8	. 87995	37,3	. 81403	50,5	49 19 54.00
. 862	. 75915	65,1	. 65092	75,9	. 88033	37,2	. 81353	50,7	492320.26
. 863	. 75980	65,0	. 65016	76,0	. 88070	37,2	. 81302	50,8	492646.53
. 864	. 76045	64,9	. 64940	76,0	.88107	37, I	.8125I	50,9	493012.79
0.865	0.76110	64,9	0.64864	76,1	9.88144	37,0	9.81200	51,0	493339.06
. 866	. 76174	64,8	. 64788	76,2	. 8818 I	36,9	.81149	51, I	493705.32
. 867	. 76239	64,7	. 64712	76,2	. 88218	36,9	. 81098	51,2	494031.59
. 868	. 76304	64,6	. 64635	76,3	. 88255	36,8	. 81047	51,3	494357.85
. 869	. 76368	64,6	. 64559	76,4	. 88291	36,7	. 80996	51,4	4947 24.12
0.870	0.76433	64,5	0.64483	76,4	9.88328	36,6	9.80944	51,5	495050.38
. 87 I	. 76497	64,4	. 64406	76,5	. 88365	36,6	. 80893	51,6	4954 16.65
. 872	. 76562	64,3	. 64330	76,6	. 8840 II	36,5	. 8084 I	51,7	495742.91
. 873	. 76626	64,3	. 64253	76,6	. 88438	36,4	. 80789	51,8	50 or 09.18
. 874	. 76690	64,2	. 64176	76,7	. 88474	36,3	. 80738	51,9	$500435 \cdot 44$
0.875	0.76754	-64,1	0.64100	76,8	9.88510	36,3	9.80686	52,0	5008 or. 71
. 876	. 76818	64,0	. 64023	76,8	. 88547	36,2	. 80634	52, I	50 II 27.97
. 877	. 76882	63,9	. 63946	76,9	. 88583	36,1	.80581	52,2	50 $14 \begin{array}{ll}54.24 \\ 50\end{array}$
. 878	. 76946	63,9	. 63869	76,9	. 88519	36,0	. 80529	52,3	$5018 \quad 20.50$
. 879	. 77010	63,8	. 63792	77,0	. 88655	36,0	. 80477	52,4	50 21 46.76
0.880	0.77074	63,7	0.63715	77,1	9.88691	35,9	9.80424	52,5	502513.03
. 881	. 77138	63,6	. 63638	77, I	. 88727	35,8	. 80372	52,6	502839.29
. 882	. 77201	63,6	. 63561	77,2	. 88762	35,8	. 80319	52,7	503205.56
. 883	. 77265	63,5	. 63484	77,3	. 88798	35,7	. 80266	52,9	503531.82
. 884	. 77328	63,4	. 63406	77,3	. 88834	35,6	. 80213	53,0	503858.09
0.885	0.77391	63,3	0.63329	77,4	9.88869	35,5	9.80160	53, I	
. 886	. 77455	63,3	. 63252	77,5	. 88905	35,5	. 80107	53,2	504550.62
. 887	. 77518	63,2	. 63174	77,5	. 88940	35,4	. 80054	53,3	5049 16.88
. 888	.77581	63,1	. 63096	77,6	. 88976	35,3	. 80001	53,4	505243.15
. 889	. 77644	63,0	. 63019	77,6	.8901 I	35,2	. 79947	53,5	505609.41
0.890	0.77707	62,9	0.62941	77,7	9.89046	35,2	9.79894	53,6	50. 5935.68
. 891	. 77770	62,9	. 62863	77,8	.89081	35, 1	. 79840	53,7	510301.94
. 892	. 77833	62,8	. 62786	77,8	. 89116	35,0	. 79786	53,8	5 I 0628.21
. 893	. 77896	62,7	. 62708	77,9	. 89151	35,0	. 79732	53,9	5 I 0954.47
. 894	. 77958	62,6	. 62630	78,0	. 89186	34,9	. 79678	54, 1	511320.74
0.895	0.78021	62,6	0.62552	78,0	9.80221	34,8	9.79624	54,2	511647.00
. 896	. 78083	62,5	. 62474	78,1	. 89256	34,7	. 79570	54,3	512013.27
. 897	. 78146	62,4	. 62396	78, 1	. 89291	34,7	. 79515	54,4	512339.53
. 898	. 78208	62,3	. 62318	78,2	. 89325	34,6	. 79461	54,5	$\begin{array}{lllll}51 & 27 & 05.80 \\ 51 & 30 & 32.06\end{array}$
. 899	. 78270	62,2	. 62239	78,3	. 89360	34,5	. 79406	54,6	51 3032.06
0.900	0.78333	62,2	0.62161	78,3	9.89394	34,5	9.79352	54,7	51 3358.33
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega^{(1)} \mathrm{F}^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.900	0.78333	62,2	0.62161	78,3	9.89394	34,5	9.79352	54,7	51 ${ }^{\circ} 33$ ' 58.133
. 901	. 78395	62, I	. 62083	78,4	. 89429	34,4	. 79297	54,8	$\begin{array}{lllllllllllllll}51 & 37 & 24.59\end{array}$
. 902	. 78457	62,0	. 62004	78,5	. 89463	34,3	. 79242	55,0	514050.86
. 903	. 78519	61,9	.61926	78,5	. 89497	34,3	. 79187	55, I	5144 I7.12
. 904	.78581	6I,8	. 61847	78,6	. 89532	34,2	.79132	55,2	514743.38
0.905	0.78643	6I,8	0.61769	78,6	9.89566	34, I	9.79077	55,3	5I 51 09.65
. 906	. 78704	61,7	. 61690	78,7	. 89600	34,0	. 79021	55,4	5 I 5435.9 I
. 907	. 78766	6I,6	.616i I	78,8	. 89634	34,0	. 78966	55,5	51 58 02.18
. 908	. 78827	6I,5	. 61532	78,8	. 89668	33,9	. 78910	55,6	52 OI 28.44
. 909	.78889	61,5	. 61453	78,9	.89702	33,8	.78855	55,8	520454.71
0.910	0.78950	6I,4	0.61375	79,0	9.89735	33,8	9.78799	55,9	$\begin{array}{llll}52 & 08 & 20.97\end{array}$
.9II	. 79012	6I,3	. 61296	79,0	. 89769	33,7	. 78743	56,0	52 II 47.24
. 912	. 79073	61,2	.61217	79, 1	. 89803	33,6	. 78687	56, I	$\begin{array}{llll}52 & 15 & 13.50\end{array}$
.913	. 79134	61, 1	.61137	79,1	. 89836	33,6	. 7863 I	56,2	$\begin{array}{llllllllllllllllllllll}52 & 18 & 39.77\end{array}$
.914	. 79195	61, I	. 61058	79,2	. 89870	33,5	. 78574	56,3	522206.03
0.915	0.79256	61,0	0.60979	79,3	9.89903	33,4	9.78518	56,4	$\begin{array}{lll}52 & 25 & 32.30\end{array}$
.916	. 79317	60,9	. 60900	79,3	. 89937	33,3	. 78462	56,6	522858.56
.917	. 79378	60,8	. 60820	79,4	.89970	33,3	. 78405	56,7	523224.83
. 918	. 79439	60,7	. 60741	79,4	. 90003	33,2	. 78348	56,8	5235151.09
. 919	. 79500	60,7	. 60662	79,5	. 90036	33, I	. 7829 I	56,9	523917.36
0.920	0.79560	60,6	0.60582	79̊,6	9.90070	33, 1	9.78234	57,0	524243.62
.92I	. 7962 I	60,5	. 60502	79,6	. 90103	33,0	.78177	57,2	$5246 \quad 09.89$
. 922	. 7968 I	60,4	. 60423	79,7	.90136	32,9	.78120	57,3	524936.15
. 923	. 79742	60,3	. 60343	79,7	.90168	32,9	.78063	57,4	525302.42
. 924	. 79802	60,3	. 60263	79,8	.90201	32,8	. 78005	57,5	$\begin{array}{lllll}52 & 56 & 28.68\end{array}$
0.925	0.79862	60,2	0.60183	79,9	9.90234	32,7	9.77948	57,6	525954.95
. 926	. 79922	60,1	. 60104	79,9	. 90267	32,7	. 77800	57,7	530321.21
.927	. 79982	60,0	. 60024	80,0	. 90299	32,6	. 77832	57,9	
. 928	. 80042	59,9	. 59944	80,0	. 90332	32,5	. 77774	58,0	53 10 13.74
. 929	. 80102	59,9	. 59864	80, 1	. 90364	32,5	. 77716	58, I	53 I3 40.01
0.930	0.80162	59,8	0.59783	80,2	9.90397	32,4	9.77658	58,2	$\begin{array}{llll}53 & 17 & 06.27\end{array}$
.93I	. 80222	59,7	. 59703	80,2	. 90429	32,3	. 77600	58,4	$\begin{array}{llll}53 & 20 & 32.53\end{array}$
. 932	. 8028 I	59,6	. 59623	80,3	.9046I	32,3	. 77541	58,5	532358.80
. 933	. 80341	59,5	. 59543	80,3	. 90494	32,2	. 77483	58,6	532725.06
. 934	. 80400	59,5	. 59462	80,4	. 90526	32, I	. 77424	58,7	533051.33
0.935	0.80460	59,4	0.59382	80,5	9.90558	32, I	9.77365	58,8	$\begin{array}{llll}53 & 34 & 17.59\end{array}$
. 936	. 80519	59,3	. 5930I	80,5	. 90590	32,0	. 77306	59,0	$53 \quad 3743.86$
. 937	. 80579	59,2	. 5922 I	80,6	. 90622	$3 \mathrm{I}, 9$. 77247	59, I	5341 10.12
. 938	. 80638	59, I	. 59140	80,6	. 90654	$3 \mathrm{I}, 9$. 77188	59,2	534436.39
. 939	. 80697	59,1	. 59060	80,7	. 90686	31,8	. 77129	59,3	534802.65
0.940	0.80756	59,0	0.58979	80,8	9.90717	31,7	9.77070	59,5	535128.92
. 941	. 808I5	58,9	. 58898	80,8	. 90749	31,7	. 77010	59,6	535455.18
. 942	. 80874	58,8	. 588 I 7	80,9	.9078I	31,6	. 76950	59,7	5358121.45
. 943	. 80932	58,7	. 58736	80,9	.90812	31,5	. 7689 I	59,8	54 O1 47.71
. 944	. 80991	58,7	. 58655	81,0	. 90844	31,5	. 76831	60,0	540513.98
	0.81050	58,6	0.58574	$8 \mathrm{I}, 0$	9.90875	31,4	9.76771	60, I	540840.24
. 946	.8iro8	58,5	. 58493	$8 \mathrm{I}, \mathrm{I}$. 90906	3I,3	. 76711	60,2	541206.51
. 947	.81167	58,4	. 58412	81,2	. 90938	31,3	. 76650	60,3	541532.77
. 948	.8I225	58,3	. 58331	81,2	. 90969	31,2	. 76590	60,5	541859.04
. 949	. 81283	58,2	. 58250	81,3	. 91000	31, I	. 76529	60,6	542225.30
0.950	0.81342	58,2	0.58 I 68	8I,3	9.91031	31, I	9.76469	60,7	542551.57
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	og cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	ωF_{0}^{\prime}	u
0.950	0.81342	58,2	0.58168	81,3	9.91031	3I, I	9.76469	60,7	$54^{\circ} 25^{\prime} 51.4 .57$
. 951	.81400	58,I	. 58087	81,4	. 91062	31,0	. 76408	60,9	$54 \quad 2917.83$
. 952	.81458	58,0	. 58006	81,5	.91093	30,9	. 76347	61,0	543244.10
. 953	.81516	57,9	. 57924	81,5	.91124	30,9	. 76286	6I, 1	$\begin{array}{lllllllllllllllll}54 & 36 & 10.36\end{array}$
. 954	.81574	57,8	. 57842	81,6	.91155	30,8	. 76225	6r,2	543936.63
0.955	0.81631	57,8	0.57761	8r,6	9.91186	30,7	9.76163	61,4	544302.89
. 956	. 81689	57,7	. 57679	81,7	. 91216	30,7	. 76102	61,5	5446 29.15
. 957	. 81747	- 57,6	. 57597	81,7	.91247	30,6	. 76040	6I,6	544955.42
. 958	.81804	57,5	. 57516	8r,8	.91278	30,5	. 75979	61,8	545321.68
. 959	. 81862	57,4	. 57434	8I,9	.91308	30,5	.75917	61,9	545647.95
0.960	0.81919	57,4	0.57352	81,9	9.91339	30,4	9.75855	62,0	$5500 \cdot 14.21$
. 961	0.81976	57,3	. 57270	82,0	.91369	30,3	. 75793	62,2	550340.48
. 962	. 82034	57,2	. 57188	82,0	.91399	30,3	. 75731	62,3	
. 963	. 82091	57,1	. 57106	82,1	. 91429	30,2	. 75668	62,4	55 10 33.01
. 964	. 82148	57,0	. 57024	82,I	.91460	30,1	. 75606	62,6	$\begin{array}{lllllllllllll}55 & 13 & 59.27\end{array}$
0.965	0.82205	56,9	0.56942	82,2	9.91490	30,1	9.75543	62,7	$\begin{array}{llll}55 & 17 & 25.54\end{array}$
. 966	. 82262	56,9	. 56859	82,3	.91520	30,0	. 75480	62,8	552051.80
. 967	. 82319	56,8	. 56777	82,3	.91550	29,9	. 75417	63,0	$\begin{array}{llll}55 & 24 & 18.07\end{array}$
. 968	. 82375	56,7	. 56695	82,4	.91580	29,9	. 75354	63,1	552744.33
. 969	. 82432	56,6	. 566 I 2	82,4	.91610	29,8	.75291	63,2	553110.60
0.970	0.82489	56,5	0.56530	82,5	9.91639	29,8	9.75228	63,4	$\begin{array}{llll}55 & 34 & 36.86\end{array}$
. 971	. 82545	56,4	. 56447	82,5	. 91669	29,7	. 75164	63,5	5538 03.13
. 972	. 82601	56,4	. 56365	82,6	. 91699	29,6	.75101	63,6	554129.39
. 973	. 82658	56,3	. 56282	82,7	.91728	29,6	. 75037	63,8	554455.66
. 974	. 82714	56,2	. 56200	82,7	.91758	29,5	. 74973	63,9	5548 21.92
0.975	0.82770	56,1	0.56117	82,8	9.91787	29,4	9.74909	64,1	55 51 48.19
. 976	. 82826	56,0	. 56034	82,8	.91817	29,4	. 74845	64,2	555514.45
. 977	. 82882	56,0	. 55951	82,9	.91846	29,3	. 74781	64,3	555840.72
. 978	. 82938	55,9	. 55868	82,9	.91875	29,2	. 74717	64,5	560206.98
. 979	. 82994	55,8	. 55785	83,0	. 91905	29,2	. 74652	64,6	$56 \quad 533.25$
0.980	0.83050	55,7	0.55702	83,0	9.91934	29, I	9.74587	64,8	560859.51
.981	. 83105	55,6	. 55619	83,1	. 91963	29, I	. 74522	64,9	56 I2 25.77
. 982	.83161	55,5	. 55536	83,2	.91992	29,0	. 74457	65,0	56 I5 52.04
. 983	. 83216	55,5	. 55453	83;2	.92021	28,9	. 74392	65,2	$\begin{array}{llll}56 & 19 & 18.30\end{array}$
. 984	. 83272	55,4	. 55370	83,3	. 92050	28,9	. 74327	65,3	$56 \quad 2244.57$
0.985	0.83327	55,3	0.55286	83,3	9.92079	28,8	9.74262	65,5	$\begin{array}{llll}56 & 2610.83\end{array}$
. 986	. 83382	55,2	. 55203	83,4	. 92107	28,8	. 74196	65,6	5629 37.10
. 987	. 83438	55,1	. 55120	83,4	.92136	28,7	. 7413 I	65,7	$5633 \quad 03.36$
. 988	. 83493	55,0	. 55036	83,5	. 92165	28,6	. 74065	65,9	563629.63
. 989	. 83548	55,0	. 54953	83,5	. 92193	28,6	. 73999	66,0	563955.89
0.990	0.83603	54,9	0.54869	83,6	9.92222	28,5	9.73933	66,2	564322.16
. 991	. 83657	54,8	. 54785	83,7	. 92250	28,4	. 73866	66,3	564648.42
. 992	. 83712	54,7	. 54702	83,7	. 92279	28,4	. 73800	66,5	565014.69
. 993	. 83767	54,6	. 54618	83,8	. 92307	28,3	. 73734	66,6	565340.95
. 994	. 83821	54,5	. 54534	83,8	. 92335	28,3	. 73667	66,8	$56 \quad 5707.22$
	0.83876	54,5	0.54450	83,9	9.92364	28,2	9.73600	66,9	$57 \quad 0033.48$
. 996	. 83930	54,4	. 54366	83,9	. 92392	28, 1	. 73533	67,0	$\begin{array}{llllll}57 & 03 & 59.75\end{array}$
. 997	. 83985	54,3	. 54282	84,0	. 92420	28, 1	. 73466	67,2	570726.01
. 998	. 84039	54,2	. 54198	84,0	. 92448	28,0	. 73399	67,3	571052.28
. 999	. 84093	54, I	.54114	84,1	. 92476	27,9	.7333I	67,5	$\begin{array}{lllll}57 & 14 & 18.54\end{array}$
1.000	0.84147	54,0	0.54030	84, 1	9.92504	27,9	9.73264	67,6	57 I7 44.8I
u	-i sinh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	u
1.000	0.84147	54,0	0.54030	84,I	9.92504	27,9	9.73264	67,6	$57^{\circ} 17^{\prime} 44.81$
. 001	. 84201	53,9	. 53946	84,2	. 92532	27,8	-.73196	67,8	572111.07
. 002	. 84255	53,9	. 53862	84,3	. 92560	27,8	. 73128	67,9	572437.34
. 003	. 84309	53,8	. 53778	84,3	. 92587	27,7	. 73060	68,1	$57 \quad 2803.60$
. 004	. 84363	53,7	. 53693	84,4	.92615	27,6	. 72992	68,2	573129.87
1.005	0.84416	53,6	0.53609	84,4	9.92643	27,6	9.72924	68,4	573456.13
. 006	. 84470	53,5	. 53524	84,5	. 92670	27,5	. 72855	68,5	$57 \quad 3822.40$
. 007	. 84523	53,4	. 53440	84,5	. 92698	27,5	. 72787	- 68,7	574148.66
. 008	. 84577	53.4	. 53355	84,6	. 92725	27,4	. 72718	68,8	$5745 \quad 14.92$
. 009	. 84630	53,3	. 5327 I	84,6	. 92752	27,3	. 72649	69,0	57484 I .19
1.010	0.84683	53,2	0.53186	84,7	9.92780	27,3	9.72580	69,1	575207.45
. 011	. 84736	53, 1	. 53101	84,7	. 92807	27,2	.72511	69,3	575533.72
. 012	. 84789	53,0	. 53017	84,8	. 92834	27,2	. 7244 I	69,5	575859.98
.013	. 84842	52,9	. 52932	84,8	. 92851	27, I	. 72372	69,6	$\begin{array}{llll}58 & 02 & 26.25\end{array}$
. 014	. 84895	52,8	. 52847	84,9	. 92888	27,0	. 72302	69,8	5805 52.51
1.015	0.84948	52,8	0.52762	85,0	9.92915	27,0	9.72232	69,9	$58 \quad 0918.78$
. 016	. 85001	52,7	. 52677	85,0	. 92942	26,9	. 72162	70, 1	58 12 45.04
. 017	. 85053	52,6	. 52592	$85, \mathrm{I}$. 92969	26,9	. 72092	70,2	58 I6 II. 31
. 018	.85106	52,5	. 52507	85, I	. 92996	26,8	. 72022	70,4	$\begin{array}{llll}58 & 19 & 37.57\end{array}$
. 019	.85158	52,4	. 52422	85,2	. 93023	26,7	. 71951	70,6	$\begin{array}{llll}58 & 23 & 03.84\end{array}$
1.020	0.852 II	52,3	0.52337	85,2	9.93049	26,7	9.7188 I	70,7	$58 \quad 26$ 30.10
. 021	. 85263	52,3	. 52251	85,3	. 93076	26,6	. 71810	70,9	582956.37
. 022	. 85315	52,2	. 52166	85,3	.93103	26,6	. 71739	71,0	583322.63
. 023	. 85367	52,1	. 5208I	85,4	.93I29	26,5	. 71668	71,2	583648.90
. 024	. 85419	52,0	. 51995	85,4	.93156	26,4	. 71596	71,3	584015.16
1.025	0.8547 I	51,9	0.51910	85,5	9.93182	26,4	9.71525	71,5	58434 I .43
. 026	. 85523	5I,8	. 51824	85,5	.93208	26,3	. 71453	71,7	584707.69
. 027	. 85575	51,7	. 51739	85,6	. 93235	26,3	. 71382	71,8	585033.96
. 028	. 85627	51,7	. 51653	85,6	.9326I	26,2	. 71310	72,0	585400.22
. 029	. 85678	51,6	. 51568	85,7	. 93287	26, 1	. 71238	72,2	585726.49
1.030	0.85730	5I,5	0.51482	85,7	9.93313	26,1	9.71165	72,3	590052.75
.031	.85781	5I,4	. 51396	85,8	. 93339	26,0	. 71093	72,5	590419.02
. 032	. 85833	51,3	. 51310	85,8	. 93365	25,0	. 71020	72,6	590745.28
. 033	. 85884	51,2	. 51224	85,9	.9339I	25,9	. 70948	72,8	59 II II. 54
. 034	. 85935	5I,I	. 51139	85,9	.934I7	25,8	. 70875	73,0	59 I4 37.8I
1.035	0.85986	5I, I	0.51053	86,0	9.93443	25,8	9.70802	73,1	$\begin{array}{llll}59 & 18 & 04.07\end{array}$
. 036	. 86037	51,0	. 50967	86,0	. 93469	25,7	. 70729	73,3	592130.34
. 037	. 86088	50,9	. 5088 I	86, I	. 93494	25,7	. 70655	73,5	592456.60
. 038	. 86139	50,8	. 50794	86,	. 93520	25,6	. 70582	73,6	592822.87
. 039	. 86190	50,7	. 50708	86,2	. 93546	25,6	. 70508	73,8	59 31 49.13
1.040	0.86240	50,6	0.50622	85,2	9.93571	25,5	9.70434	74,0	5935 I5.40
. 041	. 86291	50,5	. 50536	85,3	. 93597	25,4	. 70360	74,2	593841.66
. 042	. 8634 I	50,4	. 50449	8Ј,3	. 93622	25,4	. 70286	74,3	594207.93
. 043	. 86392	50,4	. 50363	86,4	. 93647	25,3	.7021 I	74,5	5945 34.19
. 044	. 86442	50,3	. 50277	86,4	. 93673	25,3	. 70137	74,7	594900.46
1.045	0.86492	50,2	0.50190	86,5	9.93698	25,2	9.70062	74,8	$59 \quad 52 \quad 26.72$
. 046	. 85543	50, I	. 50104	85,5	. 93723	25, I	. 69987	75,0	595552.99
. 047	. 86593	50,0	. 50017	86,6	. 93748	25,1	. 69912	75,2	595919.25
. 048	. 86643	49,9 498	. 49930	86,6 86,7	. 93773	25,0	. 69837	75,4	$\begin{array}{llll}60 & 02 & 45.52 \\ 60 & 06 & 11.78\end{array}$
. 049	.86693	49,8	. 49844	86,7	. 93798	25,0	.6975I	75,5	6006 II. 78
1.050	0.86742	49,8	0.49757	86,7	9.93823	24,9	9.69686	75,7	600938.05
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

4	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega F_{0}{ }^{\prime}$	u
1.050	0.86742	49,8	0.49757	86,7	9.93823	24,9	9.69686	75,7	$60^{\circ} 09{ }^{\prime} 38^{\prime \prime} .05$
.05I	. 86792	49,7	. 49670	86,8	. 93848	24,9	. 69610	75,9	60 I3 04.31
. 052	. 86842	49,6	. 49584	86,8	. 93873	24,8	. 69534	76, 1	$60 \quad 1630.58$
. 053	. 86891	49,5	. 49497	86,9	. 93898	24,7	. 69458	76,2	$60 \quad 1956.84$
. 054	. 8694 I	49,4	.49410	86,9	. 93922	24,7	.6938I	76,4	6023 23.1I
1.055	0.86990	49,3	0.49323	87,0	9.93947	24,6	9.69305	76,6	$60 \quad 2649.37$
. 056	. 87039	49,2	. 49236	87,0	. 93972	24,6	. 69228	76,8	603015.64
. 057	. 87088	49, I	. 49149	87, 1	. 93996	24,5	. 69151	77,0	6033 41.90
. 058	. 87138	49, 1	. 49062	87,1	.9402I	24,5	. 69074	77, I	603708.17
. 059	. 87187	49,0	. 48974	87,2	. 94045	24,4	. 68997	77,3	604034.43
1.060	0.87236	48,9	0.48887	87,2	9.94069	24,3	9.68920	77,5	604400.69
.06I	. 87284	48,8	. 48800	87,3	. 94094	24,3	. 68842	77,7	604726.96
. 062	. 87333	48,7	. 48713	87,3	-94118	24,2	.68764	77,9	605053.22
. 063	. 87382	48,6	. 48625	87,4	.94142	24,2	. 68686	78,0	605419.49
. 064	. 87430	48,5	. 48538	87,4	.94166	24, I	. 68608	78,2	605745.75
1.065	0.87479	48,5	0.48450	87,5	9.94190	24, I	9.68530	78,4	6r or 12.02
. 066	. 87527	48,4	. 48363	87,5	. 94214	24,0	. 68451	78,6	6I 0438.28
. 067	. 87576	48,3	. 48275	87,6	. 94238	23,9	. 68373	78,8	6 l 0804.55
. 068	. 87624	48,2	.48188	87,6	. 94262	23,9	. 68294	79,0	6I II 30.8I
. 069	. 87672	48,1	.48100	87,7	. 944286	23,8	. 68215	79,2	6 I I4 57.08
1.070	0.87720	48,0	0.48012	87,7	9.94310	23,8	9.68135	79,3	61 1823.34
. 071	. 87768	47,9	. 47925	87,8	. 94334	23,7	. 68056	79,5	612149.61
. 072	.87816	47,8	. 47837	87,8	. 943157	23,7	. 67976	79,7	612515.87
. 073	. 87864	47,7	. 47749	87,9	. 94381	23,6	.67896	79,9	612842.14
. 074	. 8791 I	47,7	.47661	87,9	. 94405	23,6	. 67816	80, I	6I 3208.40
1.075	0.87959	47,6	0.47573	88,0	9.94428	23,5	9.67736	80,3	6 l 3534.67
. 076	. 88007	47,5	. 47485	88,0	.9445I	23,4	. 67656	80,5	613900.93
. 077	. 88054	47,4	. 47397	88, 1	. 94475	23,4	. 67575	80,7	61 4227.20
. 078	. 88 IOI	47,3	. 47309	88, I	. 94498	23,3	. 67494	80,9	6I 4553.46
. 079	. 88149	47,2	.4722I	88, 1	. 94522	23,3	. 67414	81, 1	6149 19.73
1.080	0.88196	47, I	0.47133	88,2	9.94545	23,2	9.67332	8r,3	6I 5245.99
.08I	. 88243	47,0	. 47045	88,2	. 94568	23,2	. 67251	8I,5	615612.26
. 082	. 88290	47,0	. 46956	88,3	.9459I	23, 1	. 67169	$8 \mathrm{I}, 7$	615938.52
. 083	. 88337	46,9	. 46868	88,3	.94614	23,0	. 67088	81,9	620304.79
. 084	. 88384	46,8	. 46780	88,4	. 94637	23,0	. 67006	82,I	620631.05
1.085	0.88430	46,7	0.46691	88,4	9.94660	22,9	9.66924	82,3	620957.31
. 086	. 88477	46,6	. 46603	88,5	. 94683	22,9	. 66841	82,5	62 I3 23.58
. 087	. 88524	46,5	. 46514	88,5	. 94706	22,8	. 66759	82,7	621649.84
. 088	. 88570	46,4	. 46426	88,6	. 947729	22,8	. 66676	82,9	6220 I6.11
. 089	. 88616	46,3	. 46337	88,6	.9475I	22,7	. 66593	83, 1	$62 \quad 2342.37$
1.090	0.88663	46,2	0.46249	88,7	9.94774	22,7	9.66510	83,3	$62 \quad 27 \quad 08.64$
.091	. 88709	46,2	. 46160	88,7	. 94797	22,6	. 66426	83,5	623034.90
. 092	. 88755	46, I	. 46071	88,8	.94819	22,5	. 66343	83,7	6234 OI. 17
. 093	. 88801	46,0	. 45982	88,8	. 94842	22,5	. 66259	83,9	$6237 \quad 27.43$
. 094	. 88847	45,9	. 45894	88,8	. 94864	22,4	.66I75	84, 1	624053.70
1.095	0.88893	45,8	0.45805	88,9	9.94887	22,4	9.66091	84,3	624419.96
. 096	. 88939	45,7	. 45716	88,9	. 94909	22,3	. 66007	84,5	624746.23
. 097	. 88984	45,6	. 45627	89,0	.9493'	22,3	. 65922	84,7	$62 \quad 51 \quad 12.49$
. 098	. 89030	45,5	. 45538	80,0	-94954	22,2	. 65837	84,9	625438.76
. 099	. 89075	45,4	. 45449	89,I	. 94976	22,2	. 65752	85, 1	625805.02
1. 100	0.8912 I	45,4	0.45360	89, 1	9.94998	22, I	9.65667	85,3	63 or 31.29
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh \mathrm{iu}}{i}$	$\omega F_{0}{ }^{\prime}$	100 cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1. 100	0.89121	45,4	0.45360	89, I	9.94998	22,I	9.65667	85,3	63° O1' 31.1 .29
. 101	. 89166	45,3	. 45270	89,2	. 95020	22,0	. 6558 I	85,5	630457.55
. 102	. 8921 I	45,2	.4518I	89,2	. 95042	22,0	. 65496	85,8	630823.82
. 103	. 89256	45, I	. 45092	89,3	. 95054	21,9	. 65410	86,0	63 II 50.08
. 104	. 89301	45,0	. 45003	89,3	. 95086	21,9	. 65324	86,2	631516.35
I. 105	0.89346	44,9	0.44913	89,3	9.95108	21,8	9.65238	86,4	631842.61
. 106	.89391	44,8	. 44824	89,4	.95130	21,8	.65151	86,6	$63 \quad 2208.88$
. 107	. 89436	44,7	. 44735	89,4	.95151	21,7	. 65064	86,8	6325 35.14
. 108	. 89481	44,6	. 44645	89,5	.95173	21,7	. 64977	87,0	6329 OI. 4 I
. 109	. 89525	44,6	. 44556	89,5	.95195	21,6	. 64890	87,3	633227.67
I. 110	0.89570	44,5	0.44466	89,6	9.95216	21,6	9.64803	87,5	$63 \quad 3553.93$
. III	. 89614	44,4	. 44377	89,6	. 95238	21,5	. 64715	87,7	633920.20
. II 2	. 89559	44,3	. 44287	89,7	. 95259	21,5	.64628	87,9	634246.46
. II3	. 89703	44,2	. 44197	89,7	.95281	21,4	. 64540	88, 1	6346 1.2.73
. 114	. 89747	44, I	. 44108	89,7	. 95302	21,3	.6445 1	88,4	634938.99
I.II5	0.89791	44,0	0.44018	89,8	9.95323	2I,3	9.64363	88,6	635305.26
. 116	. 89835	43,9	. 43928	89,8	. 95345	21,2	. 64274	88,8	635631.52
. 117	. 89879	43,8	. 43838	89,9	. 95366	21,2	.64185	89,0	635957.79
. 118	. 89923	43,7	. 43748	89,9	. 95387	21,1	. 64096	89,3	640324.05
. 119	. 89966	43.7	. 43658	90,0	. 95408	21,1	. 64007	89,5	640650.32
I. 120	0.90010	43,6	0.43568	90,0	9.95429	21,0	9.63917	89,7	641016.58
. 121	. 90054	43,5	. 43478	90, 1	. 95450	21,0	. 63827	90,0	641342.85
. 122	. 90097	43,4	. 43388	90, I	.95471	20,9	. 63737	90,2	641700.11
. 123	.90140	43,3	. 43298	90,1	. 95492	20,9	. 63647	90,4	642035.38
. 124	. 90184	43,2	. 43208	90,2	. 95513	20,8	. 63556	90,6	642401.64
1. 125	0.90227	43, I	0.43118	90,2	9.95534	20,8	9.63466	90,9	$64 \quad 27 \quad 27.91$
. 126	. 90270	43,0	. 43027	90,3	. 95554	20,7	. 63375	91, I	643054.17
. 127	. 90313	42,9	. 42937	90,3	. 95575	20,6	. 63283	91,3	643420.44
. 128	. 90356	42,8	. 42847	90,4	. 95596	20,6	. 63192	91,6	643746.70
. 129	. 90398	42,8	. 42756	90,4	. 95616	20,5	. 63100	91,8	64 41 12.97
1. 130	0.9044 I	42,7	0.42666	90,4	9.95637	20,5	9.63008	92,I	644439.23
. 131	. 90484	42,6	. 42576	90,5	. 95657	20,4	. 62916	92,3	644805.50
. 132	. 90526	42,5	. 42485	90,5	. 95678	20,4	. 62824	92,5	645131.76
. I33	. 90569	42,4	. 42394	90,6	. 95698	20,3	.6273I	92,8	645458.03
. 134	. 906 II	42,3	. 42304	90,6	.95718	20,3	. 62638	93,0	645824.29
1.135	0.90653	42,2	0.42213	90,7	9.95738	20,2	9.62545	93,3	65 or 50.56
. 136	. 90696	42,1	. 42123	90,7	. 95759	20,2	.62451	93,5	650516.82
. 137	. 90738	42,0	. 42032	90,7	. 95779	20,1	. 62358	93,8	650843.08
. 138	. 90780	41,9	. 41941	90,8	. 95799	20, I	. 62264	94,0	65 I2 09.35
. 139	. 90822	41,9	.41850	90,8	.95819	20,0	. 62170	94,2	65 15 35.61
I. 140	0.90863	41,8	0.41759	90,9	9.95839	20,0	9.62075	94,5	65 19 oi. 88
. 141	. 90905	41,7	. 41669	90,9	. 95859	19,9	. 61981	94,7	$65 \quad 22 \quad 28.14$
. 142	. 90947	41,6	.41578	90,9	. 95879	19,9	. 61886	95,0	652554.41
. 143	. 90988	41,5	. 41487	91,0	. 95899	19,8	.61791	95,2	$65 \quad 2920.67$
. 144	.91030	41,4	.41396	91,0	. 95918	19,7	.61695	95,5	653246.94
I. I45	0.91071	4I,3	0.41305	91, I	9.95938	19,7	9.61600	95,8	$65 \quad 3613.20$
. 146	.91112	41,2	. 41214	91, I	. 95958	19,6	. 61504	96,0	653939.47
. 147	.91153	4I, I	.41122	91,2	. 95977	19,6	.61408	96,3	654305.73
. 148	.91195	41,0	. 41031	91,2	. 95997	19,5	.613II	96,5	654632.00
. 149	. 91235	40,9	. 40940	91,2	.96016	19,5	. 61215	96,8	654958.26
1.150	0.91276	40,8	0.40849	91,3	9.96036	19,4	9.61118	97,0	$65 \quad 53 \quad 24.53$
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh$ iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega F_{0}{ }^{\prime}$	u
1. 150	0.91 .276	40,8	0.40849	91,3	9.96036	19,4	9.6III8	97,0	$65^{\circ} 53 \cdot 24^{\prime \prime} 53$
.15I	.91317	40,8	. 40757	91,3	. 96055	19,4	.61021	97,3	$65 \quad 5650.79$
. 152	.91358	40,7	. 40566	9I,4	. 96075	19,3	. 60923	97,6	660017.06
. 153	. 91399	40,6	. 40575	91,4	. 96094	19,3	. 60826	97,8	$660343 \cdot 32$
. 154	. 91439	40,5	. 40483	91,4	. 96113	19,2	. 60728	98, 1	660709.59
I. 155	0.91479	40,4	0.40392	91,5	9.96132	19,2	9.60629	98,4	66 10 35.85
. 156	. 91520	40,3	. 40300	91;5	. 96152	19,I	. 60531	98,6	66 14 02.12
. 157	. 91560	40,2	. 40209	91,6	.96I7I	I9, I	. 60432	98,9	6617128.38
. 158	. 91600	40,1	. 40117	91,6	. 96190	19,0	. 60333	99,2	$66 \quad 2054.65$
. 159	.91640	40,0	. 40026	91,6	. 96209	19,0	. 60234	99,4	662420.91
1. 160	0.91680	39,9	0.39934	91,7	9.96228	18,9	9.60134	99,7	662747.18
. 161	.91720	39,8	. 39842	91,7	. 96246	18,9	. 60034	100,0	663113.44
. 162	. 91760	39,8	-3975I	91,8	. 96265	18,8	. 59934	100,3	663439.70
.163	. 91800	39,7	. 39659	91,8	. 96284	I8,8	. 59834	100,5	$6638 \quad 05.97$
. 164	.91839	39,6	. 39567	91,8	.96303	18,7	- 59733	100,8	664132.23
I. 165	0.91879	39,5	0.39475	91,9	9.96322	18,7	9.59632	IOI, 1	664458.50
. 166	. 91918	39,4	. 39383	91,9	. 96340	18,6	. 5953 I	IOI, 4	664824.76
. 167	. 91958	39,3	. 39291	92,0	. 96359	18,6	. 59430	101,6	66 51 51.03
. 168	. 91997	39,2	. 39199	92,0	. 96377	18,5	. 59328	101,9	665517.29
. 169	.92036	39, I	. 39107	92,0	. 96396	18,5	. 59226	102,2	$665843 \cdot 56$
I. 170	0.92075	39,0	0.39015	92,1	9.96414	18,4	9.59123	102,5	$\begin{array}{llll}67 & 02 & 09.82\end{array}$
. 171	.92II4	38,9	. 38923	92,1	. 96433	18,4	. 59021	102,8	$6705 \quad 36.09$
. 172	. 92153	38,8	.3883I	92,2	.9645I	18,3	- 58918	103, I	670902.35
.173	. 92192	38,7	. 38739	92,2	.96469	18,2	. 588 I 5	103,4	67 I2 28.62
. 174	.92230	38,6	. 38647	92,2	.96487	18,2	. 587 II	103,6	67 I5 54.88
1.175	0.92269	38,6	0. 38554	92,3	9.96506	18, 1	9.58607	103,9	671921.15
. I'76	.92307	38,5	. 38462	92,3	. 96524	18, I	. 58503	104,2	672247.41
.177	.92346	38,4	. 38370	92,3	. 96542	18,0	. 58399	104,5	672613.68
. 178	.92384	38,3	. 38277	92,4	. 96560	18,0	. 58294	IO4,8	672939.94
. I79	.92422	38,2	. 38185	92,4	. 96578	17,9	. 58189	105, I	673306.21
1. 180	0.9246 I	38, I	0.38092	92,5	9.96596	17,9	9.58084	105,4	673632.47
. 18 I	. 92499	38,0	. 38000	92,5	. 95614	17,8	. 57978	105,7	673958.74
. 182	. 92537	37,9	- 37907	92,5	. 9663 I	17,8	. 57872	106,0	674325.00
.183	. 92574	37,8	. 37815	92,6	.96649	17,7	. 57766	106,3	6746 5.1.27
. 184	.92612	37,7	- 37722	92,6	. 96667	17,7	. 57660	106,6	6750 I7.53
I. 185	0.92650	37,6	0.37630	92,6	9.96684	17,6	9.57553	106,9	675343.80
. 186	. 92687	37,5	. 37537	92,7	. 96702	17,6	. 57446	107,2	675710.06
. 187	. 92725	37,4	- 37444	92,7	. 96720	17,5	- 57339	107,5	$68 \quad 0036.33$
. 188	.92762	37,4	- 37352	92,8	. 96737	17,5	. 5723 I	107,9	$\begin{array}{llll}68 & 04 & 02.59\end{array}$
. 189	. 92800	37,3	. 37259	92,8	. 9675	17,4	. 57123	108,2	$68 \quad 07 \quad 28.85$
I. 190	0.92837	37,2	0.37166	92,8	9.96772	17,4	9.57015	108,5	68 10 55.12
. 191	. 92874	37, 1	. 37073	92,9	. 96789	17,3	. 56906	108,8	$68 \quad 14121.38$
. 192	.929I'I	37,0	. 36980	92,9	. 96807	17,3	. 56797	I09, I	681747.65
. 193	. 92948	36,9	. 36887	92,9	. 96824	17,2	. 56688	109,4	68 21 13.91
. 194	.92985	36,8	. 36794	93,0	. 9684 I	17,2	. 56578	109,8	682440.18
I. 195	0.93022	36,7	0.36701	93,0	9.96858	17,I	9. 56468	IIO, I	$68 \quad 2806.44$
. 196	. 93058	36,6	. 36608	93,I	. 96875	17,1	. 56358	110,4	683132.71
. 197	. 93095	36,5	. 36515	93, I	. 96893	17,0	. 56247	I 10,7	683458.97
. 198	.93131	36,4	. 36422	93, I	. 96910	17,0	. 56137	III, 0	$68 \quad 38 \quad 25.24$
. 199	.93168	36,3	. 36329	93,2	.96927	16,9	. 56025	I I I, 4	68 4I 5I. 50
1.200	0.93204	36,2	0.36236	93,2	9.96943	16,9	$9 \cdot 55914$	II I,7	$68 \quad 45 \quad 17.77$
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	log $\frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

4	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.200	0.93204	36,2	0.36236	93,2	9.96943	16,9	9.55914	I I I,7	$68^{\circ} 45^{\prime} 177^{\prime \prime} .77$
. 201	. 93240	36, I	. 36143	93,2	. 96960	16,8	. 558802	I 12,0	684844.03
. 202	. 93276	36,0	. 36049	93,3	. 96977	16,8	. 55690	I 12,4	6852 10.30
. 203	.933I2	36,0	. 35956	93,3	. 96994	16,7	. 55577	I 12,7	685536.56
. 204	. 93348	35,9	. 35863	93,3	.9701 1	16,7	. 55464	I 13,0	685902.83
I. 205	0.93384	35,8	0.35769	93,4	9.97027	16,6	9.55351	I I 3,4	690229.09
. 206	. 93420	35,7	. 35676	93,4	. 97044	16,6	. 553237	I 1 3,7	690555.36
. 207	. 93455	35,6	- 35582	93,5	. 97060	16,5	. 55124	II4, 1	690921.62
. 208	.93491	35,5	- 35489	93,5	. 97077	16,5	. 55009	I I 4,4	691247.89
. 209	. 93526	35,4	- 35395	93,5	. 97093	16,4	. 54895	I I 4,8	69 I6 14.15
1.210	0.93562	35,3	0.35302	93,6	9.97110	16,4	9.54780	I I5, I	691940.42
. 211	. 93597	35,2	-35208	93,6	.97126	16,3	. 54665	I 15,5	692306.68
. 212	. 93632	35, I	-35II5	93,6	.97142	16,3	. 54549	I 1 5,8	692632.95
. 213	. 93667	35,0	. 35021	93,7	. 97159	16,2	. 54433	I 16,2	692959.21
. 214	. 93702	34,9	. 34927	93,7	.97175	16,2	. 54317	1 16,5	693325.47
I. 215	0.93737	34,8	0.34834	93,7	9.9719 I	16,I	9.54200	I I 6,9	693651.74
. 216	.93772	34,7	. 34740	93,8	. 97207	16, 1	. 54083	117,2	694018.00
.217	. 93806	34,6	. 34646	93,8	. 97223	16,0	. 53965	117,6	694344.27
. 218	. 9384 I	34,6	- 34552	93,8	. 97239	16,0	. 53848	I 18,0	6947 10.53
. 219	.93876	34,5	. 34458	93,9	.97255	15,9	. 53730	I 18,3	695036.80
1.220	0.93910	34,4	0.34365	93,9	9.9727 I	15,9	9.5361 I	118,7	695403.06
. 221	. 93944	34,3	. 3427 I	93,9	. 97287	I5,8	. 53492	I19, 1	$6957 \quad 29.33$
. 222	. 93978	34,2	-34177	94,0	. 97303	I5,8	. 53373	I I9,4	$70 \quad 0055.59$
. 223	.94013	34, I	- 34083	94,0	.97319	15,7	. 53253	II9,8	700421.86
. 224	. 94047	34,0	. 33989	94,0	. 97334	15,7	. 53133	120,2	700748.12
1.225	0.94081	33,9	0.33895	94, I	9.97350	15,6	9.53013	120,5	70 II 14.39
.226	.94II4	33,8	. 33800	94, I	. 97366	I 5,6	. 52892	120,9	70 I4 40.65
. 227	.94148	33,7	. 33706	94, I	.9738I	15,5	. 52771	121,3	$70.18 \quad 06.92$
. 228	. 94182	33,6	.336r2	94,2	. 97397	15,5	. 52650	121,7	70 21 33.18
. 229	. 94215	33,5	. 33518	94,2	. 97412	15,5	. 52528	122,1	$70 \quad 2459.44$
1.230	0.94249	33,4	0.33424	94,2	9.97428	15,4	9.52406	122,5	$\begin{array}{lllll}70 & 28 & 25.71\end{array}$
. 231	. 94282	33,3	. 33330	94,3	. 97443	15,4	. 52283	122,9	703151.98
. 232	. 94316	33,2	. 333235	94,3	. 97458	15,3	. 52160	123,2	$\begin{array}{llll}70 & 35 & 18.24\end{array}$
. 233	. 94349	33, I	-3314I	94,3	. 97474	I 5,3	. 52036	123,6	$70 \quad 38 \quad 44 \cdot 5 \mathrm{I}$
. 234	. 94382	33,0	. 33047	94,4	. 97489	15,2	. 51913	124,0	704210.77
1.235	0.94415	33,0	0.32952	94,4	9.97504	15,2	9.51788	124,4	$70 \quad 45 \quad 37.04$
. 236	. 94448	32,9	. 32858	94,4	. 97519	I5,I	. 51664	124,8	$70 \quad 49 \quad 03.30$
. 237	. 9448 I	32,8	. 32763	94,5	. 97534	I5, I	-51539	125,2	$70 \quad 52 \quad 29.57$
. 238	.94513	32,7	. 32669	94,5	. 97549	15,0	. 51413	125,6	$70 \quad 55 \quad 55.83$
. 239	. 94546	32,6	. 32574	94,5	. 97564	15,0	. 51287	126,1	705922.09
I. 240	0.94578	32,5	0. 32480	94,6	9.97579	14,9	9.5116 I	126,5	710248.36
. 241	. 94611 I	32,4	. 32385	94,6	. 97594	14,9	. 51034	126,9	710614.62
. 242	. 94643	32,3	- 32290	94,6	. 97609	14,8	. 50907	127,3	710940.89
. 243	. 94675	32,2	. 32196	94,7	. 97624	I4,8	. 50780	127,7	711307.15
. 244	. 947708	32, I	. 32 IOI	94,7	. 97638	14,7	. 50652	128, 1	$71 \quad 1633.42$
1.245	0.94740	32,0	0.32006	94,7	9.97653	14,7	9.50524	128,6	711959.68
. 246	. 94772	31,9	. 31912	94,8	. 97668	14,6	. 50395	129,0	712325.95
. 247	. 94803	31,8	.31817	94,8	. 97682	14,6	. 50266	129,4	712652.21
. 248	. 94835	31,7	. 31722	94,8	. 97697	14,5	. 50136	129,8	713018.48
. 249	. 94867	31,6	. 31627	94,9	.977II	14,5	. 50006	I30,3	7 I 3344.74
I. 250	0.94898	31,5	0.31532	94,9	9.97726	I4,4	9.49875	130,7	7I 37 II.OI
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.250	0.94898	31,5	0.31532	94,9	9.97726	14,4	9.49875	I30,7	71 $37^{\circ} \mathrm{II} 1.01$
. 251	. 94930	3I,4	.31437	94,9	. 97740	14,4	. 49745	I3I, I	714037.27
. 252	.94961	3I,3	. 31342	95,0	. 97755	14,3	. 49613	I31,6	714403.54
. 253	. 94993	31,2	. 31247	95,0	. 97769	14,3	. 4948 I	132,0	714729.80
. 254	. 95024	31,2	-3II52	95,0	. 97783	I4,2	. 49349	I 32,5	715056.07
I. 255	0.95055	31,1	0.31057	95, I	9.97797	14,2	9.49216	132,9	715422.33
. 256	. 95086	31,0	. 30962	95, I	.978I2	14, I	. 49083	133,4	715748.60
. 257	.95117	30,9	. 30867	95, I	. 97826	I4, I	. 48950	I 33, 8	72 OI 14.86
. 258	. 95148	30,8	. 30772	95, I	. 97840	14,0	. 48816	134,3	720441.13
. 259	.95178	30,7	. 30677	95,2	. 97854	14,0	.4868I	I 34,7	$\begin{array}{lllll}72 & 08 & 07.39\end{array}$
1.260	0.95209	30,6	0.30582	95,2	9.97868	13,9	9.48546	I 35,2	72 II 33.66
. 261	. 95240	30,5	. 30486	95,2	. 97882	13,9	. 484 II	I 35,7	72 I4 59.92
. 262	. 95270	30,4	. 30391	95,3	. 978195	13,9	. 48275	136,1	72 18 26.19
. 263	. 95300	30,3	. 30296	95,3	. 97909	13,8	.48138	136,6	72 21 52.45
. 264	.9533I	30,2	.30201	95,3	. 97923	13,7	. 48002	I37, I	722518.72
1. 265	0.9536 I	30,1	0.30105	95,4	9.97937	13,7	9.47864	I37,6	$72 \quad 2844.98$
. 266	. 9539 I	30,0	. 30010	95,4	.9795I	13,7	. 47726	I38,0	723211.24
. 267	.9542I	29,9	. 29914	95,4	. 97964	13,6	. 47588	I 38,5	723537.51
. 268	. 95451	29,8	. 29819	95,5	. 97978	13,6	. 47449	I 39,0	$72 \quad 3903.77$
. 269	. 95480	29,7	. 29724	95,5	.97991	13,5	. 47310	I 39,5	724230.04
1.270	0.95510	29,6	0.29628	95,5	9.98005	13,5	9.47170	140,0	$7245 \quad 56.30$
. 271	. 95540	29,5	. 29533	95,5	. 98018	I'3,4	. 47030	140,5	724922.57
. 272	. 95569	29,4	. 29437	95,6	. 98032	I 3,4	. 46889	141,0	$72 \quad 5248.83$
. 273	. 95599	29,3	. 2934 I	95,6	. 98045	I3,3	. 46748	141,5	7256 I5.10
. 274	. 95628	29,2	. 29246	95,6	. 98058	I3,3	. 46606	142,0	725941.36
I. 275	0.95657	29,2	0.29150	95,7	9.98072	I3,2	9.46464	I42,5	$\begin{array}{llll}73 & 03 & 07.63\end{array}$
. 276	. 95686	29,1	. 29054	95,7	. 98085	13,2	.46321	143,0	730633.89
.277	. 95715	29,0	. 28959	95,7	.98098	I3,1	.46178	143,5	731000.16
. 278	. 95744	28,9	. 28863	95,7	.98III	I3, I	. 46034	I44, 1	73 I3 26.42
. 279	. 95773	28,8	. 28767	95,8	.98124	I3,0	. 45890	144,6	73 I6 52.69
I. 280	0.95802	28,7	0. 28672	95,8	9.98137	13,0	9.45745	I45, I	$73 \quad 2018.95$
. 281	. 95830	28,6	. 28576	95,8	. 98150	13,0	. 45600	145,6	$\begin{array}{llll}73 & 23 & 45.22\end{array}$
. 282	. 95859	28,5	. 28480	95,9	.98163	12,9	. 45454	146,2	7327 II. 48
.283	. 95887	28,4	. 28384	95,9	.98176	12,9	. 45307	146,7	$\begin{array}{lllll}73 & 30 & 37.75\end{array}$
. 284	. 95916	28,3	. 28288	95,9	.98189	12,8	. 45160	147,3	7334 04.01
I. 285	0.95944	28,2	0.28192	95,9	9.98202	12,8	9.45013	147,8	$73 \quad 37 \quad 30.28$
. 286	. 95972	28,1	. 28096	96,0	. 98214	12,7	. 44865	148,3	734056.54
. 287	. 96000	28,0	. 28000	96,0	. 98227	12,7	. 44716	148,9	734422.81
.288.	. 96028	27,9	. 27904	96,0	. 98240	12,6	. 44567	149,5	734749.07
. 289	. 96056	27,8	. 27808	96, I	.98252	12,6	. 44417	I 50, 0	7351515.34
I. 290	0.96084	27,7	0.27712	96, I	9.98265	12,5	9.44267	150,6	73 54 41.60
.291	.96III	27,6	. 27616	96, 1	. 98277	12,5	. 44116	I5I, 1	$73 \quad 5807.86$
. 292	. 96139	27,5	. 27520	96, I	. 98290	12,4	.43965	151,7	74 O1 34.13
. 293	.96166	27,4	. 27424	96,2	.98302	I2,4	. 43813	152,3	740500.39
. 294	.96194	27,3	. 27328	96,2	.98315	12,3	. 43660	152,9	$74 \quad 0826.66$
I. 295	0.96221	27,2	0.2723 I	96,2	9.98327	12,3	9.43507	I 53,5	74 II 52.92
. 296	. 96248	27,1	. 27135	96,2	. 98339	12,2	. 43353	154,0	74 15 19.19
. 297	. 96275	27,0	. 27039	96,3	.9835I	I2,2	. 43199	I'54,6	74 18 45.45
. 298	. 96302	26,9	. 26943	96,3	. 98364	12,2	. 43044	1 55,2	7422 II. 72
. 299	. 96329	26,8	. 26846	96,3	. 98376	12,I	. 42888	I 55,8	742537.98
1.300	0.96356	26,7	0.26750	96,4	9.98388	12,I	9.42732	156,4	$74 \quad 2904.25$
u	-isinhiu	$\omega F_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
I. 300	0.96356	25,7	0.26750	96,4	9.98388	I2,I	9.42732	I 56,4	
. 301	. 95383	26,7	. 26654	96,4	. 98400	12,0	. 42575	157,0	$7432 \begin{array}{llll}73 & 30.51\end{array}$
. 302	. 96409	26,6	. 26557	96,4	. 98412	12,0	. 42418	157,7	$\begin{array}{lllllllllllllllll}74 & 35 & 56.78\end{array}$
. 303	. 96436	26,5	. 26461	96,4	. 98424	II,9	. 42260	158,3	743923.04
. 304	. 96462	26,4	. 26364	96,5	. 98436	I 1,9	. 42102	158,9	744249.31
I. 305	0.96488	26,3	0.26268	96,5	9.98447	I I, 8	9.41942	159,5	$\begin{array}{lllllllllllll}74 & 46 & 15.57\end{array}$
. 306	. 96515	26,2	. 26171	96,5	. 98459	I 1 , 8	. 41782	160,2	744941.84
. 307	. 9654 I	26,1	. 26075	96,5	. 98471	II,7	. 41622	160,8	745308.10
. 308	. 96567	26,0	. 25978	96,6	. 98483	I I,7	.4146I	161,4	$74 \quad 5634 \cdot 37$
. 309	. 96593	25,9	. 25882	96,6	. 98494	I 1,6	. 41299	162,I	750000.63
1.3IO	0.966 I 8	25,8	0. 25785	96,6	9.98506	11,6	9.41137	162,7	$\begin{array}{llll}75 & 03 & 26.90\end{array}$
.311	. 96644	25,7	. 25688	96,6	.98518	I 1,5	. 40974	163,4	750653.16
. 312	. 96670	25,6	. 25592	96,7	. 98529	II,5	. 40810	164,0	75 10 19.43
. 313	. 96695	25,5	. 25495	96,7	. 98541	I I,5	. 40646	164,7	$\begin{array}{lllllllllll}75 & 13 & 45.69\end{array}$
. 314	. 96721	25,4	. 25398	96,7	. 98552	I I,4	. 4048 I	165,4	75 I7 II.95
I.3I5	0.96746	25,3	0.25302	96,7	9.98563	II,4	9.40315	166, 1	$\begin{array}{llll}75 & 20 & 38.22\end{array}$
. 3116	. 96771	25,2	. 25205	96,8	. 98575	II,3	. 40148	166,7	$75 \quad 24 \quad 04.49$
. 317	. 96797	25, I	. 25108	96,8	. 98586	I I, 3	. 3998 I	167,4	$75 \quad 2730.75$
. 318	. 96822	25,0	. 2501 I	96,8	. 98597	II,2	-39814	168, 1	$75 \quad 3057.01$
. 319	. 96847	24,9	. 24914	96,8	. 98608	II,2	. 39645	168,8	753423.28
1.320	0.96872	24,8	0.24818	96,9	9.98620	II, I	9.39476	169,5	753749.54
. 321	. 96896	24,7	. 24721	96,9	.9863I	II, I	- 39306	170,2	75 4I 15.8I
. 322	. 9692 I	24,6	. 24624	96,9	. 98542	II,O	. 39135	170,9	754442.07
. 323	. 96946	24,5	. 24527	96,9	. 98653	I I, 0	. 38964	I71,7	754808.34
. 324	. 96970	24,4	. 24430	97,0	. 98664	10,9	. 38792	172,4	755134.60
I. 325	0.96994	24,3	0.24333	97,0	9.98675	10,9	9.38619	I73,1	
. 326	.97019	24,2	. 242336	97,0	. 98686	10,8	. 38446	173,9	755827.13
. 327	. 97043	24, I	. 24 I'39	97,0	.98696	10,8	-38272	174,6	76 or 53.40
. 328	. 97067	24,0	. 24042	97, I	.98707	10,8	-38097	I75,3	760519.66
. 329	.9709I	23,9	. 23945	97, I	.98718	10,7	. 3792 I	176,1	760845.93
I. 330	0.97115	23,8	0. 23848	97, I	9.98729	10,7	9.37744	176,9	76 12 12.19
. 331	. 97139	23,8	. 23750	97, I	. 98739	10,6	. 37567	177,6	76 I5 38.46
. 332	. 97162	23,7	. 23653	97,2	. 98750	10,6	-37389	178,4	$76 \quad 1904.72$
. 333	.97186	23,6	. 23556	97,2	. 98760	10,5	- 37210	179,2	762230.99
. 334	. 97209	123,5	. 23459	97,2	.98771	10,5	.3703I	180,0	762557.25
I. 335	0.97233	23,4	0.23362	97,2	9.9878r	10,4	9.36851	180,8	762923.52
. 336	. 97256	23,3	. 23264	97,3	. 98792	10,4	. 36669	181,6	763249.78
. 337	. 97279	23,2	.23167	97,3	. 98802	10,3	. 36487	182,4	763616.05
. 338	. 97303	23,1	.23070	97,3	. 98812	10,3 IO,3	. 36305	183,2 184,0	$\begin{array}{llll}76 & 39 & 42.31 \\ 76 & 43 & 08.58\end{array}$
. 339	. 97326	23,0	. 22973	97,3	. 98823	10,3	.3612I	184,0	764308.58
I. 340	0.97348	22,9	0.22875	97,3	9.98833	10,2	9.35937	184,8	764634.84
. 341	. 97371	22,8	. 22778	97,4	. 98843	10,2	- 3575 I	185,7	7650 O1. 11
. 342	. 97394	22,7	.2268I	97,4	. 98853	10, I	-35565	186,5	765327.37
. 343	. 97417	22,6	. 212583	97,4	. 98863	10,1	- 35378	187,3	765653.63
. 344	. 97439	22,5	. 22486	97,4	. 98873	10,0	.35191	188,2	770019.90
I. 345	0.97462	22,4	0.22388	97,5	9.98883	10,0	9.35002	189,1	$\begin{array}{llll}77 & 03 & 46.16\end{array}$
. 346	. 97484	22,3	. 22291	97,5	. 98893	9,9	-34813	189,9	770712.43
. 347	. 97506	22,2	. 22193	97,5	. 98903	9,9	. 34622	190,8	77 10 38.69
. 348	. 97528	22,1	. 22096	97,5	. 98913	9,8	. 34431	191,7	$\begin{array}{llll}77 & 14 & 04.96\end{array}$
. 349	. 97550	'22,0	. 21998	97,6	. 98923	9,8	- 34239	192,6	77 I7 3I. 22
1.350	0.97572	21,9	0.21901	97,6	9.98933	9,7	9.34046	193,5	$77 \quad 2057.49$
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	10 cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
I. 350	0.97572	21,9	0.21901	97,6	9.98933	9,7	9.34046	193,5	$77^{\circ} 20^{\prime} 57.49$
. 351	. 97594	21,8	. 21803	97,6	. 98942	9,7	. 33852	194,4	$77 \quad 2423.75$
- 352	. 97616	21,7	. 21705	97,6	. 98952	9,7	. 33657	195,3	772750.02
. 353	. 97638	21,6	. 21608	97,6	. 98962	9,6	. 3346 I	196,2	$77 \begin{array}{lll}71 & 16.28\end{array}$
. 354	. 97659	2I,5	. 21510	97,7	. 9897 I	9,6	. 33264	197,2	773442.55
I. 355	0.97681	2I,4	0.21413	97,7	9.9858I	9,5	9.33067	198, I	$77 \quad 3808.81$
. 356	. 97702	2I,3	. 2I315	97,7	. 98990	9,5	. 32868	199, I	774135.08
- 357	. 97723	21,2	. 21217	97,7	. 99000	9,4	- 32669	200,0	7745 OI .34
. 358	. 97744	2I, I	. 21119	97,7	. 99009	9,4	. 32468	201,0	77. 48 27.6I
- 359	. 97765	21,0	. 21022	97,8	.99019	9,3	. 32267	202,0	775153.87
- 1.360	0.97786	20,9	0.20924	97,8	9.99028	9,3	9.32064	203,0	775520.14
. 361	. 97807	20,8	. 20826	97,8	. 99037	9,2	. 31861	204,0	775846.40
. 362	. 97828	20,7	. 20728	97,8	. 99046	9,2	. 31656	205,0	$\begin{array}{llll}78 & 02 & 12.67\end{array}$
. 363	. 97849	'20,6	. 20630	97,8	. 99056	9,2	-3145I	206,0	$\begin{array}{llllll}78 & 05 & 38.93\end{array}$
. 364	. 97859	20,5	. 20533	97,9	. 99065	9, I	. 31244	207,0	780905.20
1. 365	0.97890	20,4	0.20435	97,9	9.99074	9,1	9.31037	208,0	78 12 31.46
. 366	. 97910	20,3	. 20337	97,9	. 99083	9,0	. 30828	209, I	78 15 57.73
. 367	. 97931	20,2	. 20239	97,9	. 99092	9,0	. 30619	210, I	78 19 23.99
. 368	.9795I	20,1	. 20141	98,0	.9910I	8,9	. 30408	211,2	$78 \quad 2250.25$
. 369	. 9797 I	20,0	. 20043	98,0	. 99110	8,9	. 30196	212,3	$78 \quad 2616.52$
1.370	0.97991	19,9	0. 19945	98,0	9.99119	8,8	9.29983	213,4	$78 \quad 2942.78$
. 371	. 9801 I	19,8	. 19847	98,0	. 99127	8,8	. 29769	214,5	$78 \quad 3309.05$
. 372	. 98031	19,7	. 19749	98.0	.99136	8,7	. 29554	215,6	$78 \quad 3635 \cdot 31$
. 373	. 98050	19,7	. 19651	98, I	.99145	8,7	. 29338	216,7	7840 OI. 58
. 374	. 98070	19,6	. 19553	98, 1	. 99154	8,7	. 29121	217,8	$78 \quad 43 \quad 27.84$
1.375	0.98089	19,5	0. 19455	-8, 1	9.99162	8,6	9.28903	219,0	7846 54.II
. 376	. 98109	19,4	. 19357	98, I	.9917I	8,6	. 28683	220,1	785020.37
. 377	.98128	19,3	. 19259	9S, I	.99179	8,5	. 28462	221,3	785346.64
. 378	.98147	19,2	. 19160	98, 1	. 99188	8,5	. 28240	222,5	$78 \quad 5712.90$
. 379	.98I66	19,I	. 19062	98,2	.99196	8,4	. 28017	223,7	790039.17
1.380	0.98185	19,0	0. 18964	98,2	9.99205	8,4	9.27793	224,9	
. 38 I	. 98204	18,9	. 18856	98,2	. 99213	8,3	. 27568	226, 1	790731.70
. 382	. 98223	I8,8	. 18768	98,2	. 99221	8,3	. 27341	227,3	79 10 57.96
.383	. 98242	18,7	. 18669	98,2	. 99230	8,3	. 27 I I3	228,5	79 14 24.23
. 384	. 98260	18,6	. 1857I	98,3	. 99238	8,2	. 26884	229,8	79 17 50.49
I. 385	0.98279	18,5	0. 18473	98,3	9.99246	8,2	9.26654	23I, I	79 21 16.76
. 386	. 98297	18,4	. 18375	98,3	. 99254	8, I	. 26422	232,3	792443.02
. 387	.983I6	18,3	. 18276	98,3	. 99262	8,I	. 26189	233,6	$\begin{array}{lllllllllll}79 & 28 & 09.29\end{array}$
. 388	. 98334	18,2	. 18ı78	98,3	. 99270	8,0	. 25955	234,9	79 3I 35.55
. 389	. 98352	18,1	. 18080	98,4	. 99278	8,0	. 25719	236,3	7935 O1. 82
1.390	0.98370	18,0	0.17981	98,4	9.99286	7,9	9.25482	237,6	$79 \quad 38 \quad 28.08$
.391	. 98388	17,9	. 17883	98,4	. 99294	7,9	. 25244	238,9	79 41 54.35
. 392	.98406	17,8	. 17785	98,4	. 99302	7,8	. 25004	240,3	794520.61
- 393	. 98424	17,7	. 17686	98,4	.993IO	7,8	.24763	241,7	794846.88
. 394	.9844'	17,6	. 17588	S8,4	. 99318	7,8	. 2452 I	243, I	7952 I3.14
1.395	0.98459	17,5	0.17489	98,5	9.99325	7,7	9.24277	244,5	795539.40
- 396	. 98476	17,4	. 17391	98,5	. 99333	7,7	. 24032	245,9	795905.67
- 397	-98494	17,3	. I7292	98,5	.9934 I	7,6	. 23785	247,4	$\begin{array}{cccc}80 & 02 & 31.93 \\ 80 & 05 & 58.20\end{array}$
- 398	. 9851 I	17,2	. 17194	c8,5	. 99348	7,6	. 23537	248,8	80 0558.20
. 399	. 98528	17,1	. 17095	98,5	. 99356	7,5	. 23288	250,3	800924.46
1.400	0.98545	17,0	0.16997	98,5	9.99363	7,5	9.23036	251,8	801250.73
u	-isinh $i u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	\log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.400	0.98545	17,0	0. 16997	98,5	9.99363	7,5	9.23036	251,8	$80^{\circ} 12 \times 50 \prime \prime 73$
. 401	. 98562	16,9	. 16898	98,6	. 9937 I	7,4	. 22784	253,3	801616.99
. 402	. 98579	16,8	. 16800	98,6	. 99378	7,4	. 22530	254,8	80 I9 43.26
. 403	. 98596	16,7	. 16701	98,6	. 99386	7,4	. 22274	256,4	$80 \quad 2309.52$
. 404	. 98612	16,6	. 16602	98,6	. 99393	7,3	. 22017	258,0	$80 \quad 2635.79$
1.405	0.98629	16,5	0. 16504	98,6	9.99400	7,3	9.21758	259,5	803002.05
. 406	. 98645	16,4	. 16405	98,6	. 99408	7,2	. 21498	26I, I	8033128.32
. 407	. 98662	16,3	. 16306	98,7	. 99415	7,2	. 21236	262,8	80
. 408	. 98678	16,2	. 16208	98,7	. 99422	7,1	. 20972	264,4	804020.85
. 409	. 98694	16,1	. 16109	98,7	. 99429	7,1	. 20707	266, I	8043 47.II
1.410	0.98710	16,0	0.16010	98,7	9.99436	7,0	9.20440	267,8	$80 \quad 4713.38$
. 411	. 98726	15,9	. 15912	98,7	. 99443	7,0	. 20172	269,5	805039.64
. 412	. 98742	15,8	. 15813	98,7	. 99450	7,0	. I990I	271,2	805405.91
. 413	. 98758	15,7	. 15714	98,8	. 99457	6,9	. 19629	272,9	805732.17
. 414	. 98773	15,6	. 15615	98,8	-99464	6,9	. 19355	274,7	81 0058.44
1.415	0.98789	15,5	0.15517	98,8	9.99471	6,8	9. 19080	276,5	8 I 0424.70
. 416	. 98804	15,4	. 15418	98,8	. 99478	6,8	. 18802	278,3	81 0750.97
. 417	. 98820	15,3	. 15319	98,8	. 99484	6,7	. 18523	280,2	81 II I7.23
. 418	. 98835	15,2	. 15220	98,8	.99491	6,7	. 18242	282,0	81 14 43.50
. 419	. 98850	I'5, I	. 15121	58,9	. 99498	6,6	. 17959	283,9	81 1809.76
1.420	0.98865	15,0	0. 15023	98,9	9.99504	6,6	9.17674	285,8	81 2136.02
. 42 I	. 98880	14,9	. 14924	98,9	.995 I I	6,6	. 17388	287,8	81 2502.29
. 422	. 98895	14,8	. 14825	98,9	. 99517	6,5	. I7099	289,7	$\begin{array}{llllllllll}81 & 28 \\ 81\end{array}$
. 423	. 98910	14,7	. 14726	88,9	. 99524	6,5	. 16808	291,7	81 3154.82
. 424	. 98924	14,6	. 14627	98,9	. 99530	6,4	. 16515	293,7	81 3521.08
I. 425	0.98939	14,5	0.14528	c8,9	9.99537	6,4	9.1622I	295,8	81 3847.35
. 426	. 98954	14,4	. 14429	99,0	. 99543	6,3	. 15924	297,8	81 42 I3.6I
. 427	. 98968	14,3	. I4330	99,0	. 99549	6,3	. 15625	299,9	81 4539.88
. 428	. 98982	14,2	. 14231	99,0	. 99556	6,2	. 15324	302,1	81 49006.14
. 429	. 98996	14, 1	. 14132	99,0	. 99562	6,2	. 1502 I	304,2	81 5232.41
1.430	0.99010	14,0	0. I4033	99,0	9.99568	6,2	9.14716	306,4	815558.67
. 431	. 99024	13,9	. 13934	99,0	. 99574	6,1	. 14408	308,6	81 5924.94
. 432	. 99038	13,8	. 13835	99,0	. 99580	6,1	. 14098	310,9	82025 I .20
. 433	. 99052	13,7	. 13736	99, I	. 99586	6,0	. 13786	313,2	820617.47
. 434	. 99066	13,6	. I3637	99, I	. 99592	6,0	. 13472	315,5	$820943 \cdot 73$
I. 435	. 99079	13,5	0. 13538	99,1	9.99598	5,9	9.13r55	317,8	82 I3 10.00
. 436	. 99093	I 3,4	. 13439	99, 1	. 99604	5,9	. 12836	320,2	82 16 36.26
. 437	.99106	I3,3	. 13340	99,1	.99610	5,8	. 12515	322,7	$82 \quad 2002.53$
. 438	.99120	13,2	. 13241	99, I	.96616	5,8	. 12191	325, I	$\begin{array}{lllll}82 & 23 & 28.79\end{array}$
. 439	.99I33	13,I	. 13142	99, I	. 99622	5,8	. 11865	327,6	822655.06
I. 440	0.99146	13,0	0. 13042	99, I	9.99627	5,7	9.11536	330, 1	823021.32
. 44 I	. 99159	12,9	. 12943	99,2	. 99633	5,7	. 11204	332,7	823347.59
. 442	.99172	12,8	. 12844	99,2	. 99639	5,6	. 10870	335,3	823713.85
. 443	. 99185	12,7	. 12745	99,2	. 99644	5,6	. 10534	338,0	824040.12
. 444	. 99197	12,6	. 12646	99,2	. 99650	5,5	. 10194	340,7	824406.38
1.445	0.99210	12,5	0. 12546	99,2	9.99655	5,5	9.09852	343,4	824732.65
. 446	. 99222	12,4	. 12447	99,2	. 99661	5,4	. 09507	346,2	825058.91
. 447	. 99235	12,3	. 12348	99,2	. 99666	5,4	. 09160	349,0	825425.17
. 448	. 99247	12,2	. 12249	99,2	. 99672	5,4	. 08809	351,9	825751.44
. 449	. 99259	12,1	. 12150	99,3	. 99677	5,3	. 08456	354,8	83 ol 17.70
1.450	0.99271	12,1	0.12050	99,3	9.99682	5,3	9.08100	357,8	$83 \quad 443.97$
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh \mathrm{iu}}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	ωF_{0}^{\prime}	u
1.450	0.99271	12,1	0.12050	99,3	9.99682	5,3	9.08100	357,8	$83 \stackrel{\circ}{04} 43.97$
.451	. 99283	12,0	. 11951	99,3	. 99588	5,2	. 07740	300,8	83 OS 10.23
. 452	. 99295	I 1,9	. 11852	99,3	. 99693	5,2	. 07378	363,9	83 II 36.50
. 453	. 99307	I I, 8	. 11752	99,3	.99598	5, I	. 07013	367,0	831502.76
. 454	. 993 I9	I 1,7	. II653	99,3	. 99703	5, I	. 06644	370, I	83 I8 29.03
1. 455	0.99330	II,6	0. II 554	99,3	9.99708	5, I	9.06272	373,4	832155.29
. 456	. 99342	I I,5	. I I 454	99,3	. 99713	5,0	. 05877	376,7	$8325 \quad 21.56$
. 457	. 99353	II,4	. II 355	99,4	. 99718	5,0	.05519	380,0	$83 \quad 2847.82$
. 458	. 99365	II,3	. I1256	99,4	. 99723	4,9	.05137	383,4	$83 \quad 32 \quad 14.09$
. 459	. 99376	II,2	. III 56	99,4	. 99728	4,9	. 04752	386,8	833540.35
1. 460	0.99387	I I, I	0. 11057	99,4	9.99733	4,8	9.04364	390,4	$83 \quad 3906.62$
. 461	. 99398	I I, 0	. 10958	99,4	. 99738	4,8	. 03971	394,0	834232.88
. 462	. 99409	10,9	. 10858	99,4	. 99742	4,7	. 03576	397,6	834559.15
.463	. 99420	10,8	. 10759	99,4	. 99747	4,7	. 03176	401,3	834925.41
. 464	. 99430	10,7	. 10659	99,4	. 99752	4,7	. 02773	405, I	835251.68
1.465	0.99441	10,6	0.10560	99,4	9.99756	4,6	9.02366	409,0	$83 \quad 5617.94$
. 466	. 9945 I	10,5	. 10460	99,5	. 99761	4,6	. 01955	412,9	835944.21
. 467	. 99462	10,4	. 10361	99,5	. 99766	4,5	. 01540	416,9	840310.47
. 468	. 99472	10,3	. 10262	99,5	. 99770	4,5	. 01121	421,0	840636.74
.469	. 99482	10,2	. 10162	99,5	. 99775	4,4	.00698	425,2	841003.00
1.470	0.99492	10, 1	0. 10063	99,5	9.99779	4,4	9.00271	429,4	8413329.27
. 471	. 99502	10,0	. 09963	99,5	. 99783	4,3	8.99839	433,7	841655.53
. 472	. 99512	9,9	. 09864	99,5	. 99788	4,3	. 99403	438,2	842021.79
. 473	. 99522	9,8	. 09764	99,5	. 99792	4,3	. 98963	442,7	842348.06
. 474	. 99532	9,7	. 09665	99,5	. 99796	4,2	. 98518	447,3	$8+27$ I4.32
1.475	0.99542	9,6	0.09565	99,5	9.99800	4,2	8.98068	452,0	843040.59
. 476	. 9955 I	9,5	. 09465	99,6	.99805	4,1	.97614	456,8	843406.85
. 477	. 99560	9,4	. 09366	99,6	. 99809	4,1	. 97155	461,7	843733.12
. 478	. 99570	9,3	. 09266	99,6	.99813	4,0	.96691	466,7	844059.38
. 479	. 99579	9,2	.09167	99,6	.99817	4,0	. 96222	471,8	844425.65
I. 480	0.99588	9, I	0.09067	99,6	9.99821	4,0	8.95747	477,0	844751.91
. 481	. 99597	9,0	. 08968	99,6	. 99825	3,9	. 95267	482,3	845 I 18.18
. 482	. 99606	8,9	. 08858	99,6	. 99829	3,9	. 94782	487,8	845444.44
. 483	. 99615	8,8	. 08768	99,6	. 99832	3,8	. 94292	493,4	845810.71
. 484	. 99624	8,7	. 08669	99,6	. 99836	3,8	. 93796	499, I	85 or 36.97
I. 485	0.99632	8,6	0.08569	99,6	9.99840	3,7	8.93294	504,9	850503.24
. 485	. 99641	8,5	. 08.869	99,6	. 99844	3,7	. 92786	510,9	$8508 \quad 29.50$
. 487	. 99649	8,4	. 08370	99,6	. 99847	3,6	. 92272	517, I	85 II 55.77
. 488	. 99657	8,3	. 08270	99,7	.9985I	3,6	.9175I	523,3	85
. 489	. 99656	8,2	.08171	99,7	. 99855	3,6	. 91225	529,8	$85 \quad 1848.30$
1.490	0.99674	8,1	0.08071	99,7	9.99858	3,5	8.90692	536,3	852214.56
. 491	. 99682	8,0	. 07971	99,7	. 99862	3,5	. 90152	543, I	852540.83
. 492	. 99690	7,9	. 0787 I	99,7	. 99865	3,4	. 89606	550,0	$85 \quad 2907.09$
. 493	. 99698	7,8	. 07772	99,7	. 99868	3,4	.89052	557, 1	853233.36
. 494	. 99705	7,7	. 07672	99,7	.99872	3,3	. 8849 I	564,4	853559.62
1.495	0.99713	7,6	0.07572	99,7	9.99875	3,3	8.87923	571,9	853925.89
. 496	. 99720	7,5	. 07473	99,7	. 99878	3,3	. 87348	579,6	854252.15
. 497	. 99728	7,4	. 07373	99,7	. 99882	3,2	. 86764	587,4	854618.41
. 498	. 99735	7,3	. 07273	99,7	. 99885	3,2	. 86173	595,5	854944.68
. 499	. 99742	7,2	. 07173	99,7	. 99888	3,I	.85573	603,9	$85 \quad 5310.94$
1.500	0.99749	7,1	0.07074	99,7	9.9989 I	3,1	8.84965	612,4	855637.21
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Smithsonian Tables

Circular Fúnctions.

u	$\boldsymbol{\operatorname { s i n }} 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{F}_{0}{ }^{\circ}$	$\log \sin u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1. 500	0.99749	7,I	0.07074	99,7	9.99891	3,I	8.84965	612,4	$85^{\circ} 56^{\prime} 37^{\prime \prime} .21$
. 501	. 99757	7,0	. 06974	99,8	. 99894	3,1	. 84348	621,2	860003.47
. 502	. 99763	6,9	. 06874	99,8	-99897	3,0	. 83722	630,3	860329.74
. 503	. 99770	6,8	. 06774	99,8	-99900	2,9	. 83087	639,6	860656.00
. 504	. 99777	6,7	. 06675	99,8	-99903	2,9	. 82443	649,2	851022.27
1.505	0.99784	6,6	0.06575	99,8	9.99906	2,9	8.81789	659,1	86 I3 48.53
. 506	. 99790	6,5	. 06475	99,8	. 99909	2,8	.81125	669,3	861714.80
. 507	. 99797	6,4	. 06375	99,8	. 99912	2,8	. 80450	679,8	862041.06
. 508	. 99803	6,3	. 06276	99,8	. 99914	2,7	. 79765	690,7	$86 \quad 24$ 07.33
. 509	. 99809	6,2	.06176	99,8	. 99917	2,7	. 79069	701,9	$86 \quad 2733.59$
1.510	0.99815	6,1	0.05076	99,8	9.99920	2,6	8.78361	713,5	863059.86
. 511	.99821	6,0	. 05976	99,8	. 99922	2,6	. 77642	725,4	863426.12
. 512	. 99827	5,9	. 05876	99,8	-99925	2,6	. 76910	737,8	863752.39
.513	. 99833	5,8	. 05776	99,8	-99927	2,5	. 76166	750,6	864118.65
. 514	.94839	5,7	. 05677	99,8	-99930	2,5	. 75409	763,8	864444.92
1.515	0.99844	5,6	0.05577	99,8	9.99932	2,4	8.74638	777,5	8648 II. 18
. 516	. 99850	5,5	. 05477	99,8	-99935	2,4	. 73853	791,8	865137.45
. 517	- 99855	5,4	. 05377	99,9	-99937	2,3	. 73054	806,5	865503.71
. 518	. 9986 I	5,3	. 05277	99,9	-99939	2,3	. 72240	821,8	865829.98
. 519	. 99866	5,2	. 05177	99,9	. 99942	2,3	. 71410	837,7	87 O1 56.24
1.520	0.99871	5,1	0.05077	99,9	9.99944	2,2	8.70565	854,2	870522.51
. 521	. 99876	5,0	. 04978	99,9	. 99946	2,2	. 69702	871,4	8708.48 .77
. 522	. 99881	4,9	. 04878	99,9	. 99948	2,I	. 68821	889,3	$\begin{array}{lllll}87 & 12 & 15.04 \\ 87 & 15 & 41\end{array}$
. 523	. 99886	4,8	. 04778	99,9	. 99950	2,I	. 67923	907,9	$\begin{array}{llll}87 & 15 & 41.30\end{array}$
. 524	. 99891	4,7	. 04678	99,9	-99952	2,0	. 67005	927,4	871907.56
1.525	0.99895	4,6	0.04578	99,9	9.99954	2,0	8.66068	947,7	872233.83
. 526	. 99900	4,5	. 04478	99,9	. 99956	1,9	. 65110	968,8	872600.09
. 527	. 99904	4,4	. 04378	99,9	. 95958	1,9	. 64130	991,0	872926.36
. 528	. 99908	4,3	. 04278	99,9	. 99960	1,9	. 63127	1014,2	873252.62
. 529	. 99913	4,2	. 04178	99,9	. 99962	I,8	. 62101	1038,5	873618.89
1.530	0.99917	4,1	0.04079	99,9	9.99964	1,8	8.61050	1064,0	873945.15
. 531	. 99921	4,0	. 03979	99,9	. 99966	I,7	. 59973	1090,7	8743 II. 42
. 532	. 99925	3,9	.03879	99,9	. 99967	I,7	. 58868	I 1 18,9	874637.68
. 533	. 99929	3,8	. 03779	99,9	. 99969	I,6	. 57735	1148,5	875003.95
. 534	. 99932	3,7	. 03679	99,9	. 9997 I	I,6	. 56571	1179,7	875330.21
1. 535	0.99936	3,6	0.03579	99,9	9.99972	1,6	8.55375	1212,7	875656.48
. 536	. 99939	3,5	. 03479	99,9	. 99974	I,5	. 54145	1247,6	88 0022.74
. 537	. 99943	3,4	. 03379	99,9	-99975	1,5	- 52879	1284,5	$8_{88}^{88} 0349.01$
. 538	. 99946	3,3	. 03279	99,9	-99977	I,4	. 51575	1323,7	88 O7 815.27
- 539	- 99949	3,2	. 03179	99,9	. 99978	I,4	. 50230	1365,4	88 10 41.54
1. 540	0.99953	3,1	0.03079	100,0	9.99979	I,3	8.48843	I409,8 I457, I	
.541	. 99956	3,0	. 02979	100,0	-9998I	I,3	-47410	1457,1	$\begin{array}{llll}88 & 17 & 34.07 \\ 88 & 21 & 00.33\end{array}$
. 542	- 99959	2,9	. 02879	100,0	-99982	1,3	- 45928	1507,7	88 212100.33
. 543	. 99961	2,8	. 02779	100,0	- 95983	I,2	- 44393	1562,0	88 $24 \begin{array}{ll}26.60\end{array}$
- 544	. 99964	2,7	. 02679	100,0	. 99984	1,2	. 42802	1620,3	$88 \quad 2752.86$
I. 545	0.99967	2,6	0.02579	100,0	9.99986	I, I	8.41151	1683,2	883119.13
. 546	. 99969	2,5	. 02479	100,0	. 99987	I, I	- 39434	1751,1	88 3445.39
. 547	. 99972	2,4	. 02379	100,0	- 99988	1,0	-37647	1824,7	883811.66
- 548	. 99974	2,3	. 02279	100,0	. 99989	1,0	- 35783	1904,8	
- 549	. 99976	2,2	. 02179	100,0	. 99990	0,9	. 33835	1992,2	8845 04.18
1. 550	0.99978	2,I	0.02079	100,0	9.99991	0,9	8.31796	2088,0	884830.45
u	-i sinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.550	0.99978	2,I	+0.02079	100,0	9.99991	0,9	8.31796	2088,0	$88^{\circ} 48^{\prime} 30^{\prime \prime} .45$
. 551	. 99980	2,0	. 01980		.9999I	0,9	. 29656	2193,5	885 5 56.7 I
. 552	. 99982	1,9	. 01880		. 99992	0,8	. 27405	2310,3	$8855 \quad 22.98$
. 553	. 99984	I,8	. 01780		. 99993	0,8	. 2503 I	2440, I	$88 \quad 5849.24$
. 554	. 99986	1,7	. 01680		. 99994	0,7	. 22519	2585,4	8902 I5.5I
1.555	0.99988	1,6	+0.01580	100,0	9.99995	0,7	8. 19854	2749, I	890541.77
. 556	. 99989	I,5	. 01480		. 999995	0,6	. 17014	2934,9	890908.04
. 557	. 99990	I,4	. 01380		. 99996	0,6	. I3975	3147,7	89 I2 $34 \cdot 30$
. 558	. 99992	I,3	. 01280		. 99996	0,6	. 10707	3393,7	891600.57
. 559	. 99993	1,2	. 01180		. 99997	0,5	.07174	3681,4	89 19 26.83
1.560	0.99994	1,I	+0.01080	100,0	9.99997	0,5	8.03327	4022,5	892253.10
. 561	. 99995	1,0	.00980		. 99998	0,4	7.99106	4433, 1	$89 \quad 2619.36$
. 562	. 99996	0,9	. 00880		. 99998	0,4	. 94430	4937, I	892945.63
. 563	. 99997	0,8	. 00780		. 99999	0,3	. 89189	5570,4	8933 II. 89
. 564	. 99998	0,7	. 00680		. 99999	0,3	. 83227	6390,0	893638.16
I. 565	0.99998	0,6	+0.00580	100,0	9.99999	0,3	7.76315	7492,5	894004.42
. 566	. 99999	0,5	. 00480		0.00000	0,2	.6809I	9054,7	894330.69
. 567	. 99999	0,4	.00380		. 00000	0,2	. 57936	I I 439,8	894656.95
. 568	1.00000	0,3	. 00280		. 00000	O, I	. 44659	15530,9	895023.22
. 569	1.00000	0,2	.00180		. 00000	0,1	. 25438	24176,8	895349.48
I. 570	I. 00000	0,I	+0.00080	İ0,0	0.00000	0,0	6.90109	54537,4	$8957 \quad 15.75$
. 571	. 00000	0,0	-. 00020		. 00000	0,0	$6.30894 n$	213228,5	900042.01
. 572	. 00000	O,I	. 00120		. 00000	O, I	7.08051	36080,7	$90 \quad 0408.28$
. 573	. 00000	0,2	. 00220		. 00000	O, I	. 34315	19707,7	$90 \quad 0734.54$
. 574	0.99999	0,3	. 00320		. 00000	O,I	. 50565	13556, I	90 II 00.8 I
1.575	0.99999	0,4	-0.00420	100,0	0.00000	0,2	$7.62363 n$	10331,2	90 I4 27.07
. 576	. 99999	0,5	. 00520		9.99999	0,2	. 7163 I	8345,8	$9017 \quad 53.33$
. 577	. 99998	0,6	. 00620		. 99999	0,3	. 79255	7000,5	902119.60
. 578	. 99997	0,7	. 00720		. 99999	0,3	. 85755	6028,6	902445.86
. 579	. 99997	0,8	. 00820		. 99999	0,4	. 91400	5293,8	9028 I2.I3
1.580	0.99996	0,9	-0.00920	100,0	9.99998	0,4	$7.96396 n$	4718,6	$90 \begin{array}{llll} & 31 & 38.39\end{array}$
. 581	. 99995	I,O	. 01020		. 99998	0,4	8.00875	4256, 1	903504.66
. 582	. 99994	I, I	. 01120		. 99997	0,5	. 04935	3876,2	903838.92
. 583	. 99993	1,2	. 01220		. 99997	0,5	. 08648	3558,5	904157.19
. 584	.9999I	I,3	. 01320		. 99996	0,6	. 12068	3289,0	$9045 \quad 23.45$
I. 585	0.99990	I,4	-0.01420	100,0	9.99996	0,6	8.15239n	3057,4	904849.72
. 586	. 99988	1,5	. 01520		. 99995	0,7	. 18193	2856,3	$90 \quad 52.15 .98$
. 587	. 99987	1,6	.01620		. 99994	0,7	. 20959	2680,0	905542.25
. 588	. 99985	1,7	. 01720		. 99994	0,7	. 23560	2524,2	905908.5 I
. 589	. 99983	1,8	. 01820		. 99993	0,8	. 26014	2385,5	91 0234.78
I. 590	0.99982	1,9	-0.01920	100,0	9.99992	0,8	$8.28336 n$	2261,2	91 06 or. 04
. 591	. 99980	2,0	. 02020		. 9999 I	0,9	. 30540	2149,3	91 0927.3 I
. 592	. 99978	2,I	. 02120		. 99990	0,9	. 32638	2047,9	91 $12 \begin{array}{lll}12 & 53.57\end{array}$
. 593	. 99975	2,2	. 02220		. 99989	1,0	. 34639	1955,6	$91 \quad 16519.84$
. 594	. 99973	2,3	. 02320		. 99988	1,0	. 36552	1871,3	911946.10
1.595	0.99971	2,4	-0.02420	100,0	9.99987	I, I	$8.38384 n$	1794,0	912312.37
. 596	. 99908	2,5	. 02520		. 99986	I, I	. 40142	I722,8	$91 \quad 2638.63$
. 597	. 99966	2,6	. 02620		. 99985	I, I	. 4183 I	1657,0	91 3004.90
. 598	. 99963	2,7	. 02720		. 99984	1,2	. 43457	1 595, 1	9133 3I.16
- 599	. 99960	2,8	. 02820		. 99983	1,2	. 45025	I 539,4	913657.43
1. 600	0.99957	2,9	-0.02920	100,0	9.9998I	I,3	8.46538	1485,7	91 $40 \quad 23.69$
u	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

TABLE IV

THE ASCENDING AND DESCENDING EXPONENTIAL AND $\log _{10}\left(e^{e}\right)$

Note. -In Table IV, for u greater than 2.302, the tabulated values of the ascending exponential may sometimes be erroneous to one unit in the last place.

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathbf{n}}\right)$	$e^{\text {u }}$	e^{-u}
0.000	0.0000000	1.000000	1.000 0000	0.050	0.0217147	1.051271	0.
. 001	. 0004343	. OOI OOI	0.9990005	.05I	. 0221490	. 052323	. 9502787
. 002	. 0008686	. 002002	. 9980020	. 052	.0225833	. 053376	. 9493289
. 003	.001 3029	. 003005	. 9970045	. 053	. 0230176	. 054430	. 9483800
. 004	.OOI 7372	. 004008	. 9960080	. 054	. 0234519	. 055485	. 9474321
0.005	0.0021715	1.005013	0.995 OI25	0.055	0.0238862	1.056541	0.946485 I
. 006	. 0026058	. 006018	. 994 OI80	. 056	.0243205	. 057598	. 9455391
. 007	. 003 0401	.007025	. 9930244	. 057	.0247548	. 058656	. 944 5941
. 008	. 0034744	.008032	. 9920319	. 058	. 025 I89I	. 059715	. 9436499
. 009	.0039087	. 009041	.991 0404	. 059	.0256234	. 060775	.9427068
0.010	0.0043429	1.010050	0.9900498	0.060	0.0260577	1.061837	0.9417645
. OII	. 0047772	. OII 06I	. 9890603	.06I	. 0264920	. 062899	. 9408232
. 012	. 0052115	. 012072	.9880717	. 062	.0269263	. 063962	. 9398829
. 013	.0056458	. 013085	.9870841	. 063	.0273606	. 065027	$\text { . } 9389435$
. 014	. 006 080I	. 014098	.9860975	. 064	. 0277948	. 066092	$.9380050$
0.015	0.0065144	1.015 II3	0.985 III9	0.065	0.028229 I	1.067159	0.9370675
. 016	. 0069487	. 016129	. 9841273	. 066	. 0286634	. 068227	$.9361309$
. 017	. 0073830	. 017145	. 9831437	. 067	. 0290977	. 069295	. 9351952
. 018	. 007 8173	. 018163	.9821610	. 068	. 0295320	. 070365	. 9342605
. 019	. 0082516	. 019182	.981 1794	. 069	. 0299663	. 071436	. 9333267
0.020	0.0086859	1.020201	0.9801987	0.070	0.0304006	1.072508	0.932 .3938
.02I	. 0091202	.021 222	. 9792190	. 071	. 0308349	. 073 581	. 9314619
. 022	. 0095545	. 022244	. 9782402	. 072	.031 2692	. 074655	. 9305309
. 023	. 0099888	.023267	.9772625	. 073	.031 7035	.075731	. 9296008
. 024	. 010423 I	.024290	. 9762857	. 074	.0321378	. 076807	. 9286717
0.025	0.010 8574	1.025315	0.9753099	0.075	0.0325721	1.077884	0.9277435
. 026	. OII 2917	. 02634 I	. 974335 I	. 076	. 0330064	. 078963	. 9268162
. 027	. O1I 7260	.027368	. 9733612	. 077	.0334407	. 080042	.9258899
. 028	. 0121602	. 028396	.9723884	. 078	.0338750	.081 123	. 9249644
. 029	. 0125945	.029425	. 9714165	. 079	.0343093	. 082204	. 9240399
0.033	0.0130288	I. 030455	0.9704455	0.080	0.0347436	1.083287	0.9231163
. 031	. 0134631	.031 486	. 9694756	.08I	. 0351779	. 084371	. 9221937
. 032	. O13 8974	.032518	. 9685066	. 082	.035 612I	.085456	. 9212720
. 033	. 0143317	. 033551	. 9675386	. 083	.0360464	. 086542	. 920 3511
. 034	.0147660	. 034585	. 9665715	. 084	.0364807	. 087629	. 9194313
0.035	0.0152003	1.035620	0.9656054	0.085	0.0369150	1.088717	0.9185123
. 036	. O15 6346	. 036656	. 9646403	. 086	. 0373493	. 089806	. 9175942
. 037	. 0160689	. 037693	. 9636761	. 087	.0377836	. 090897	.916 6771
. 038	. 0165032	. 038731	. 9627129	. 088	. 0382179	. 091988	.915 7609
. 039	. 0169375	. 039770	.961 7507	. 089	. 0386522	. 093 08I	.914 8456
0.040	0.0173718	I. 040 8II	0.9607894	0.090	0.0390865	1.094174	
. 041	. 01788061	.041852	. 9598291	.091	. 0395208	. 095269	.913 0177
. 042	. 0182404	. 042894	. 9588698	. 092	. 039 955I	. 096365	. 9121051
. 043	. 0186747	.043938	. 957 9114	. 093	. 0403894	$.097462$	$\text { .9II } 1935$
. 044	. 0191090	. 044982	. 9569540	. 094	. 0408237	. 098560	.910 2828
0.045	0.0195433	1.046028	0.9559975	0.095	0.0412580	1.099659	0.9093729
. 046	. 0199775	. 047074	. 9550420	. 096	.041 6923	. 100759	. 9084640
. 047	. 0204118	. 048122	. 9540874	. 097	. 0421266	. IOI 860	. 9075560
. 048	. 0208461	. 049 171	. 9531338	. 098	.0425609	. 102963	. 9066489
. 049	.021 2804	. 050220	. 952 I8II	. 099	. 0429952	. 104066	. 9057427
0.050	0.0217147	1.051271	0.95I 2294	0.100	0.0434294	1. 105 I 71	0.9048374
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\text {u }}\right.$)	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-0}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right.$)	e^{u}	e^{-u}
0.100	0.0434294	I. 105 I7I	0.9048374	0.150	0.0651442	I. 161 834	0.8607080
. IOI	. 0438637	. 106277	. 9039330	. 151	. 0655785	. 162997	. 8598477
. 102	. 0442980	. 107383	.9030296	. 152	. 0660128	. 164160	. 8589883
. 103	. 0447323	. 10849 I	. 9021270	. I53	. 0664471	. 165325	.8581297
. 104	. 0451666	. 109600	. 9012253	. 154	. 0668814	. 166491	. 8572720
0.105	0.0456009	I.IIO 711	0.9003245	0.155	0.0673156	1.167658	0.8564152
. 105	. 0460352	. III 822	. 8994246	. 156	. 0677499	. 168826	. 8555592
. 107	. 0464695	. II2 934	. 8985257	. 157	. 068 1842	. 169996	. 8547041
. 108	. 0469038	. II4 048	.8976276	. 158	. 068 6185	. 171166	. 8538498
. 109	. 047 3381	. 115162	.8967304	. 159	. 0690528	. 172338	. 8529964
0.110	0.0477724	I.II6 278	0.8958341	0.160	0.069487 I	1.173511	0.8521438
. III	. 0482067	. II7 395	. 8949387	. 161	. 0699214	. 174685	. 8512921
. II2	. 048 6410	. 118513	. 8940443	. 162	.0703557	. 175860	.8504412
. II3	. 0490753	. II9 632	. 8931507	. 163	.0707900	-. 177037	.8495912
. II4	. 0495096	. 120752	. 8922580	. 164	. 0712243	.178 214	.8487420
0.115	0.0499439	I. 121873	0.8913661	0. 165	0.071 6586	1. I79 393	0.8478937
. 116	. 0503782	. 122996	. 8904752	. 166	. 0720929	.180 573	. 8470462
. 117	. 050 8125	. 124119	. 8895852	. 167	. 0725272	. 181 754	. 8461996
. II8	.051 2467	. 125244	. 888 6961	: 168	. 0729615	. 182937	.8453538
. 119	.051 6810	. 126370	.8878078	. 169	.0733958	. 184120	. 8445089
0. 120	0.052 II53	1.127497	0.8869204	0.170	0.0738301	I. 185305	0.8436648
. 121	.0525496	. 128625	. 8860340	. 171	. 074 2644'	. 186491	. 8428216
. 122	.0529839	. 129754	. 8851484	. 172	.0746987	.187678	. 8419792
.123	.0534182	. 130884	. 8842637	.173	.0751329	. 188866	.841 1376
. 124	. 0538525	. 132 OI6	.8833798	. 174	.0755672	. 190056	. 8402969
0.125	0.0542868	I. 133148	0.8824969	0.175	0.0760015	I.I91 246	0.8394570
. 126	. 054 7211	. I34 282	.88I 6148	. 176	. 0764358	. 192438	. 838 6180
. 127	. 0551554	. 135417	. 8807337	. 177	. 0768701	. 193631	. 8377798
. 128	. 0555897	. 136 553	. 8798534	. 178	. 0773044	. 194825	. 8369424
. 129	.0560240	. 137690	.8789740	. 179	.0777387	. 19602 I	.8361059
0.130	0.0564583	I. 138828	0.8780954	0. 180	0.0781730	I. 197217	0.8352702
. I3 I	. 0568926	- I39 968	. 8772178	. 181	. 0786073	. 1984 r 5	. 8344354
. 132	.0573269	. 141108	. 8763410	. 182	.0790416	. 199614	. 8336013
. I33	.0577612	. I42 250	. 8754651	. 183	. 0794759	. 200 8I4	. 8327682
. 134	. 0581955	. 143393	. 8745901	. 184	.0799102	. 202016	. 8319358
0.135	0.0586298	1.144 537	0.8737159	0. 185	0.0803445	1.203218	0.8311043
. 136	. 0590640	.145 682	. 8728426	. 186	. 0807788	. 204422	. 8302736
. 137	.0594983	. 146828	. 8719702	. 187	.08I 213 I	. 205627	. 8294437
. 138	. 0599326	. 147976	. 8710987	. 188	.081 6474	.206834	.8286147
. 139	. 0603669	. 149124	. 8702280	. 189	. 0820817	.208041	.8277865
0.140	0.0608012	I. 150274	0.8693582	D. 190	0.0825160	I. 209250	0.8269591
. 141	.061 2355	. 151425	. 8684893	. 191	.0829502	. 210459	. 8261326
. 142	.06I 6698	. 152577	.8576213	. 192	. 0833845	.211 671	.8253069
. I43	.0621041	. 153730	. 8667541	. 193	.0838188	. 212883	. 8244820
. I44	. 0625384	. 154884	.8658877	. 194	. 084253 I	.214096	.8236579
0.145	0.0629727	I. 156040	0.8650223	0.195	0.0846874		0.8228347
. I46	. 0634070	. 157196	. 8641577	. 195	.085 1217	. 216527	. 8220122
. 147	.0638413	. 158354	.8632940	. 197	.0855560	. 217744	.821 1905
. 148	. 0642756	. 159513	. 8624311	. 198	.0859903	.218962	.8203699
. 149	. 0647099	. 160673	. 8615691	. 199	. 0864246	. 220182	.819 5499
0.150	0.0651442	I.161 834	0.8607080	0.200	0.0868589	1.221403	0.8187308
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{\text {u }}\right.$)	e^{u}	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-a}	u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right)$	e^{u}	e^{-u}
0.200	0.0868589	1.221403	0.818 7308	0.250	0.108 5736	1.284025	0.7788008
. 20	. 0872932	. 222625	.817 9124	. 251	. 1090079	. 285310	. 7780224
. 20	. 0877275	. 223848	. 8170949	. 252	. 1094422	. 286596	. 7772447
. 203	. 088 1618	. 225072	. 8162782	. 253	. 1098765	. 287883	. 7764679
. 204	. 088 5961	. 226298	.815 4624	. 254	. 1103108	. 289172	. 7756918
0.205	0.0890304	1.227525	0.8146473	0.255	0. 1107451	1.290462	0.7749165
. 206	. 0894647	. 228753	. 8138331	. 256	. 1111794	. 291753	. 7741420
. 207	. 0898990	. 229983	. 8130196	. 257	. 11116137	. 293045	. 7733682
. 208	. 0903333	. 231213	. 8122070	. 258	. 1120480	. 294339	. 7725952.
. 209	. 0907675	. 232445	.8II 3952	. 259	. 1124823	. 295634	. 7718230
0.210	0.0912018	1.233678	$0.810{ }^{5842}$	0.260	0.1129166	1. 296930	0.7710516
. 2	. 0916361	. 234912	. 8097741	. 261	. 1133509	. 298228	. 7702809
. 21	. 0920704	. 236148	. 8089647	. 262	. 1137852	. 299527	. 7635110
. 213	. 0925047	. 237385	. 8081561	. 263	. 1142194	. 300827	. 7687419
. 214	. 0929390	. 2338.623	. 8073484	. 264	. 1146537	-302 128	. 7679735
0.215	0.0933733	1.239862	0.8065414	0.265	0.115 0880	1.303 431	0.767 2059
. 216	. 0938076	. 241102	. 8057353	. 266	. 1155223	. 304735	. 7664391
. 217	. 0942419	. 242344	. 8049300	. 267	. II5 9566	. 306040	. 7656731
. 218	. 0946762	. 243587	. 8041254	. 268	. 1163909	. 307347	. 7649078
. 219	. 0951105	. 244831	. 8033217	. 269	. 1168252	. 308655	. 7641433
0.2	0.0955448	1.246077	0.8025188	0.270	0.117 2595	I. 309964	0.7633795
.	. 0959791	. 247323	. 8017167	. 271	.117 6938	-3II 275	. 7626165
. 222	. 0964134	. 248571	. 8009154	. 272	. 118 1281	. 312587	. 7618543
. 223	. 0968477	. 249821	. 8001148	. 273	. 1185624	. 313900	. 761 0928
. 224	. 0972820	. 251071	. 799 3151	. 274	. 1189967	. 315215	. 7603321
0.225	0.0977163	1.252323	0.7985162		0.119 4310	1.316 531	0.7595721
. 226	. 0981506	. 253576	. 7977181	. 276	. 1198653	- 317848	-.758 8129
.	. 0985848	. 254830	. 7969208	. 277	. 1222996	. 319166	. 7580545
. 228	. 099 о191	. 256085	. 7961243	. 278	. 1207339	. 320486	. 7572968
. 229	. 0994534	. 257342	. 7953285	. 279	. 1211682	. 321807	.7565399
0.230	0.0998877	1.258600	$0.794{ }^{\prime} 5336$	0.280	0.121 6025	1.323130	0.7557837
. 231	. 1003220	. 259859	. 7937395	. 281	. 1220367	-. 324454	. 7550283
. 232	. 1007563	. 261120	. 7929461	. 282	. 1224710	. 325779	. 7542737
. 233	. 1011906	. 262381	. 7921536	.283	. 1229053	. 327105	. 7535198
. 234	. 1016249	. 263644	.791 3618	. 284	. 1233396	. 328433	. 7527656
0.235	0. 1020592	1. 264909	0.790 5708	0.285	0.1237739	1. 329762	0.7520143
. 236	. 1024935	. 266174	. 7897807	. 286	. 1242082	. 331092	. 7512626
. 237	. 1029278	. 267441	. 788 9913	. 287	.124 6425	- 332424	. 7505117
. 238	. 1033621	. 268709	. 7882027	. 288	. 1250768	- 333757	- 7497616
. 239	. 1037964	. 269979	. 7874149	. 289	. 1255111	-335 092	. 749 O122
0.240	0.104 2307	1.271 249	0.7866279	0.290	0.125. 9454	1.336427	0.7482636
. 241	. 1046650	. 272521	. 7858416	. 291	. 1263797	. 337765	. 7475157
. 242	. 1050993	. 273794	. 7850562	. 292	. 1268140	. 339103	. 7467685
. 243	. 1055336	. 275069	. 7842715	. 293	. 1272483	- 340443	. 7460221
. 244	. 1059679	. 276344	.7834876	. 294	. 1276826	-341 784	. 7452765
	0. 1064021	1.277621	0.7827045	0.295	0.1281169	1.343126	0.7445316
. 246	. 1068364	. 278900	. 7819222	. 296	. 1285512	. 344470	. 7437874
. 247	. 1072707	. 280179	. 7811407	. 297	. 1289855	. 345815	. 7430440
. 248	. 1077050	.281 460	. 7803599	. 298	. 1294198	-347 162	. 7423013
. 249	. 1081393	. 282742	. 7795800	. 299	. 129854 I	- 348510	.741 5594
0.250	0.108 5736	1.284025	0.7788008	0.300	0.1302883	1. 349859	0.7408182
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right.$)	$\log _{10}\left(e^{u}\right)$	e^{u}		$\log _{\mathrm{e}}\left(\mathrm{e}^{\text {u }}\right.$)	$\log _{10}\left(e^{u}\right)$	e^{u}	e^{-}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}
0.300	0.130 2883	I. 349859	0.7408182	0.350	0.1520031	1. 419068	0.704 688I
. 301	.130 7226	.351 209	. 7400778	-35I	. I52 4374	. 420487	. 7039838
. 302	. I3I I569	. 352 561	. 739 3381	. 352	. 1528717	. 421909	. 7032801
. 303	. 1315912	. 353914	. 7385991	- 353	. 1533060	. 423 33I	. 7025772
. 304	. 1320255	. 355269	. 7378609	. 354	. 1537402	. 424755	.701 8,50
0.305	-. 132 4598	1. 356625	0.7371234	0.355	0.154 1745	r. 426 181	0.7011734
. 306	. 1328941	. 357982	. 7363866	. 356	. I54 6088	. 427608	. 7004726
. 307	. I33 3284	. 35934 I	. 7356506	- 357	. 155 043'I	. 429036	. 6997725
. 308	. I33 7627	. 360701	.7349153	. 358	. I55 4774	. 430466	. 6990731
. 309	. I34 1970	. 362062	. 7341808	- 359	. I55 91I7	. 43 I 897	.6983744
0.310	0.134 6313	1. 363425	0.7334470	0.360	0.1563460	1.433329	0.6976763
.311	. 1350656	. 364789	. 7327139	. 361	. 1567803	. 434763	. 6969790
. 312	. 1354999	. 366155	.731 98I5	. 362	. 1572146	. 436199	. 6962824
. 313	. 1359342	. 367522	.731 2499	. 363	. 1576489	. 437636	. 6955864
. 314	. 1363685	. 368890	. 7305190	. 364	. 1580832	. 439074	. 6948912
0.315	0.1368028	1.370259	0.7297889	0.365	-. 1585175	1.440514	0.6941967
. 316	. 1372371	. 371630	. 7290595	. 366	. 1589518	. 441955	. 6935028
. 317	. 1376714	. 373003	. 7283308	. 367	. I59 386I	. 443398	. 6928096
. 318	. 1381056	. 374376	.7276028	. 368	. 1598204	. 444842	. 692 II72
. 319	. 1385399	. 37575 I	.7268755	. 369	. 1602547	. 446288	. 6914254
0.320	0.138 9742	1.377 128	0.7261490	0.370	0. 1606890	I. 447735	0.6907343
. 321	. 1394085	. 378506	. 7254233	. 371	. 161 1233	. 449183	. 6900439
. 322	. 1398428	. 379885	. 7246982	. 372	. 1615575	. 450633	. 6893542
. 323	. 1402771	-381 265	. 7239739	. 373	. 1619918	. 452084	. 688 6652
. 324	. 1407114	. 382647	. 7232502	. 374	. 1624261	. 453537	. 6879769
0.325	0.14I 1457	I. 38403 I	0.7225274	0.375	0. 1628604	r. 454 991	0.6872893
. 326	. 1415800	.385415	. 7218052	- 376	. I63 2947	. 456447	. 6866023
. 327	. 1420143	. 38680 l	. 7210837	- 377	. 1637290	. 457904	. 685 9161
. 328	. I42 4486	. 388 189	. 7203630	. 378	. 1641633	. 459363	.6852305
. 329	. I42 8829	.389578	. 7196430	. 379	. 1645976	. 460823	. 6845456
0.330	0.143 3172	1. 390968	0.7189237	0.380	0.1650319	1.462 285	0.6838614
. 331	. 1437515	. 392360	. 7182052	-381	. 1654662	. 463748	. 6831779
. 332	. 1441858	. 393753	. 7174873	- 382	. 1659005	. 465212	. 682495 I
. 333	. 1446201	. 395147	.7167702	. 383	. 1663348	.466678	.68i 8iz9
. 334	. 1450544	. 396543	.7160538	. 384	. 1667691	. 468 I45	.681 13I4
0.335	0.1454887	I. 397940	0.7153381	0.385	0. 1672034	1.469614	0.6804506
. 336	. I45 9229	. 399339	. 7146231	. 386	. 1676377	. 471085	. 6797705
-337	. 1463572	. 400739	. 7139088	. 387	. 1680720	. 472556	. 67909 II
. 338	. 1467915	. 402 I4I	. 7131953	. 388	. 1685063	. 474030	. 6784123
. 339	. 1472258	. 403543	. 7124824	. 389	. 1689406	. 475505	. 6777343
0.340	D. 1476601	I. 404948	0.7117703	0. 390	0.169 3748	I. 47698 I	0.6770569
. 341	. 1480944	. 406353	. 7110589	-39I	. 1698091	. 478459	. 6763802
. 342	. 1485287	. 407760	. 7103482	. 392	. I70 2434	. 479938	. 6757041
- 343	. 1489630	. 409169	. 7096382	- 393	. 170 6777	.48I 418	. 6750287
. 344	. 1493973	. 410579	.7089289	. 394	. 171 I 120	. 482901	. 674 354I
0.345	-. 1498316	1.4II 990	0.7082204	0.395	0.171 5463	I. 484384	0.6736800
. 346	. 1502659	.413 403	. 7075125	. 396	. 1719806	. 485869	. 6730067
- 347	. 1507002	. 414 817	. 7068053	. 397	. I72 4149	. 487356	. 6723340
-348	. I5.1 1345	.416232	. 7060989	. 398	. I72 8492	. 488844	. 6716620
. 349	. 1515688	.417 649	. 705 393I	- 399	. 1732835	. 490334	. 6709907
0.350	D. 1520031	1.419068	0.704 688I	0.400	0.173 7178	1.49I 825	0.6703200
$\log _{\mathrm{e}}\left(\mathrm{e}^{3}\right)$	$\log _{10}\left(e^{u}\right)$	$e^{\text {u }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{n}	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{a}	e^{-a}	4	$\log _{10}\left(\mathrm{e}^{\text {u }}\right.$)	$\mathrm{e}^{\text {a }}$	e^{-u}
0.400	0.173 7178	1.491825	0.6703200	0.450	0.195 4325	1.568312	0.6376282
. 401	. 1741521	-493 317	. 669 6501	.45I	. 1958668	. 56988 I	. 6369908
-402	. 1745864	. 494 81I	. 66898807	-452	. 1963011	-571 452	. 6363542
-403	-1750207	. 496307	. 6683121	-453	. 1967354	. 573024	. 635181
-404	. 1754550	. 497804	. 6676441	-454	. 1971697	. 574598	. 635 082j
0.405	0.1758893	1.499303	0.6669768	0.455	0.1976040	1.576173	0.6344480
- 406	. 1763236	. 500803	. 6663102	. 456	. 1980383	. 577750	. 6338138
. 407	. 1767579	. 502304	. 6666442	. 457	- 1984726	. 579329	. 6331803
-408	. 1771921	. 503807	. 6649789	. 458	. 1989069	. 580909	. 6325475
. 409	. 1776264	. 505312	. 6643142	. 459	. 1993412	. 582491	.631 9152
0.410	0. 1780607	1. 506818	0.6636503	0.460	0. 1997755	1.584074	$0.631 \quad 2836$
. 411	. 1784950	. 508325	. 6629869	. 461	. 2002098	. 585659	. 6306527
. 412	- 1789293	. 509834	. 6623243	. 462	. 2006441	. 587245	. 6300223
.413	- 1793636	. 511345	. 6616623	. 463	:201 0783	. 588833	. 6293926
.414	. 1797979	. 512857	. 6610010	. 464	. 2015126	. 590423	. 6287636
0.415	0.180 2322	1.514371	0.6603403	0.465	0.2019469	1.592014	0.6281351
. 416	. 1806665	. 515886	. 6596803	. 466	. 2023812	. 593607	. 6275073
-417	. 1811008	. 517403	. 6590209	. 467	. 202 8155	. 595201	. 6268801
-418	. 1815351	. 518921	. 6583622	. 468	. 2032498	. 596797	. 6262535
.419	. 181 9694	. 520440	. 6577042	-4,9	. 2036841	. 598395	. 6256276
0.420	0.182 4037	1.521 962	0.6570468	0.470	$0.204 \mathrm{T184}$	1. 599994	0.6250023
. 421	. 1828380	. 523484	. 6563901	. 471	. 2045527	. 601595	. 6243776
. 422	. 1832723	. 525009	. 6557340	. 472	. 2049870	. 603197	. 6237535
. 423	. 1837066	. 526534	. 6550786	.473'	. 2054213	. 60480 l	.623 I301
. 424	. 1841409	. 528062	. 6544239	. 474	. 2058556	. 606407	. 6225073
0.425	0. 1845752	1.529590	0.6537698	0.475	0.2062899	1.608014	0.621 8851
. 426	. 1850094	. 531121	. 6531163	. 476	. 2067242	. 609623	. 6212635
. 427	. 1854437	. 532653	. 6524636	-477	. 2071585	.6i1 233	. 6206425
. 428	. 1858780	. 534187	. 651 8114	-478	. 2075928	. 612845	. 6200222
. 429	. 1863123	. 535721	.651 1599	. 479	. 2080271	. 614459	619 4025
0.430	o. 1867466	1.537258		0.480			0.6187834
. 431	. 1871809	. 538796	. 6498589	.481	. 2088956	. 617691	. 6181649
. 432	. 1876152	. 540335	. 6492094	. 482	. 2093299	. 619310	. 6175471
. 433	. 1880495	. 541876	. 6485605	. 483	. 2097642	. 620930	. 6169298
. 434	. 1884838	. 543419	. 6479123	. 484	. 2101985	. 622552	6163132
0.435	o. 188 918I	1. 544963	0.6472647	0.485	0.2106328	1.624175	0.615 6972
. 436	. 1893524	. 546509	. 6466177	. 486	.211 0671	. 625800	. 6150818
. 437	. 1897867	. 548056	. 6459714	. 487	.211 5014	. 627427	. 6144670
. 438	. 1902210	. 549605	. 6453258	-488	.211 9357	. 629055	613 8529
-439	. 1906553	.551 155	. 6446808	. 489	.2123700	. 630685	.613 2393
0.440	-.1910896	1.552 707	0.6440364	0.490	0.2128043	1.632316	0.6126264
.441	. 1915239	. 554261	. 6433927	.491	. 2132386	. 633949	. 6120141
. 442	. 191 9582	. 555816	. 6427496	. 492	.213 6729	. 635584	.611 4024
. 443	. 1923925	. 557372	. 6421072	. 493	. 2141072	. 637221	610 7913
. 444	. 1928267	. 558930	. 6414654	-494	. 2145415	. 638859	.610 I808
0.445	0. 1932610	1. 560490	0.640824 .3	0.495	0.2149758	1.640498	0.6095709
. 446	. 1936953	. 562051	. 6401838	. 496	. 2154101	. 642140	. 6089616
. 447	. 1941296	. 563614	. 6395439	-497	. 2158444	. 643783	. 6083530
. 448	. 1945639	. 565179	. 6389047	-498	. 2162787	. 645427	. 6077449
. 449	. 1949982	. 566745	. 6382661	. 499	. 2167129	. 647073	. 6071275
0.450	0. 1954325	1.568312	0.6376282	0.500	0.2171472	1. 648721	0.6065307
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{a}	$\mathrm{e}^{-\mathrm{u}}$	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$.	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}
0.500	0.2171472	1. 648721	0.6065307	0.550	0.2388520	1.733253	0.5769498
. 501	. 217 58I5	. 650 371	. 6059244	. 551	. 2392963	. 734987	. 576 3731
. 502	. 2180158	. 652022	. 6053188	. 552	. 2397306	. 736723	. 5757971
. 503	. 2184501	. 653675	. 6047138	. 553	. 2401648	. 738461	. 5752216
. 504	. 2188844	.655329	. 6041094	- 554	. 240 5991	. 740200	. 5746466
0.505	0.2193187	1. 656986	0.6035056	0.555	0.2410334	1.741941	0.5740723
. 506	. 2197530	. 658643	. 6029024	. 556	. 2414677	. 743684	. 5734985
. 507	. 2201873	. 660303	. 6022998	. 557	. 2419020	. 745428	. 5729253
. 508	.2206216	.661 964	. 6016978	. 558	.2423363	. 747175	. 5723526
. 509	.22I 0559	.663627	. 6010964	. 559	. 2427706	. 748923	. 5717806
0.510	0.2214902	1.665291	0.6004956	0.560	0.2432049	1.750673	0.5712091
. 511	. 221 9245	. 666957	. 5998954	. 561	. 2436392	. 752424	. 5706381
. 512	. 2223588	. 668625	. 5992958	. 562	.2440735	. 754177	. 5700678
. 513	.222793 I	. 670295	. 5986968	. 563	.2445078	. 755932	. 5694980
. 514	.2232274	. 671966	. 5980984	. 564	. 244942 I	. 757689	. 5689288
0.515	0.2236617	1.673639	0.5975006	0.565	0.2453764	1. 759448	0. 568360 I
. 516	. 2240960	. 675 313	. 5969034	. 566	.2458107	.761 208	. 5677921
. 517	. 2245302	. 676989	. 5963068	. 567	. 2462450	. 762970	. 5672246
. 518	.2249645	.678667	. 5957108	. 568	.2466793	. 764734	. 5666576
. 519	. 2253988	.680346	. 595 II54	. 569	. 247 II36	. 766500	. 5660912
0.520	0.225833 I	1.682028	0.5945205	0.570	0.2475479	I. 768267	0. 5655254
. 521	. 2262674	. 6837 II	. 5939263	. 571	. 2479821	. 770036	. 5649602
. 522	.2267017	. 685395	. 5933327	. 572	.2484164	.771 807	. 5643955
. 523	.2271360	. 687 081	. 5927397	. 573	. 2488507	.773580	. 5638314
. 524	.2275703	. 688769	. 5921472	. 574	. 2492850	. 775354	. 5632679
0.525	0.2280046	1.690459	0.5915554	0.575	0.2497193	1.777 131	0.5627049
. 526	.2284389	. 692150	. 590, 9641	. 576	. 2501536	. 778909	. 5621424
. 527	.2288732	. 693843	. 5903734	. 577	. 2505879	. 780688	. 5615806
. 528	. 2293075	. 695538	. 5897834	. 578	. 2510222	.782470	. 561 0193
. 529	.2297418	. 697234	. 5891939	. 579	. 2514565	. 784253	. 5604585
0.530	0.2301761	1. 698932	0.5886050	0.580	0.2518908	1.786038	0. 5598984
. 531	. 2306104	. 700632	. 5880167	. 581	. 2523251	. 787825	. 559 338 ${ }^{\text {¢ }}$
. 532	. 2310447	. 702334	. 5874289	. 582	. 2527594	. 789614	. 5587797
. 533	.231 4790	. 704037	. 5868418	. 583	. 2531937	.791 405	. 5582212
. 534	. 2319133	. 705742	. 5862553	. 584	. 2536280	. 793197	. 5576632
0.535	0.2323475	1.707448	0.5856693	0.585	0.2540623	1.794 991	0.5571059
. 536	. 2327818	.709157	. 5850839	. 586	. 2544966	. 796787	. 5565490
. 537	. 233 2161	.710 867	. 5844991	. 587	. 2549309	. 798585	. 5559928
. 538	. 233 6504	. 712578	. 5839149	. 588	. 2553652	.800384	. 5554370
. 539	. 2340847	. 714292	. 583 33I3	. 589	. 2557994	. 802185	. 554 8819
0.540	0.2345190	1.716007	0.5827483	0.590	0.2562337	1.803988	0.5543273
. 54 I	. 2349533	. 717724	. 5821658	. 591	. 2566680	. 805793	. 5537732
. 542	.2353876	. 719442	-581 5839	. 592	.2571023	.807600	. 5532197
. 543	.2358219	.721 163	. 5810026	. 593	.2575366	.809409	. 5526668
. 544	. 2362562	. 722885	. 5804219	. 594	. 2579709	.81 1 219	. 552 II44
0.545	0.2366905	1.724608	0.5798418	0.595	0.2584052	1.8 I 303 I	0.5515626
. 546	. 237 I 248	. 726334	. 5792622	. 596	. 2588395	.814 845	. 551 0113
- 17	. 237 5591	.728051	. 5786833	. 597	. 2592738	.816 661	. 5504605
- 34	$.2379934^{\circ}$. 729790	. 5781049	. 598	.2597081	. 818478	. 5499104
. 549	.2384277	.731 521	. 5775270	. 599	. 2611424	. 820298	. 5443607
0.550	0.2388620	1.733253	0.5769498	0.600	0.2605767	1.822 I19	0.548 8ı16
$\log _{e}\left(\mathrm{e}^{\text {u }}\right.$)	$\log _{10}\left(e^{u}\right)$	e^{u}		$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(e^{u}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}
0.600	0.2605767	1.822119	0.548 8ıı6	0.650	0.2822914	1.915541	0.5220458
. 601	. 2610110	. 823942	. 5482631	. 651	. 2827257	.917457	.5215240 .521
. 602	. 2614453	. 825767	. 547 7151	. 652	.2831600	. 919376	. 5210027
. 603	. 2618796	.827593	. 5471677	. 653	.2835943	. 921296	. 5204820
. 604	. 2623139	. 829422	. 5466208	. 654	. 2840286	.923218	$\text { . } 5199618$
0.605	0.2627482	1.831 252	0.5460744	0.655	0.2844629	1.925143	0.5194421
. 606	. 2631825	. 833084	. 5455286	. 656	. 2848972	. 927069	$.5189229$
. 607	.2636168	. 834918	. 5449834	. 657	.2853315	. 928997	$\begin{array}{r} .5184042 \end{array}$
. 608	.2640510	. 836754	. 5444387	. 658	.2857658	. 930927	. 5178861
. 609	.2644853	.838592	. 5438945	. 659	. 2862001	. 932859	. 5173684
0.610	0.2649196	1.840431	0.5433509	0.660	0.2866344	1.934792	0.5168513
. 611	. 2653539	. 842273	. 5428078	. 661	. 2870687	. 936728	. 5163347
. 612	.2657882	. 844116	. 5422653	. 662	.2875029	. 938666	. 5158187
.613	. 2662225	. 845961	-541 7233	. 663	.2879372	.940605	$.5153031$
.614	.2666568	. 847808	. 54118 r 8	. 664	. 2883715	. 942547	$\text { . } 514788 I$
0.615	0.2670911	1. 849657	0.5406409	0.665	0.2888058	1.944491	0.5142735
. 616	. 2675254	. 851507	. 5401005	. 666	. 2892401	. 946436	. 5137595
. 617	. 2679597	. 853360	. 5395607	. 667	. 2896744	. 948383	. 5132460
. 618	. 2683940	. 855214	. 5390214	. 668	. 2901087	. 950333	. 5127330
. 619	. 2688283	. 857070	. 5384827	. 669	.2905430	. 952284	. 5122205
0.620	0.2692626	1.858928	0.5379444	0.670	0.2909773	1.954237	0.5117086
. 621	. 2696969	. 860788	. 5374068	. 671	. 2914116	. 956193	. 5111971
. 622	. 2701312	. 862650	. 5368696	. 672	. 2918459	. 958150	. 5106862
. 623	.2705655	.864513	. 5363330	. 673	. 2922802	. 960109	$.510 \quad 1758$
. 624	.2709998	.866379	. 5357970	. 674	.2927145	. 962070	$.5096658$
0.625	0.271434 I	1.868246	0.5352614	0.675	0.2931488	1.964 033	0.5091564
. 626	. 2718583	. 870115	. 5347264	. 676	. 293 '5831	. 965998	. 5086475
. 627	.2723026	. 871986	. 5341920	. 677	. 294 0174	. 967965	. 5081391
. 628	.2727369	. 873859	. 5336581	. 678	. 2944517	. 969934	.5076312
. 629	.2731712	. 875734	. 5331247	. 679	. 2948860	. 971905	. 5071239
0.630	0.2736055	1.877 6II	0.5325918	0.680	0.2953202	1.973878	0.506 6170
. 631	. 2740398	. 879489	. 5320595	.681	. 2957545	. 975853	. 5061106
.632	. 2744741	. 881370	. 5315277	. 682	. 2961888	. 977829	. 5056048
. 633	. 2749084	. 883252	. 5309964	. 683	.296623 I	. 979808	. 5050994
. 634	.2753427	. 885136	. 5304657	. 684	. 2970574	.981 789	. 5045946
0.635	0.2757770	1.887022	0.5299355	0.685	0.2974917	1.983772	0.5040902
. 636	. 2762113	. 888910	. 5294058	. 686	. 2979260	. 985757	. 5035864
. 637	. 2766456	. 800800	. 5288767	. 687	.2983603	. 987743	. 5030831
. 638	.2770799	.892692	. 528348 I	. 688	. 2987946	. 989732	. 5025802
. 639	.2775142	.894585	. 5278200	. 689	. 2992289	.991 723	. 5020779
0.640	0.2779485	1. 89648 I	0.5272924	0.690	0.2996632	1.993716	0.501 5761
. 641	. 2783828	. 898378	. 5267654	. 691	. 3000975	. 995710	. 5010747
. 642	. 278 8171	. 900278	. 5262389	. 692	-300 5318	. 997707	. 5005739
. 643	. 2792514	.902179	. 5257129	. 693	. 3009661	.999706	$.5000736$
. 644	.2796856	. 904082	. 5251875	. 694	. 3014004	2.001706	. 4995738
0.645	0.2801199	1.905987	0.5246625	0.695	0.301 8347	2.003709	0.4990744
. 646	. 2805542	. 907894	. 524138 I	. 696	. 3022690	. 005714	. 4985756
. 647	. 2809885	. 909803	. 523 6r43	. 697	. 3027033	. 007720	. 498.0773
. 648	. 2814228	.911 714	. 5230909	. 698	. 3031375	. 009729	. 4975795
. 649	.28I 8571	.913 626	. 5225681	. 699	- 3035718	.OII 740	. 497 0821
0.650	0.2822914	1.915541	0.5220458	0.700	0.3040061	2.013753	0.4955853
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\mathbf{u}}$	e^{-}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right)$	$e^{\text {a }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right.$)	e^{u}	$\mathrm{e}^{-\mathrm{u}}$
0.700	0.3040061	2.013753	0.4965853	0.750	0.3257209	2.117000	0.4723666
. 701	. 3044404	. 015767	. 496 0850	.751	. 3261552	. 119118	. 4718944
. 702	- 3048747	. 017784	. 495 5931	. 752	. 3265895	. 121238	-471 4228
. 703	- 3053090	. 019803	-495 0978	. 753	-3270237	. 123361	. 4709516
.70'4	. 3057433	.021 824	. 4946029	. 754	. 3274580	. 125485	-470 4809
0.705	0.3061776	2.023847	0.4941086	0.755	0.3278923	2.127612	0.470 oro6
. 705	. 3066119	${ }^{\prime} .025872$. 4936147	. 756	. 3283266	. 129740	. 4695408
. 707	- 3070462	. 027898	-493 1213	. 757	. 3287609	. 131871	. 4690715
. 708	-3074805	. 029927	. 4926285	-7.78	. 3291952	. 134004	. 4686027
. 709	- 3079148	.031 958	. 492 I 36 I	. 759	. 3296295	. 136139	. 468 I343
0.710	0.3083491	2.033991	0.491 6442	0.760	0.3300638	2.1381276	0.4676664
. 711	. 3087834	. 036026	.491 1528	. 761	-330 4981	. 140416	. 4671990
. 712	-309 2177	. 038063	.4906619	. 762	-330 9324	. I42 557	. 4667320
. 713	- 3096520	. 040102	. 4901715	. 763	-331 3667	. 1447801	. 4662655
. 714	. 310085	. 042144	. 4896815	. 764	. 33180	. 146846	. 4657995
0.715	0.3105206	2.044187	0.489 1921	0.765	0.3322353	2. 148994	0.4653339
. 716	-310 9548	. 046232	. 4887032	. 766	- 3326696	.151 144	. 4648588
. 717	-311 3891	. 048279	. 4882147	. 767	. 3331039	. 153297	. 4644042
. 718	-3II 8234	. 050328	-487 7267	. 768	-333 5382	. 155451	. 4639400
. 719	. 3122577	. 052380	. 4872393	. 769	. 3339725	. 157608	. 4634763
0.720	0.3126920	2.054433	0.4867523	0.770	0.3344068	2. 159766	0.4630131
.721	.313 1263	. 056489	. 4852657	.771	- 334 8410	.16I 927	. 4625503
. 72	.313 5606	. 058546	. 4857797	. 77	-335 2753	. 164090	. 4620880
. 723	. 3139949	. 060606	. 4852942	. 773	- 3357096	. 166255	. 4616261
. 724	. 3144292	. 062667	:484 809r	. 774	. 3361439	. 168423	. 4611647
0.725	0.3148635	2.054 731	0.4843246	0.775	0.3365782	2.170592	0.4607038
. 726	-315 2978	. 066797	. 4838405	. 776	. 3370125	. 172764	. 4602433
-7	. 3157321	. 068865	. 4833569	. 777	. 3374468	. 174938	. 4597833
. 728	.316 1664	. 070935	. 4828738	. 778	-337. 8811	. 177114	-459 3237
. 729	.316 6007	. 073007	. 482 3911	. 779	. 3383154	. 179292	. 4588646
0.730	0.3170350	2.07508 I	0.4819090	0.780	0.3387497	2.181 472	0.4584060
. 731	. 3174693	. 077157	.481 4273	.781	. 3391840	.183 655	. 4579478
. 73	-3179036	. 079235	. 480 9461	. 782	-339 6183	. 185840	-457 4901
. 733	. 3183379	.081 315	. 4804654	. 783	-340 0526	. 188027	. 4570329
. 734	. 3187721	. 083398	. 4799852	. 784	. 3404869	. 190216	. 4565760
0.735	0.3192064	2.085482	0.4795055	0.785	0.3409212	2. 192407	0.4561197
. 736	. 3196407	. 087569	. 4790262	. 786	. 3413555	. 194600	. 4556638
. 737	- 3200750	. 089657	-4785474	. 787	-341 7898	. 196796	-455 2084
. 738	- 3205093	.091 748	.478 0691		- 3422241	. 198994	-454 7534
. 739	-3209436	. 093841	. 4775913	. 789	-3426583	. 201194	-454 2989
0.740	0.3213779	2.095936	0.4771139	0.790	0.3430926	2.203396	0. 4538448
.741	-3218122	. 098032	. 4766370	.791	-343 5269	. 205601	-453 3912
. 742	- 3222465	. 100132	. 4761686	. 792	- 3439612	. 207808	-4529380
. 743	. 3226808	. 102233	. 4756847	. 793	- 3443955	.210 017	. 4524853
. 744	-323 I151	. 104336	.475 2093	. 794	- 3448298	. 212228	. 4520330
0.745	0.3235494	2.106 44I	0.4747343	0.795	0.3452641	2.214441	0.4515812
. 746	. 3239837	. 108549	. 4742598	. 796	- 3456984	. 216657	.451 1299
. 747	- 3244180	. 110659	. 4737858	. 797	-346 1327	. 218874	
2. 748	- 3248523	. 112770	. 4733122	. 798	- 3465670	.221 094	. 4502285
. 749	. 3252856	. 114884	. 4728392	. 799	-347 0013	. 223 316	. 4497785
0.750	0.3257209	2.117000	0.4723656	0.800	0.3474356	2.225541	0.4493290
$\log _{\text {e }}\left({ }^{\text {u }}\right.$)	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-u}	$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(e^{u}\right)$	e^{u}	e^{-u}

The Exponential.

a	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	$\mathrm{e}^{-\mathrm{u}}$	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {a }}$	$\mathrm{e}^{-\mathrm{u}}$
0.800	0.3474356	2.225 541	0.4493290	0.850	0.3691503	2.339647	0.4274149
. 8	. 3478699	. 2227768	. 4488799	. 851	. 3695846	. 341988	. 4269877
. 802	- 3483042	. 229996	. 4484312	. 852	-370 0189	- 344 331	. 4265610
. 803	. 3487385	. 232228	-4479830	. 853	- 3704532	. 346676	. 426 I346
	-349 1728	. 234461	. 4475352	. 854	- 3708875	- 349024	. 4257087
0.805	0.3496071	2.236696	0.4470879	0.855	0.3713218	2.351374	0.425 2832
.	. 3500414	. 238934	. 4466411	. 856	. 371 7561	. 353727	. 424858 I
. 8	- 3504756	. 241174	. 4461946	. 857	. 3721904	. 356082	. 4244335
	-350 9099	. 243417	. 4457487	. 858	- 3726247	. 358439	. 4240093
. 809	-351 3442	. 245661	. 4453031	. 859	- 3730590	. 360799	. 4235855
0.8 io	0.3517785	2.247908	0.444858 I	0.860	0.3734933	2.363 16I	0.4231621
.8II	. 3522128	. 250157	-444 4I34	. 861	. 3739275	. 365525	. 4227391
.812	- 352647 I	.252408	. 4439592	. 862	- 374 3618	. 367892	. 42231006
.813 .814	-353 0814	. 254662	. 4435255	. 863	- 374.7961	. 370261	. 4218945
	.353 5157	. 256918	. 4430822	. 864	- $375{ }^{\circ} 2304$. 372632	. 4214728
0.815	0.3539500	2.259176	0.4426393	0.865	0.3756647	2.375006	0.4210516
.816	. 3543843	. 261436	. 4421969	. 866	. 3760990	. 377382	. 4206307
.817 .818 81	- 3548185	. 263699	-441 7549	. 867	- 3765333	. 379761	. 4202103
	- 3552529	. 265963	.441 3134	. 868	- 3769676	. 382142	. 4197903
19	-355 6872	. 268230	. 4408723	. 869	-3774019	-384 525	.4193707
0.820	0.3561215	2.270500	0.4404317	0.870	0.3778362	2.386911	0.4189515
. 821	. 3565558	. 272771	. 4399914	. 87 I	. 3782705	. 389299	. 4185328
. 822	-356 9901	. 275045	. 4395517	. 872	. 3787048	-391 689	. 4181145
. 823	.3574244 .3578587	.277322 .279600	. $433 \mathrm{II23}$. 873	. 3791391	- 394082	. 4176966
	-357.8587	. 279600	.438 6734	. 874	-379 5734	-396478	.417 2791
0.825	0.3582929	2.28188 I	0.4382350		0.3800077	2.398875	0.4168620
. 826	. 3587272	. 284164	. 4377970	. 875	. 3804420	. 401275	. 4164454
.827 .828	.3591615 .3595958	. 285449	. 4373594	. 877	- 3808763	. 403678	. 4160291
.828 .829	.3595958 .3600301	.288737 .291027	. .4369223	. 878	.381 .381 .3106 7448	. 406083	. 4156133
		. 291027			-381 7448	. 408490	.415 1979
0.830	0.3604644	2.293319	0.4360493	0.880	0.382 I 791	2.410900	0.4147829
. 831	. 3608987	. 295613	. 4356135	. 881	. 382 6134	.413 312	. 4143683
. 832	-361 3330	. 297910	. 435 1781	. 882	. 3830477	. 415726	. 4139542
. 833	. 3617673	. 300209	. 4347431	. 883	- 3834820	. 418143	.413 5404
. 834	. 3622016	. 302510	-434 3086	. 884	. 3839163	. 420563	.413 1271
0.835	0.3626359	2.304814		0.885	0.3843506	2.422984	0.4127142
. 836	. 3630702	. 307120	. 4334408	. 885	. 3847849	.425409	. 4123017
. 837	. 3635045	- 309428	. 4330076	. 887	. 3852192	. 427835	.41I 8896
.838 .839	.3639388 .3643731	$\begin{array}{r}\text {.311 } 739 \\ .314 \\ \hline 142\end{array}$.4325748 .4321424	. 888	-3856535	. 430264	.411 4779
. 839	-364 3731	. 314052	.432 1424	. 889	- 3860878	. 432696	-4II 0666
0.840	0.3648074	2.316367	0.4317105	0.890	0.3865221	2.435130	0.410 6558
. 841	. 3652417	. 318685	.431 2790	. 891	-3869564	. 437566	. 4102453
. 842	. 3656760	-321 004	. 4308480	. 892	. 3873907	. 440005	-4098353
. 843	- 3661102	. 323327	. 4304173	. 893	- 3878250	. 442446	-409 4256
. $8+4$	-3565445	. 325651	. 4299871	. 894	. 3882593	. 444890	-409 or64
0.845	0.3669788	2.327978	0.4295574	0.895			
. 846	. 3674131	. 330307	. 429 I 280	. 896	. 3891279	. 449784	$.408 \text { I992 }$
. 847	- 3678474	- 332638	. 4286991	. 897	-389 5622	. 452235	$.407742$
. 848	.3682817 .3687160	$\begin{array}{r}.334972 \\ .337 \\ \hline\end{array}$.4282706 .4278426	.898 .899	.3899964 .3904307	. 454689	- 40738836
. 849	-3687160	-337308	. 4278426	. 899	-390 4307	-457 145	-4069764
0.850	0.3691503	2.339647	0.4274149	0.900	0.3908650	2.459603	0.4065697
$\log _{\text {c }}\left(\mathrm{e}^{\mathrm{u}}\right.$)	$\log _{10}\left(e^{u}\right)$	$\mathrm{e}^{\text {u }}$	e^{-0}	$\log _{\text {e }}\left(\mathrm{e}^{\mathrm{u}}\right.$)	$\log _{10}\left(e^{\text {a }}\right.$)	$\mathrm{e}^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}
0.900	0.3908650	2.459603	0.4065697	0.950	0.4125798	2.585710	0.3867410
. 901	. 3912993	.462064	. 4061633	.95I	. 413 OI4I	. 588297	. 3863545
. 902	. 3917336	. 464527	. 4057573	. 952	. 4134483	. 590886	. 3859683
. 903	. 3921679	. 466993	. 4053518	. 953	. 4138826	. 593478	. 3855825
. 904	. 3926022	. 469 46I	. 4049466	. 954	. 4143169	. 595073	. 385 I97I
0.905	0.3930365	2.471 932	0.4045419	0.955	0.4147512	2.598671	0.384 8121
. 905	.3934708	. 474405	. 4041375	. 956	.415 1855	.601 271	. 3844275
. 907	. 393 905I	. 476 881	. 4037336	. 957	.415 6198	.603873	. 3840433
. 908	- 3943394	. 479359	. 4033301	. 958	. 416054 I	. 606478	. 3836594
.909	. 3947737	.481 839	. 4029269	. 959	.4164884	. 609086	. 3832760
0.910	0.3952080	2.484323	0.4025242	0.960	0.4169227	2.6II 696	0.3828929
.9II	. 3956423	. 486808	. 4021219	.95I	. 4173570	. 614309	. 3825102
.912	. 3960766	. 489295	. 4017200	. 962	. 4177913	.616 925	. 3821279
.913	- 3965109	. 491787	. 4013185	.963	. 4182256	. 619543	-38I 7459
. 914	- 3969452	. 494280	. 4009173	. 964	.418 6599	.622164	. 3813644
0.915	0.3973795	2.496775	0.4005166	0.965	0.4190942	2.624788	0.3809832
. 916	. 397 8137	. 499273	. 400 I 163	. 966	. 4195285	. 627 414	. 3806024
.917	- 3982480	. 501774	- 3997164	. 967	. 4199628	.630042	. 3802220
.918	- 3986823	. 504277	- 3993169	.958	. 4203971	.632674	. 3798420
. 919	. 399 II66	. 506782	- 398 9178	. 969	. 4208314	.635308	. 379.4623
0.920	0.3995509	'2.509 290	0.3985190	0.970	0.4212656	2.637944	0.3790830
. 921	. 3999852	.5II 801	. 3981207	.971	. 4216999	. 640584	. 3787041
. 922	. 4004195	.514 314	- 3977228	. 972	. 4221342	.643225	- 3783256
. 923	. 4008538	. 516830	. 3973253	. 973	. 4225685	.645870	- 3779475
. 924	. 401 288I	. 519348	- 396 9281	. 974	. 4230028	.648517	- 3775697
0.925	0.401 7224	2.521868	0.3965314	0.975	0.4234371	2.651167	0.3771924
. 926	. 4021567	. 524391	. 396 I35I	. 976	. 4238714	. 653820	. 376 8153
. 927	.4025910	. 526917	- 3957391	. 977	. 4243057	-. 656475	- 3764387
. 928	. 4030253	. 529445	. 3953436	. 978	. 4247400	.659 I33	$.3760525$
. 929	.4034596	. 531976	. 3949485	. 979	. 425 I743	.661 793	. 3756866
0.930	0.4038939	2.534509	0.3945537	0.980	0.4256086	2.664456	0.375 3III
.93I	. 4043282	. 537045	. 3941594	.98I	. 4260429	. 667122	. 3749360
. 932	. 4047625	. 539583	. 3937654	. 982	. 4264772	. 669790	. 3745612
. 933	. 405 I968	. 542124	- 3933718	. 983	. 426 9115	.672462	. 374 I869
. 934	.4056310	. 544668	. 3929786	. 984	.4273458	. 675135	. 373 8129
0.935	0.4060653	2.547213	0.3925859	0.985	0.427 7801	2.677 812	0.3734392
. 936	. 4064996	. 549762	. 3921935	. 986	. 4282144	. 68049 I	. 3730660
. 937	. 4069339	. 552313	-391 8015	. 987	. 4286487	. 683 I73	. 3726931
. 938	. 4073682	. 554867	. 3914099	. 988	. 4290829	.685857	. 3723206
. 939	. 4078025	. 557433	.391 0187	. 989	.4295172	. 688545	. 3719485
0.940	0.4082368	2.559 981	0.3906278	0.990	0.4299515	2.691234	0.3715767
.94I	. 4086711	. 562543	. 3902374	.99I	. 4303858	. 693927	. 3712053
. 942	. 4091054	. 565107	. 3898474	. 992	. 4308201	. 696622	. 3708343
. 943	. 4095397	.567673	. 3894577	. 993	. 43 I 2544	.699320	- 3704635
. 944	. 4099740	. 570242	. 3890684	. 994	. 43 I 6887	. 702021	. 3700934
0.945	0.4104083	2.572813	0.3886796	0.995	0.432 I 230		0.3697234
. 946	. 4108426	. 575387	. 3882911	. 996	. 4325573	. 707430	$\text { . } 3693539$
. 947	.4II 2769	. 577964	.3879030	-. 997	. 4329916	. 710139	$\text { . } 3689847$
.948	-411 7II2	. 580543	-3875153	. 998	- 4334259	. 712851	. 368 6I59
. 949	.4121455	. 583 I 25	. 387 I280	. 999	. 4338502	.715 565	. 3682475
0.950	0.4125798	2.585710	0.3867410	I . 000	0.4342945	2.718282	0.3678794
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-}	$\log _{\mathrm{e}}\left(\theta^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-0}	u	$\log _{10}\left(e^{u}\right)$	e^{u}	e^{-u}
1.000	0.4342945	2.718282	0.3678794	1.050	0.4560092	2.857651	
. 001	. 4347288	. 721001	. 3675117	. 051	. 4564435	. 860 510	$.3495880$
. 002	. 4351631	.723724	. 3671444	. 052	. 4568778	. 863372	. 3492386
. 003	. 4355974	.726449	. 3667775	. 053	. 457 3121	. 866237	. 3488895
. 004	. 4360317	. 729 I77	.3664109	. 054	. 4577464	. 869105	$\text { . } 3485408$
1.005	0.4364660	2.731907	0.3660446	1.055	0.4581807	2.871975	0.3481924
. 006	. 4369002	. 734641	. 3656788	. 056	. 458 6150	. 874849	. 3478444
.007	. 4373345	. 737377	. 365 3133	. 057	. 4590493	. 877725	. 3474967
. 008	. 4377688	. 740 II5	. 364 9481	. 058	. 4594836	. 880604	$.347 \quad 1494$
. 009	. 4382031	. 742857	. 3645834	. 059	. 459 9179	. 883486	$\cdot 3468024$
1.010	0.4386374	2.745601	0.3642190	1.060	0.4603522	2.886371	0.3464558
. 011	. 4390717	. 7483848	. 3638549	.06I	. 4607854	. 889259	$.3461095$
. 012	. 4395050	.751 098	.3634913	. 062	.461 2207	. 892150	-3457636
. 013	. 4399403	. 753850	. 3631280	. 063	. 4616550	. 895043	. 3454180
. 014	. 4403746	. 756605	. 3627650	. 064	.4620893	. 897940	. 3450728
1.015	0.4408089	2.759363	0.3624024	1.065	0.4625236	2.900839	0.3447279
. 016	-441 2432	. 762124	. 3620402	. 066	. 4629579	.903741	. 3443833
. 017	.441 6775	. 764888	.361 6783	. 067	. 4633922	. 906646	. 344 0391
. 018	. 442 III8	. 767654	.36i 3169	. 068	. 4638265	. 909555	. 3436952
. 019	. 442 546I	. 770423	. 3609557	. 069	. 4642608	. 912466	- 343 35I7
1.020	0.4429804	2.773 I95	0.3605949	- 1.070	0.4646951	2.915379	0.3430085
. 021	. 4434147	. 775969	- 3602345	. 071	.4651294	. 918296	. 3426657
. 022	. 4438890	. 778747	- 3598745	. 072	.4655637	.921 216	- 3423232
. 023	. 4442833	.781 527	. 3595148	. 073	. 4659980	. 924139	. 3419810
. 024	. 4447175	. 784310	- 359 I554	. 074	. 4664323	. 927064	.341 6392
1.025	0.4451518	2.787095	0.3587965	1.075	0.4668666	2.929993	0.3412978
. 026	. 445 5861	. 789884	. 3584378	. 076	. 4673009	. 932924	. 3409566
. 027	.4460204	. 792675	. 3580796	. 077	. 4677352	.935859	-340 6158
. 028	. 4464547	.795469	. 3577217	. 078	. 468 I695	. 938796	. 3402754
. 029	. 4468890	. 798266	. 3573641	. 079	.4686037	.941 736	. 3399353
1.030	0.4473233	2.801066	0.3570070	1.080	0.4690380	2.944680	0.3395955
.03I	. 4477576	. 803868	. 356 6501	.08I	. 4694723	. 947626	. 339 2561
. 032	. 4481919	. 806674	. 3562937	. 082	. 4699066	. 950575	. 3389170
. 033	. 4486262	. 809482	. 3559375	. 083	. 4703409	. 953527	. 3385783
. 034	. 4490605	.8I2 293	- 355 5818	. 084	. 4707752	. 956482	. 3382399
1.035	0.4494948	2.8 I 5106	0.3552264	1.085	0.4712095	2.959440	0.3379018
. 036	. 4499291	.817 923	. 3548713	. 086	. 4716438	. 962401	. 3375641
. 037	. 4503634	.820742	. 3545166	. 087	. 472078 I	. 965365	. 3372267
. 038	. 4507977	. 823564	. 354 1623	. 088	. 4725124	. 96833 I	. 3368896
. 039	. 4512320	. 826389	. 3538083	. 089	. 4729467	.971 301	. 3365529
1.040	0.4516663	2.829217	0.3534547	1.090	0.473 3810	2.974274	0.3362165
. 041	. 4521006	. 832048	. 353 IOI4	.091	. 473 8153	. 977250	. 3358804
. 042	. 4525349	. 834 881	- 3527485	. 092	. 4742495	. 980229	. 3355447
. 043	. 4529691	. 837717	. 3523959	. 093	. 4746839	.983210	. 3352094
. 044	. 4534034	. 840557	- 3520437	. 094	. 475 I I82	. 986195	. 3348743
1.045	0.4538377	2.843399	0.351 6918	1.095	0.4755525	2.989 I83	0.3345396
. 046	. 4542720	. 846243	-351 3403	. 096	. 4759868	. 992 I73	. 3342052
. 047	. 4547063	. 849091	. 3509891	. 097	. 4764210	. 995167	- 3338712
. 048	. 4551406	. 851942	. 3506383	. 098	. 4768553	. 998164	. 3335375
. 049	. 4555749	. 854795	- 3502879	. 099	. 4772896	3.001163	. 333 2041
1.050	0.4560092	2.85765 I	0.3499377	I. 100	0.4777239	3.004166	0.3328711
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-a}	$\log _{\mathrm{e}}\left(\mathrm{e}^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

Smithsonian Tables

The Exponential.

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right.$)	ϵ^{u}	e^{-u}
1.200	0.5211534	3.320 I17	0.301 1942	1.250	0.542868 r	3.490343	0.2865048
. 201	. 5215877	. 323439	. 3008932	.25I	. 5433024	. 493835	. 2862184
. 202	. 5220220	. 326764	- 3005924	. 252	. 5437367	. 49733 I	. 2859324
. 203	. 5224563	-330 092	- 3002920	. 253	. 5441710	. 500830	. 2856466
. 204	. 5228906	. 333424	. 2999918	. 254	. 5446053	. 504332	. 285 3611
1.205	0.5233249	$3 \cdot 336759$	0.2996920	I. 255	0.5450396	3.507838	0.2850758
. 206	. 5237591	. 340098	. 2993925	. 256	. 5454739	. 5 II 348	. 2847909
.207	. 5241934	- 343439	. 2990932	. 257	. 5459082	. 514851	.2845063
. 208	. 5246277	. 346784	. 2987943	. 258	. 5463425	. 518378	. 2842219
. 209	. 5250620	. 350133	.2984956	. 259	. 5467768	. 521898	. 2839378
1.210	0.5254963	3.353485	0.2981973	1.260	0.5472110	3.52542 I	0.2836540
. 211	. 5259306	. 356840	. 2978992	. 261	. 5476453	. 528949	. 2833705
. 212	. 5253649	. 360198	. 2976015	. 262	. 5480796	. 532479	. 2830873
. 213	. 5267992	. 363560	. 2973040	. 263	. 548 5I39	. 536 OI4	. 2828043
. 214	. 5272335	. 366925	. 2970059	. 264	. 5489482	. 539 551	.2825217
1.215	0.5276678	3.370294	0.2967100	I. 265	0.5493825	3.543093	0.2822393
. 216	. 528 1021	. 373666	.2964135	. 266	- 549 8168	. 546638	. 281 9572
. 217	. 5285354	. 377041	. 2961772	. 267	. 55025 II	. 550186	.28I 6754
. 218	. 5289707	. 380420	. 2958212	. 268	. 5506854	. 553738	.281 3938
. 219	. 5294050	. 383802	. 2955255	. 269	.551 1197	. 557293	.281 II26
1.220	0.5298393	3.387188	0.2952302	1.270	O.551 5540	3.560853	0.280 8316
. 22 I	. 5302736	. 390577	. 2949351	. 271	. 5519883	. 564415	. 2805509
. 222	. 5307079	. 393969	. 2946403	. 272	. 5524226	. 56798 I	. 2802705
. 223	. 5311422	. 397365	. 2943458	. 273	. 5528569	. 571551	. 2799904
. 224	. 5315764	. 400764	. 2940516	. 274	. 5532912	. 575124	. 2797105
1.225	0.5320107	3.404166	0.2937577	I. 275	0.5537255	3.578701	0.2794310
. 226	. 5324450	. 407572	. 2934641	. 276	. 5541598	. 582282	. 2791517
. 227	. 5328793	. 410 981	. 2931708	. 277	. 554594 I	. 585866	. 2788727
. 228	. 533 3I36	. 414394	. 2928777	. 278	. 5550283	. 589454	. 2785939
. 229	. 5337479	. 417810	. 2925850	. 279	. 5554626	. 593045	. 2783155
I. 230	0.5341822	3.421230	0.2922926	1.280	0.5558969	3.596640	0.2780373
.23I	. 5346165	. 424652	. 2920004	. 281	. 5563312	. 600238	. 2777594
. 232	. 5350508	. 428079	. 2917086	. 282	. 5567655	. 603840	. 2774818
. 233	. 535485 I	. 431509	. 2914170	. 283	. 5571998	. 607446	. 2772044
. 234	. 5359194	. 434942	. 2911257	. 284	. 557634 I	.6II 055	.2769274
1.235	0.5363537	3.438379	0. 2908348	I. 285	0.5580684	3.614668	0.2766506
. 236	. 5367880	. 441819	. 290544 I	. 286	. 5585027	. 618284	. 2763741
. 237	. 5372223	. 445262	. 2902537	. 287	. 5589370	. 621905	. 2760978
. 238	. 5376566	. 448709	.2899636	. 288	. 5593713	. 625528	. 2758219
. 239	. 5380909	.452160	.2896737	. 289	. 5598056	. 629156	.2755462
I. 240	0.5385252	3.455613	0.2893842	I. 290	0.5602399	3.632787	0.2752708
. 241	. 5389595	. 459071	. 2890950	. 291	. 5606742	. 636421	. 2749956
. 242	. 5393937	. 462532	. 2888060	292	. 5611085	. 640059	. $27+7208$
. 243	. 5398280	. 465996	. 288 5174	293	. 5615428	. 643701	.2744462
. 244	. 5402623	. 469464	.2882290	. 294	. 5619771	. 647347	. 274 I719
1.245	0.5406966	3.472935	0.2879409	1.295	0.5624114	3.650996	0.2738979
. 246	. 5411309	. 476409	. 2876531	. 296	. 5628456	. 654649	. 2736241
. 247	. 5415652	. 479888	.2873656	. 297	. 5632799	. 658305	. 2733506
. 248	. 5419995	.483369	.2870784	. 298	. 5637142	. 661965	. 2730774
. 249	. 5424338	. 486854	.2867914	. 299	. 5641485	.665629	. 2728045
I. 250	0.542868 r	3.490343	0.2865048	1.300	0.5645828	3.659297	0.2725318
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-a}
1.300	0.5645828	3.669297	0.2725318	1.350	0.5862976	3.857426	0.2592403
. 301	. 5650171	. 672968	. 2722594	. 351	. 5867318	. 861285	. 258 9811
- 302	- 5654514	. 676643	. 271	- 352	. 5871661	. 865148	. 2587223
- 303	- 5658857	. 680321	. 2717154	- 353	. 5876004	. 869 ol5	. 2584637
-304	. 5663200	. 684003	. 2714438	- 354	. 5880347	. 872886	. 2582054
1.305	0.5667543	3.687689	0.2711725	1.355	0.5884690	3.876761	0.2579473
. 306	. 567 I886	.691 379	. 2709015	. 356	. 5889033	. 880640	. 2576895
. 307	. 5676229	. 695072	. 2706307	. 357	. 5893376	. 884522	. 2574319
. 308	. 5680572	. 698769	. 2703602	- 358	. 5897719	. 888409	.2571746
-309	. 5684915	. 702469	. 2700900	-359	- 5902062	. 892299	. 2569176
1.310	0.5689258	3.706174	0.2698201	1. 360	0.5906405	3.896193	0.2566608
.311	. 5693601	. 709882	. 2695504	-361	. 5910748	. 900091	. 2564042
-312	- 5697944	. 713593	. 2692810	- 362	. 591 5091	. 903993	. 2561480
-313	. 5702287	. 717309	. 259 O118	- 363	.591 9434	. 907899	. 2558919
-314	-570 6629	.721 028	. 2687429	- 364	. 5923777	.911 809	.2556362
1.315	0.5710972	3.724751	0.2684743	1. 365	0. 5928120	3.915723	0.2553807
-316	. 5715315	. 728478	. 2682060	- 366	. 5932463	. 91964 I	. 2551254
-317	-571 9658	. 732208	. 2679379	- 367	- 5936806	. 923562	. 2548704
-318	. 5724001	. 735942	.2676701	. 368	. 5941149	. 927488	. 2546157
.319	. 5728344	. 739680	. 2674026	- 369	. 594 5491	.931 417	.254 3612
1.320	0.5732687	3.743421	0.2671353	1. 370	0. 5949834	3.935351	0.2541070
. 321	. 5737030	. 747167	. 2668683	-371	. 5954177	. 939288	. 2538530
- 322	. 5741373	. 750916	. 2666016	- 372	. 5958520	. 943229	. 2535993
- 323	. 5745716	. 754669	.2663351	- 373	. 5962863	. 947174	. 2533458
-324	. 5750059	. 758425	. 2660689	- 374	. 5967206	.951 124	.2530926
1.325	0.5754402	3.762185	0.2658030	1.375	0.5971549	3.955077	0.2528396
. 326	. 5758745	. 765949	. 2655373	- 376	. 5975892	. 959034	. 2525869
- 327	- 5763088	. 769717	. 2652719	- 377	. 5980235	. 962995	. 2523344
- 328	-576 7431	. 773489	. 2650067	- 378	- 5984578	. 966960	. 2520822
. 329	. 5771774	. 777264	. 2647419	- 379	-5988921	. 970929	.2518303
1.330	0.5776117	3.781043	0.2644773	I. 380	0.5993264	3.974 902	0.2515786
.331	. 5780460	. 784826	. 2642129	-381	. 5997607	. 978879	..251 3271
-332	- 5784802	. 788613	. 2639488	- 382	. 6001950	. 982859	. 2510759
-333	. 5789145	. 792404	. 2636850	- 383	. 6006293	. 986844	. 2508249
-334	- 5793488	. 795198	. 2634215	-384	. 6010636	. 990833	. 2505742
1. 335	0.5797831	3.799995	0.2631582	I. 385	0.601 4979	3.994826	0.25032 .38
. 336	-580 2174	. 803798	. 2628951	-386	. 6019322	. 998823	. 2500736
- 337	-580 6517	. 807604	. 2626324	- 387	. 6023664	4.002824	. 2498237
- 338	-581 0860	.8II 413	. 2523699	- 388	. 6028007	. 006828	. 2495740
-339	.581 5203	.815 226	. 2621076	- 389	. 6032350	. 010837	. 2493245
1.340	0.5819546	3.819044	0.26I 8457	I. 390	0.6036693	4.014850	0.2490753
-341	. 5823889	. 822864	. 2615840	. 391	. 6041036	. 018867	. 2488264
-34	. 5828232	. 826689	. 2613225	- 392	. 6045379	. 022888	. 2485777
-343	. 5832575	. 830518	. 2610613	- 393	. 6049722	. 026913	. 2483292
-344	. 5836918	. 834350	. 2608004	-394	. 6054065	. 030942	. 248 0810
I. 345	0.5841261		0.2605397	I. 395	0.6058408	4.034975	0.2478330
-346	. 5845604	. 842027	. 2602793	- 396	. 6052751	. 039 OI2	. 2475853
- 347	-5849947	. 845871	. 2600191	- 397	. 6067094	. 043053	. 2473379
-348	. 5854290	. 849718	.2597593	- 398	. 6071437	. 047098	. 2470907
-349	-585 8633	. 853570	. 2594996	- 399	. 6075780	.051 147	. 2468437
1.350	0.5862976	3.857426	0.2592403	1. 400	0.6080123	4.055200	0.2465970
$\log _{\mathrm{e}}\left(\mathrm{e}{ }^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{u}		$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{u}	$\mathrm{e}^{-\mathrm{u}}$

Smithsonian Tables

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-0}
1.400	0.6080123	4.055200	0.2465970	1.450	0.6297270	4.263115	0.2345703
.401	. 6084466	. 059257	. 2463505	.451	. 630 1613	. 267380	. 2343358
. 402	. 6088809	. 063318	. 2461043	. 452	. 6305956	.271 649	. 234 Io16
. 403	. 6093152	. 067384	. 2458583	. 453	. 6310299	. 275923	. 2338676
. 404	. 6097495	.071 453	. 2456125	. 454	. 6314642	. 280201	. 2336339
1. 405	0.6101837	4.075527	0.2453671	1.455	0.6318985	4.284483	0.2334004
. 406	. 6106180	. 079604	. 2451218	. 456	. 6323328	.288770	. 2331671
. 407	.6II 0523	.083 686	. 2448768	. 457	. 6327571	. 293061	. 2329340
. 408	.6II 4866	. 087772	. 2446321	. 458	. 6332014	. 297356	. 2327012
. 409	.611 9209	.091 861	. 2443875	. 459	. 6336356	. 301656	. 2324686
1.410	0.6123552	4.095955	0.2441433	1.460	0.6340699	4.305960	0.2322363
. 411	. 6127895	. 100053	. 2438993	. 461	. 6345042	. 310268	. 2320042
. 412	. 6132238	. 104156	. 2436555	. 462	. 6349385	. 314580	. 2317723
.413	.613 6581	. 108262	. 2434120	.463	. 6353728	. 318897	. 2315406
. 414	. 6140924	. 112372	. 2431687	. 464	. 6358071	. 323218	. 2313092
1.415	0.6145267	4.116486	0.2429256	I. 465	0.6362414	4.327543	0.2310780
.416	.6I4 9610	. 120605	. 2426828	. 466	. 6366757	- 331873	. 2308470
. 417	. 6153953	. 124728	. 2424402	. 467	. 6371100	. 336207	. 2306163
. 418	.6158296 .616263	. 128854	. 2421979	. 468	. 6375443	. 340545	. 2303858
.419	. 6162639	. 132985	.241 9559	. 469	. 6379786	- 344888	. 2301555
1.420	0.6166982	4.137120	0.2417140	1.470	0.6384129	4.349235	0.2299255
. 421	. 6171325	. I41 260	. 2414724	. 471	. 6388472	. 353587	. 2296957
. 422	. 6175668	. 145403	. 2412311	-472	. 6392815	. 357942	. 2294661
. 423	. 618 0010	. 149550	. 2409900	. 473	. 6397158	. 362302	. 2292367
. 424	. 6184353	. 153702	. 240 7491	-474	. 640 1501	. 366667	. 2290076
1.425	0.6188696	4. 157858	0.2405085	I. 475	0.6405844	4.371036	0.2287787
. 426	. 6193039	. 162018	. 240268 I	. 476	. 641 or 87	$\begin{array}{r}\text {. } 375409 \\ \hline\end{array}$. 2285501
. 427	. 6197382	. 166182	. 2400279	. 477	. 6414529	. 379787	. 2283216
. 428	.6201725 .6206068	. 170350	. 2397880	. 478	. 6418872	- 384169	. 2280934
. 429	. 6206068	. 174523	. 2395484	. 479	. 6423215	-388 555	. 2278654
1.430	0.6210411	4.178 699	0.2393089	1.480	0.6427558	4.392946	0.2276377
. 431	. 6214754	. 182880	. 2390697	.481	. 643 I 901	. 397341	. 2274102
. 432	. 6219097	. 187065	. 2388308	. 482	. 6436244	. 401740	. 2271829
-433	.6223440	. 191254	. 2385921	. 483	. 6440587	. 406144	. 2269558
-434	. 6227783	- 195447	.238 3536	. 484	. 6444930	. 410553	. 2267290
1.435	0.6232126	4. 199645	0.2381154	1.485	0.6449273	4.414965	0.2265023
. 436	. 6236469	. 203847	. 2378774	. 486	. 6453615	. 419383	. 2262760
-437	. 6240812	. 208053	. 2376396	. 487	. 6457959	. 423804	. 2260498
. 438	. 6245155	. 212263	.2374021	. 488	. 6462302	. 428230	. 2258239
. 439	. 6249498	. 216477	. 2371648	. 489	. 6466645	. 432 661	. 225 5981
1.440	0.625384 I	4.220696	0.2369278	r. 490	0.6470988	4.437096	0.2253727
. 441	. 6258183	. 224919	. 2366909	-491	. 6475331	.44I 535	. 2251474
. 442	. 6262526	. 222146	. 2364544	. 492	. 6479674	. 445979	. 2249224
. 443	. 6266869	. 233377	. 2362180	. 493	. 6484017	. 450427	. 2246976
. 444	. 6271212	. 237612	. 2359819	. 494	. 6488360	. 454879	. 2244730
1. 445	0.6275555	4.241852	0.2357461	I. 495	0.6492703	4.459337	0.2242486
. 446	. 6279898	. 246096	. 2355104	. 496	. 6497045	. 463798	. 2240245
. 447	. 6284241	. 250344	. 2352751	. 497	. 6501388	. 468254	. 2238006
-448	. 6288584	. 254597	. 2350399	- 498	. 6505731	. 472735	. 2235769
. 449	. 6292927	. 258854	. 2348050	. 499	. 6510074	. 477 210	. 2233534
1.450	0.6297270	4.263115	0.2345703	I. 500	0.6514417	4.481 689	0.2231302
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	$e^{-\square}$	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{a}	e^{-n}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}
I. 500	0.6514417	4.481 689	0.2231302	1.550	0.6731564	4.711470	0.2122480
. 501	. 6518760	. 486173	. 222 9071	-55I	. 6735907	. 716184	. 2120358
. 502	. 6523103	. 490661	. 2226843	. 552	. 6740250	. 720903	.21I 8239
. 503	. 6527446	. 495154	. 222 46I8	- 553	.6744593	. 725626	.211 6i22
. 504	. 6531789	. 499652	. 2222394	. 554	. 6748936	. 730354	. 2114007
1. 505	0.653 6132	4.504154	0.2220173	I. 555	0.6753279	4.735087	0.2111894
. 506	. 6540475	. 508660	.221 7954	. 556	. 6757522	. 739824	. 2109783
. 507	. 65448 I 8	. 513171	. 2215737	. 557	. 676 1955	. 744566	. 2107674
. 508	. 654 916ı	.517 686	. 221 3522	. 558	.6766308	. 749 313	. 2105568
. 509	. 6553504	. 522206	. 2211310	. 559	. 677065 I	. 754065	. 2103463
1.510	0.6557847	4.526731	0.2209100	I. 560	0.6774994	4.75882 I	0.2101361
. 511	. 6562190	. 531260	. 2206892	. 561	. 6779337	. 763582	. 209 9260
. 512	.6566533	. 535793	. 2204686	. 562	. 6783680	. 768348	.2097162
. 513	. 6570876	. 54033 I	. 2202482	. 563	. 6788023	. 773119	. 2095066
. 514	.6575218	. 544874	. 220 0281	. 564	. 6792366	. 777895	. 2092972
1.515	0.6579561	4.549421	0.2198082	1.565	0.6796709	4.782675	0.2090880
. 516	. 6583904	. 553973	. 2195885	. 566	. 6801052	. 787460	. 2088790
. 517	. 6588247	. 558529	. 2193690	. 567	. 6805395	. 792250	.2086703
. 518	. 6592590	. 563090	.219 I497	. 568	. 6809737	. 797045	. 2084617
. 519	.6596933	. 567655	. 2189307	. 569	.681 4080	. 801844	.2082533
1.520	0.6501276	4.572225	0.2187119	I. 570	0.681 8423	4.806648	0.2080452
. 52 I	. 6605619	. 576800	. 2184933	. 571	.682 2766	.81I 457	. 2078372
. 522	. 6609962	.581 379	. 2182749	. 572	. 6827109	.816 271	. 2076295
. 523	. 6614305	. 585962	. 2180567	. 573	.6831452	.821 090	. 2074220
. 524	.66ı 8648	. 590 55I	. 2178388	. 574	.6835795	.825913	. 2072147
I. 525	0.6622991	$4 \cdot 595$ I44	0.2176211	1.575	0.684 0I38	4.830742	0.2070076
. 526	. 6627334	. 59974 I	.2174035	. 576	. 684 448I	. 835575	. 2068006
. 527	. 6631677	. 604343	. 2171862	. 577	. 6848824	. 8404 I 3	. 2065940
. 528	.6636020	. 608950	. 2169692	. 578	.6853167	. 845256	. 2063875
. 529	.6640363	.6I3 56ı	.2167523	. 579	. 685 7510	.850103	. 206 1812
I. 530	0.6644706	4.618177	0.2165357	1.580	0.686 I853	4.854956	0.2059751
. 531	. 6649049	. 622797	.2163192	.581	. 686 6I96	. 859 813	. 2057692
. 532	. 665 3391	.627422	.2161030	. 582	.6870539	. 864675	. 2055636
. 533	.6657734	.632052	. 2158870	. 583	.6874882	.869543	. 205 3581
. 534	. 6662077	.636687	. 2156713	. 584	. 6879225	. 874415	. 2051528
1.535	0.6666420	4.641326	0.2154557	1. 585	0.6883568	4.879291	0.2049478
. 536	. 6670763	. 645969	. 2152403	. 585	. 6887910	. 884173	. 2047429
. 537	. 667 5106	. 650617	. 2150252	. 587	. 6892253	. 889060	. 2045383
. 538	. 6679449	. 655270	. 214 8103	. 588	.6896596		. 2043339
. 539	. 6683792	. 659928	. 2145956	. 589	. 6900939	. 898848	. 2041296
1.540	0.668 8135	4.664590	0.2143811	I. 590	0.6905282	4.903749	0.2039256
. 541	. 6692478	. 669.257	. 2141668	. 591	. 6909625	.908 655	. 2037218
. 542	. 6696821	. 673929	. 2139528	. 592	. 6913968	.913 566	. 2035182
. 543	. 6701164	.678605	. 2137389	. 593	. 6918311	. 918482	. 2033148
. 544	. 6705507	.683286	. 2135253	. 594	. 6922654	.923403	. 203 III5
1.545	0.6709850	4.687972	0.2133119	I. 595	0.6926997	4.928329	0.2029085
. 546	. 6714193	. 692662	. 2130987	. 596	. 6931340	.933260	. 2027057
. 547	. 6718536	.697357	. 2128857	. 597	. 6935683	.938 196	. 202503 I
. 548	.6722879	. 702057	. 2126729	- 598	$.6940026$	$.943 \text { I36 }$	$.2023007$
. 549	.6727222	.706761	. 2124603	. 599	. 6944369	. 948082	. 2020985
I. 550	0.6731564	4.7II 470	0.2122480	1.600	0.6948712	4.953032	0.201 8965
$\log _{e}\left(e^{\text {a }}\right.$)	$\log _{10}\left(e^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}

Smithsonian Tables

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-u}
I. 600	0.6948712	4.953032	0.201 8965	1.650	0.7165859	5.206980	0.1920499
. 601	. 6953055	. 957988	. 2016947	. 651	. 7170202	. 212 I 89	. 191 8580
. 602	.6957398	. 962948	. 2014931	. 652	. 7 I 74545	. 217404	. I91 6662
. 603	. 696174 I	. 967914	. 2012917	. 653	. 7178888	. 222624	. I91 4746
. 604	.6966083	. 972884	. 2010905	. 654	. 718323 I	.227849	.191 2832
1.605	0.6970426	4.977860	0.2008896	1.655	0.7187574	5.233080	O.191 0921
. 606	. 6974769	. 982840	. 2006888	. 656	. 719 1917	. 238316	. 1909011
. 607	. 697 9112	.987825	. 2004882	. 657	. 7196260	. 243557	. 1907103
. 608	. 6983455	. 992 816	. 2002878	. 658	. 7200603	. 248803	. 1905196
. 609	. 6987798	. 997 8II	. 2000876	. 659	.7204945	. 254054	. 1903292
1.610	0.6992141	5.00281 I	0. 1998876	I. 660	0.7209288	5.259 3II	0.190 1390
.6II	. 6996484	. 007817	. 1996878	. 661	. 7213631	. 264573	. 1899489
.6I2	.7000827	. 012827	. 1994882	. 662	. 7217974	. 269840	. 1897591
.6I3	. 7005170	. 017842	. 1992888	. 663	. 7222317	. 275112	. 1895694
. 614	. 7009513	. 022863	. 1990897	. 664	.7226660	. 280390	. 1893799
1.615	0.701 3856	5.027888	0. 1988907	1. 665	0.7231003	5.285673	0.1891907
.6I6	. 7018199	. 032918	. 1986919	. 666	. 7235346	. 290962	. 1890016
.6I7	. 7022542	.037954	. 1984933	. 667	. 7239689	. 296255	. 1888127
. 618	. 7026885	. 042994	. 1982949	. 668	.7244032	. 301554	. 1886239
. 619	.7031228	.048040	. 1980967	. 669	.7248375	. 306858	. 1884354
1.620	0.7035571	5.053090	0. 1978987	1.670	0.7252718	5.312 168	0. 188247 I
. 62 I	. 7039914	. 058146	. 1977009	. 671	.7257061	. 317483	. 1880589
. 622	. 7044256	. 063207	. 1975033	. 672	.7261404	.322803	. 1878709
. 623	. 7048599	. 068272	. 1973059	. 673	.7265747	. 328 I28	. 1876832
. 624	. 7052942	.073343	. 1971087	. 674	.7270090	. 333459	. 1874956
I. 625	0.7057285	5.078419	0.1969117	1. 675	0.7274433	5.338795	0.1873082
. 626	. 7061628	. 083500	. 1967149	. 676	. 7278776	. 344 137	. 1871210
. 627	. 7065971	. 088586	. 1965182	. 677	. 728 3II8	. 349483	. I86 9339
. 628	. 7070314	. 093677	. 1963218	. 678	.7287461	. 354836	. 1867471
. 629	.7074657	. 098773	. 1961256	. 679	.729 1804	. 360193	. 1865604
1. 630	0.7079000	5.103 875	0. 1959296	1. 680	0.7296147	5.365556	0.1863740
.63I	. 7083343	. 10898 I	. 1957337	.68I	. 7300490	. 370924	. 1861877
. 632	. 7087686	. 114093	. 195538 I	. 682	. 7304833	. 376298	. 1860016
. 633	. 7092029	. II9 209	. 1953427	.683	. 7309176	.381 677	. 1858157
. 634	. 7096372	. 124 33I	. 1951474	. 684	.731 3519	. 387 06I	.185 6300
1. 635	0.7100715	5.129 458	0.194 9524	1.685	0.7317862	$5 \cdot 392451$	0.1854444
. 636	. 7105058	. 134590	. 1947575	. 686	. 7322205	. 397846	. 1852591
. 637	. 7109401	. I39 727	. 1945629	. 687	.7326548	. 403247	. 1850739
. 638	. 7113744	. 144869	. 1943684	. 688	. 7330891	. 408653	. 1848889
. 639	. 7118087	. 150 OI7	. 194 I74I	. 689	.7335234	. 414064	. 1847041
1. 640	0.7122430	5.155 170	0. 1939800	1.690	0.7339577	5.419 48I	0.184 5195
. 641	. 7126772	. I60 327	. 1937852	. 691	. 7343920	. 424903	. 184335 I
. 642	. 7131115	. 165490	. 1935925	. 692	. 7348263	. 43033 I	. I84 1509
. 643	. 7135458	. I70 658	. 1933950	. 693	. 7352606	. 435764	. 1839668
. 644	.7139801	. 17583 I	. 1932057	. 694	.7356949	. 441202	. 1837829
1. 645	0.7144144	5.181 010	0. 193 O126	1. 695	0.7361291	5.446646	0.183 5992
. 646	. 7148487	. 186194	. 1928196	. 696	. 7365634	. 452095	. 183 4157
. 647	. 7152830	. 191382	. 1926269	. 697	. 7369977	. 457550	. 183 2324
. 648	.7157173	. 196 576	. 1924344	. 698	.7374320	. 463010	. 183 0493
. 649	.7161516	. 201775	. 1922421	. 699	. 7378663	. 468476	. 1828563
1. 650	0.7165859	5.206980	0. 1920499	1.700	0.7383006	5.473947	0.1826835
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{u}	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(e^{u}\right)$	e^{u}	e^{-u}
1.700	0.7383006	5.473947	0.182 6835	I. 750	0.7600153	5.754603	0.173 7739
. 701	. 7387349	. 479424	. 1825009	. 751	. 7604496	. 760360	. 1736003
. 702	. 7391692	.484906	. 1823185	. 752	. 7608839	. 766123	. 1734267
. 703	.7396035	. 490394	. 1821363	. 753	.761 3I82	. 771892	. I73 2534
. 704	. 7400378	. 495887	.181 9542	. 754	.761 7525	. 777667	. 1730802
1.705	0.7404721	5.501 386	0.1817724	1.755	0.762 I868	5.783448	0.1729072
. 706	. 7409064	. 506890	. I8I 5907	. 756	. 7626211	. 789234	. 1727344
. 707	. 7413407	. 512399	.18I 4092	. 757	. 7630554	. 795026	. I72 5618
. 708	. 7417750	.517915	. I81 2279	. 758	.7634897	. 800824	. I72 3893
. 709	. 7422093	. 523435	. 1810467	. 759	.7639240	.806628	. 172 2170
1.710	0.7426436	5.528 96I	0.I80 8658	1.760	0.7643583	5.812 437	0.1720449
. 7 II	. 7430779	. 534493	. 1806850	. 761	. 7647926	. 818253	. 1718729
. 712	. 7435122	. 540030	. 1805044	. 762	.7652269	. 824074	. I7I 7011
.713	. 7439464	. 545573	. 1803240	. 763	.7656612	. 829 901	.1715295
. 714	. 7443807	.551 122	. 180 I438	. 764	.7660955	.835734	. I7I 358I
1.715	0.744 8I50	$5 \cdot 556676$	-.179 9637	1.765	0.7665298	5.84 L 572	0.171 1868
. 716	. 7452493	. 562235	. 1797838	. 766	. 7669641	. 847417	. I7I OI57
. 717	. 7456836	. 567800	. 1796042	. 767	. 7673983	. 853267	. 1708448
. 718	. 746 II79	. 573 371	. 1794246	. 768	. 7678326	. 859123	.170 6740
.719	.7465522	. 578947	. 1792453	.769	.7682659	. 864985	. I70 5034
1.720	0.7469865	$5 \cdot 584528$	0.179 066I	1.770	0.7687012	5.870853	0.1703330
. 721	. 7474208	. 590 I16	. 1788872	. 771	. 7691355	. 876727	. 170 1627
. 722	. 7478855	. 595709	. 1787084	. 772	. 7695698	.882607	. 1699927
. 723	. 7482894	. 601307	. 1785298	. 773	.7700041	.888492	. 1698228
. 724	.7487237	. 606 9II	. 1783513	. 774	.7704384	.894384	. 1696530
1.725	0.749 I580	5.612521	0.178 173I	1.775	0.7708727	5.90028 I	0.169 4834
. 726	. 7495923	. 618 I36	. 1779950	. 776	. 7713070	. 906184	. 1693141
. 727	. 7500266	.623757	. 1778 8171	. 777	.771 7413	. 912094	. 1691448
. 728	.7504609	. 629384	. 1776393	. 778	.7721756	. 918009	. 1689758
.729	.7508952	. 635016	. 1774618	. 779	.7726099	. 923930	. 1688069
I. 730	0.7513295	5.640654	0.177 2844	1.780	0.7730442	5.929856	0. 168638 I
. 731	.751 7637	. 646297	.1771072	.781	. 7734785	. 935789	. 1684696
. 732	. 7521980	. 651947	. 1769302	. 782	. 7739128	.941 728	. 1683012
. 733	.7526323	.657601	. 1767534	. 783	. 774347 I	.947673	. 1681330
. 734	.7530666	. 663262	.176 5767	. 784	. 774 7814	.953623	. 1679649
1.735	0.7535009	5.668928	0.1764002	1.785	0.7752157	5.959580	0.1677971
. 736	. 7539352	. 674600	. 1762239	. 785	. 7756499	. 965543	. IU7 6293
. 737	. 7543695	. 680277	. 1760478	. 787	. 776108.42	.971 511	. 1674618
. 738	. 7548038	. 685960	. 1758718	. 788	.7765185	. 977485	$.1672944$
. 739	. 755 2381	. 691649	. 1756960	. 789	. 7769528	.983466	. 167 I272
1.740	0.7556724	5.697343	0.175 5204	1.790	0.7773871	5.989452	0.1669602
. 741	. 7561057	. 703044	. 1753450	. 791	. 7778214	. 995445	. 1667933
. 742	. 7565410	. 708750	- 1751697	. 792	. 7782557	6.001443	. 1666266
. 743	. 7569753	. 714461	. I74 9946	. 793	. 7786900	. 007448	. 1664600
. 744	. 7574096	. 720178	. 1748197	. 794	. 7791243	. 013458	. 1662937
	0.7578439	5.725901	0.174 6450	1.795	0.7795586	6.019475	0.1661275
. 746	. 7582782	.731 630	. 1744704	. 796	. 7799929	. 025497	. 1659614
. 747	. 7587125	.737365	. I74 2960	. 797	. 7804272	.031 526	.1657955
. 748	. 7591468	.743105	. 1741218	. 798	.780 86I5	.037560	$.1656298$
. 749	. 7595810	.74885 I	. 1739478	. 799	.781 2958	. 043601	. I65 4643
1.750	0.7600153	5.754603	0.173 7739	1.800	0.7817301	6.049647	0.165 2989
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}
1.800	0.7817301	6.049647	0. 1652989	1.850	0.8034448	6.359820	0.1572372
. 801	. 7821644	. 055700	. 1651337	.851	. 8038791	. 365183	$.1570800$
. 802	. 7825587	.06I 759	. I64 9686	. 852	. 804 3I34	- 372552	. 1569230
. 803	.7830330	. 067824	. 1648037	. 853	. 8047477	. 378928	$\text { . } 567662$
. 804	.7834672	.073895	. 1646390	. 854	. 8051820	. 385310	$\begin{array}{r} .1566095 \end{array}$
1.805	0.7839015	6.079 97I	0.164 4745	1.855	0.8056163	6.391698	0.1564529
. 806	. 7843358	. 086054	. 1643101	. 856	. 8060506	. 398093	. 1562966
. 807	. 7847701	. 092144	. 1641458	. 857	. 8064849	. 404494	. 1561403
. 808	.7852044	. 098239	. 1639818	. 858	. 8069191	. 410902	$\text { . I55 } 9843$
. 809	.7856387	. 104340	. 163 8179	. 859	. 8073534	. 417316	$.1558284$
1.810	0.7860730	6.110 447	0.163 654I	1.860	0.8077877	6.423737	0. I'55 6726
.8II	. 7865073	. 116561	. 1634906	. 861	. 8082220	. 430164	. 155 5170
. 812	. 7869416	. 12268 I	. 1633272	. 862	.8086563	. 436597	. 1553616
. 813	. 7873759	. 128806	. 1631639	. 863	. 8090906	. 443037	. 1552063
.814	.7878102	. 134938	. 1630008	. 864	. 8095249	. 449.483	. 1550512
1.815	0.7882445	6.141076	0.1628379	1.865	0.8099592	6.455936	0.154 8962
.816	. 7886788	. 147220	. 1626752	. 866	. 810 3935	. 462395	$\text { . I54 } 7414$
.817	. 789 II3I	. 153371	. 162 5126	. 867	.810 8278	. 468 86I	. 1545867
. 818	. 7895474	. 159527	. 1623501	. 858	.8II 262I	. 475333	. 1544322
. 819	.789 98I7	.165690	. 1621879	. 859	.8II 6964	. 48 I 8II	. 1542779
1.820	0.7904160	6.171858	0.1620258	1.870	0.8121307	6.488296	0.154 1237
. 821	. 7908503	.178 033	. 1618638	- . 871	. 8125650	. 494788	$\text { . I53 } 9696$
. 822	.791 2845	. 1842.15	. 161 7020	. 872	.8I2 9993	. 501286	. 1538157
. 823	. 791 7188	. 190402	. I6I 5404	. 873	. 8134336	. 507791	. I53 6620
. 824	.7921531	. 196595	. 1613789	. 874	.8ı3 8679	. 514302	. 1535084
1.825	0.7925874	6.202795	0.1612176	1.875	0.8143022	6.520 819	O.I53 3550
. 826	. 7930217	. 209 00I	. 1610565	. 876	.814 7364	. 527343	. 1532017
. 827	.7934560	. 215213	. 1608955	. 877	.815 1707	. 533874	. 1530486
. 828	.7938903	. 221431	. 1607347	. 878	.815 6050	. 5404 II	. 1528956
. 829	. 7943246	.227656	. 1605741	. 879	.816 0393	. 546955	. 1527428
1.830	0.7947589	6.233887	0.1604136	1.880	0.8164736	6.553505	0.152 590I
. 831	. 7951932	. 240124	. 1602532	.88I	. 8169079	. 560062	. I52 4376
. 832	.7956275	.246367	. 160093 I	. 882	.817 3422	. 566625	. 1522852
. 833	. 7960618	.252616	. 1599330	. 883	.817 7765	. 573195	. 1521330
. 834	.796 4961	.258872	. I59 7732	. 884	.8I8 2108	. 579771	. 1519810
1.835	0.7969304	6.265134	0.159 6I35	1.885	0.818645 I	6.586354	0.1518291
. 836	. 7973647	. 271402	. 1594540	. 886	.819 0794	. 592944	.1516775
. 837	. 7977990	.277677	. I59 2946	. 887	.819 5I37	. 599540	.151 5257
. 838	. 7982333	. 283958	. I59 I354	. 888	. 8199480	. 606143	.151 3743
. 839	.7986676	. 290245	. 1589763	. 889	.8203823	.6I2 753	.151 2230
I. 840	0.7991018	6.296538	-. 1588174	1.890	0.820 8166	6.619369	0.1510718
.841	. 7995361	. 302838	. 1586587	. 891	. 8212509	. 625991	. 1509208
. 842	. 7599704	. 309 I44	. I58 500I	. 892	. 8216852	. 632621	. 1507700
. 843	. 8004047	. 315455	. 1583417	. 893	.8221195	. 639257	. 1506193
. 844	. 8008390	-321 775	. 158 I834	. 894	.8225537	. 645899	. 1504687
. 1.845	0.8012733	6.328100	0. 1580253	I. 895	0.8229880	6.652548	0.1503183
$.846$	$.8017076$	$.33443 \mathrm{I}$. 1578574	. 896	. 8234223	$.659204$	$.150 \mathrm{I} 68 \mathrm{I}$
. 847	. 8021419	- 340769	. 1577096	. 897	.8238566	. 665867	. 1500180
. 848	.8025762	. 347 II3	. 1575520	. 898	. 8242909	. 672536	. I49 868I
. 849	.8030105	. 353463	. 1573945	. 899	. 8247252	. 679212	. 1497183
1.850	0.8034448	6.359820	0.1572372	1.900	0.8251595	6.685894	0.149 5686
$\log _{\mathrm{e}}\left(\mathrm{e}^{u}\right)$	$\log _{10}\left(e^{\mathrm{u}}\right)$	e^{u}	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}{ }^{\text {u }}\right.$)	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-0}	u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right.$)	$\mathrm{e}^{\text {a }}$	e^{-u}
1.900	0.8251595	6.685894	0.149 5686	1.950	0.8468742	7.028688	0. 1422741
.901	. 8255938	. 692584	. 1494191	.95I	. 8473085	. 035720	- 1421319
. 902	. 826 0281	. 699280	- 1492698	. 952	. 8477428	. 042759	- 1419898
. 903	. 8264624	. 705982	. 1491206	. 953	. 8481771	. 049805	- 141 8479
. 904	. 8268967	. 712692	. 1489715	. 954	. 848 6II4	. 056859	.141 7061
I. 905	0.827 3310'	6.719408	0. 1488226	I.955	0.8490457	7.063919	0.14I 5645
. 906	. 8277653	. 726130	. 1486739	. 956	. 8494800	. 070985	- I4I 4230
. 907	. 8281996	. 732850	. 1485253	. 957	. 8499143	. 078061	. 1412816
. 908	. 8286339	. 739596	. 1483768	. 958	. 8503486	. 085143	- 1411404
. 909	. 8290682	. 746339	. 1482285	. 959	. 8507829	. 092231	. 1409993
I.910	0.8295025	6.753089	0. 1480804	I.960	0.8512172	7.099327	0. 1408584
.91I	. 8299368	. 759845	. 1479324	.961	. 8516515	. 106430	- 1407176
. 9	. 8303710	. 766	. 1477845	. 962	. 8520858	. II3 540	- 140 5770
. 913	. 8308053	. 773378	. 1476368	. 963	. 8525201	. 120657	. 1404365
. 914	.831 2396	. 780 I55	. 1474892	. 964	. 8529544	. 127 781	. 1402961
1.915	0.8316739	6.786939	o. 1473418	I. 965	0.8533887	7.134 913	0.140 1559
. 916	. 8321082	. 793729	. 1471946	. 966	. 8538230	. 142051	. 140 O158
. 917	. 8325425	. 800526	. 1470474	. 967	. 8542572	. 149197	. 1398759
.918	. 8329768	. 807330	. 1469005	. 968	. 8546915	. 156349	- 1397360
.919	. 833411 I	. 814 I 4 I	. 1467536	. 969	. 8551258	. 163509	. 1395964
1.920	0.8338454	6.820958	0. 1466070	1.970	0.855 5601	7.170676	0.139 4569
. 921	. 8342797	. 827783	. 1464604	.971	. 8559944	. 177851	- 1393175
. 922	. 8347140	. 834614	. 1463140	. 972	. 8564287	. 185032	- 1391782
. 923	. 8351483	. 841452	. 1461678	. 973	. 8568630	. 192221	- 1390391
. 924	. 8355826	. 848297	. 1460217	.974	. 8572973	-199417	. 1389001
I. 925	0.8360169	6.855149	o. 1458758	1.975	0.8577316	7.206620	0.138 7613
. 926	. 8364512	. 862007	. 1457300	. 970	. 8581659	. 213830	- 1386226
. 927	. 8368855	. 868873	. 1455843	. 977	. 8586002	. 221047	. 1384841
. 928	. 8373198	. 875745	. 1454388	. 978	. 8590345	. 228272	-1383457
. 929	. 837754 I	. 882624	. 1452934	. 979	. 8594688	.235504	. 1382074
I. 930	0.8381884	6.889510	0. 1451482	1.980	0.8599031	7.242743	0. 1380692
. 93	. 8386226	. 896403	. 1450031	.981	. 8603374	. 249989	-1379312
. 932	. 8390569	. 903303	. 1448582	-982	. 8607717	.257243	- 1377934
. 933	. 8394912	-910 210	. 1447134	.983	. 8612060	. 264504	. 1376557
. 934	. 8399255	.917 123	. 1445688	. 984	.861 6403	. 271772	-137 5181
1.935	0.8403598	6.924044	O. 1444243	1.985	0.8620745	7.279047	0. 1373806
. 936	. 8407941	-930 972	. 1442799	.98	. 8625088	. 286330	- 1372433
-937	. 8412284	. 937905	-144 1357	. 987	. 8629431	. 293620	. 1371061
. 938	. 8416627	. 944847	. 1439916	. 988	. 8633774	-300 917	- 1369691
-939	. 8420970	.951 796	. 1438477	. 989	. 863 8117	- 308222	- I368322
1.940	0.8425313	6.958751	0.1437039	1.990	0.8642460	7.315534	0.136 6954
.94I	. 8429656	.965 713	. 1435603	.991	. 8646803	- 322853	- 1365588
. 942	. 8433999	. 972682	. 1434168	-992	. 8651146	. 330179	. 1364223
. 943	. 8438342	. 979659	. 1432735	-993	. 8655489	-337513	- 1362860
. 944	. 8442685	. 986642	. 1431303	-994	. 8659832	-344 854	. 1361497
1.945	0.8447028	6.993632	0. 1429872	1. 995	0.8664175	7.352203	0.136 0137
. 946	. 8451371	7.000629	. 1428443	. 996	. 8668518	. 359559	. 1358777
. 947	. 8455714	. 007633	. 1427015	. 997	. 8672861	. 366922	-1357419
. 948	. 8460057	. 014644	. 1425589	-998	. 8677204	-374 293	. 1356062
. 949	. 8464399	.021 662	. 1424164	-999	. 8681547	.381 671	-1354707
I. 950	0.8468742	7.028688	0.1422741	2.000	0.8685890	7.389056	0.135 3353
$\log _{\text {e }}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{u}		$\log _{\text {e }}\left(\mathrm{e}^{\mathrm{u}}\right.$)	$\log _{10}\left(e^{u}\right)$	e^{u}	e^{-}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-0}	u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right)$	$e^{\text {u }}$	e^{-u}
2.000	0.8685890	7.389056	0.135 3353	2.050	0.8903037	7.767 901	0.1287349
.00I	. 8690233	- 396449	. I35 2000	.051	. 8907380	. 775673	. 1286062
. 002	.8694576	. 403849	. I35 0649	. 052	. 8911723	. 783452	. 1284777
. 003	.8698918	.411 257	. I34 9299	. 053	. 8916066	. 791240	. 1283493
. 004	.8703261	. 418672	. I34 7950	. 054	.8920 .409	. 799035	. 1282210
2.005	0.8707604	7.426094	0.1346603	2.055	0.8924752	7.806838	0.1280928
. 006	.871 1947	. 433524	. I34 5257	. 056	. 8929095	.814 649	. 1279648
. 007	. 8716290	. 440961	. I34 3912	. 057	. 8933437	. 822467	. 1278369
. 0008	. 8720633	. 448406	. I34 2569	. 058	.8937780	. 830294	.1277091
. 009	.8724976	. 455858	. 1341227	. 059	. 894 2123	. 838 128	. 127 5815
2.010	0.8729319	7.463317	-. 1339887	2.060	0.8946466	7.845970	0.1274540
.OII	. 8733662	. 470784	. 1338548	.06I	. 8950809	. 853820	. 1273266
.OI2	.8738005	. 478259	. 1337210	. 062	. 895 5152	.86I 677	.1271993
. OI3	. 8742348	. 485741	. I33 5873	. 063	.8959495	. 869543	. 1270722
. 014	. 8746691	. 493230	. I33 4538	. 064	.8963838	. 877417	. 1269452
2.015	0.8751034	7.500727	O. 1333204	2.065	0.896 8ı8I	7.885298	0.126 8183
. 016	. 8755377	. 508232	. 1331871	. 066	. 8972524	. 893187	. 1266915
. 017	.8759720	. 515744	. 1330540	. 067	.8976867	.901 084	.1265649
. 018	.8764063	. 523263	. 1329210	. 068	. 898 I210	. 908989	. 1264384
. 019	.8768406	. 530790	. I32 7882	. 069	. .8985553	. 916902	. 1263120
2.020	0.8772749	7.538325	0.132 6555	2.070	0.8989896	7.924823	0.126 1858
. 021	. 877 7091	. 545867	. 1325229	. 071	. 8994239	. 932752	. 1260597
. 022	. 8781434	. 553417	. 1323904	. 072	. 8998582	. 940689	. 1259337
. 023	. 8785777	. 560974	. 132258 I	. . 073	. 9002925	. 948633	. 1258078
. 024	. 879 OI20	. 568539	. I32 I259	. 074	. 9007268	. 956586	.1256820
2.025	0.8794463	7.576 III	O.I3I 9938	2.075	0.9011610	7.964546	0.125 5564
. 026	. 8798806	. 583691	. I3I 8619	. 076	.901 5953	. 972 515	. 1254309
. 027	. 8803149	. 591278	. 131 7301	. 077	.9020296	. 980491	. 1253056
. 028	. 8807492	.598873	. I3I 5985	. 078	.9024639	. 988476	. 1251803
. 029	.88I 1835	. 606476	. I3I 4669	. 079	. 9028982	. 996468	.1250552
2.030	0.88 I 6ı78	7.614086	O.I3I 3355	2.080	0.9033325	8.004469	0.124 9302
.03I	. 8820521	.621 704	. I31 2043	.08I	. 9037668	. 012477	. 1248053
. 032	.8824864	.629330	. I3I 073I	. 082	. 9042011	. 020494	. 1246806
. 033	.8829207	.636963	. 130942 I	. 083	. 9046354	. 028518	. 1245560
. 034	.8833550	.644604	- I30 8iI2	. 084	.9050697	. 03655 I	. 124 43I5
2.035	0.8837893	7.652252	0.130 6805	2.085	0.9055040	8.044591	0.1243071
. 036	. 8842236	. 659908	. I30 5499	. 086	. 9059383	. 052640	. 1241829
. 037	.8846579	. 667572	. I30 4194	. 087	. 9063726	. 050697	. 1240588
. 038	.8850922	.675243	. I30 2890	. 088	. 9068069	. 068761	. I239348
. 039	. 8855264	.682922	. 1301588	. 089	. 9072412	. 076834	. 123 8109
2.040	0.8859607	7.690609	0.130 0287	2.090	0.9076755	8.084915	0.1236871
. 041	.8863950	. 698304	. 1298987	. 091	. 9081098	. 093004	.1235635
. 042	. 8868293	. 706006	. 1297689	. 092	. 908 544I	. IOI IOI	. 1234400
. 043	.8872636	.713716	. 1296392	. 093	.9089784	. 109206	.1233166
. 044	. 8876979	.721 433	. 1295096	. 094	.9094126	. 117320	. 1231934
2.045	0.8881322	7.729159	0.1293802	2.095	0.9098469	8.12544 I	0.1230702
. 046	. 8885665	. 736892	. 1292509	. 096	.910 2812	. 133570	. 1229472
. 047	. 8890008	. 744632	. I29 1217	. 097	.910 7155	. 141708	. 1228243
. 048	. 8894351	.752 38I	. I28 9926	. 098	.91I 1498	. 149854	. 1227016
. 049	. 8898694	. 760137	. 1288637	. 099	.911 5841	. 158008	. 1225789
2.050	0.8903037	7.767901	0.1287349	2.100	0.9120184	8.166 I70	0.1224564
$\log _{e}\left({ }^{\text {(}}\right.$) $)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}{ }^{\mathrm{u}}\right)$	$\log _{10}\left({ }^{\text {u }}\right.$)	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}	u	$\log _{10}\left(e^{u}\right)$	$e^{\text {n }}$	e^{-u}
2.100	0.912 OI84	8.166 170	0. 1224564	2.150	0.933 733I	8.584858	0.116 4842
. IOI	. 9124527	. 174340	. 1223340	. 151	. 9341674	. 593448	. II6 3677
. 102	. 9128870	. 182519	. 122 2118	. 152	. 9346017	. 602045	. 1162514
. 103	. 9133213	. 190705	. I22 0896	. 153	. 9350360	. 610652	. II6 I352
. 104	-913 7556	. 198900	. 1219676	. 154	.9354703	. 619267	. II6 OI92
2.105	0.9141899	8.207103	O.I2I 8457	2.155	0.9359046	8.627890	O.II5 9032
. 106	.914 6242	.2I5 3I4	. I2I 7239	. 156	. 9363389	. 636522	. II5 7873
. 107	.915 0585	. 223534	. I2I 6022	. 157	. 9367732	.645 I63	. II5 6716
. 108	. 9154928	. 231 76I	. I2I 4807	. 158	. 9372075	. 653 813	. II5 5560
. 109	. 915927 I	. 239997	. I2I 3593	. 159	. 93764 I 8	. 662 47I	. II5 4405
2.110	0.9163614	8.24824 I	0.121 2380	2. 160	0.938 0761	8.671 I 38	O.II5 325I
. II	. 9167957	.256494	. 1211168	. 16I	.9385104	. 679 813	. II5 2099
. II2	. 9172299	. 264754	. 1209957	. 162	. 9389447	. 688497	. II5 0947
. II3	.917 6642	.273023	. 1208748	. 163	. 9393790	. 697190	. II4 9797
. II4	. 9180985	.28I 300	. 1207540	. 164	. 939 8I33	. 705892	. I I4 8647
2.115	0.9185328	8.289586	0.1206333	2.165	0.9402476	8.714602	0.1147499
. 116	. 9189671	. 297879	. 1205127	. 166	. 9406818	. 72332 I	. II4 6352
. 117	. 9194014	. 306182	. 1203923	. 167	.94I II6I	.732049	. II4 5207
. II8	. 9198357	.314 492	. 1202719	. 168	.941 5504	. 740785	. II4 4062
. 119	. 9202700	. 322 8II	. 1201517	. 169	.94I 9847	. 749530	. II4 2919
2.120	0.9207043	8.331 137	0.1200316	2. 170	0.9424190	8.758284	0.114 1776
. 121	.921 I386	. 339473	. II9 9117	. 171	. 9428533	. 767047	. 11400635
. 122	.921 5729	-347 816	. I19 7918	. 172	. 9432876	. 775 818	. II3 9495
. 123	. 9220072	. 356168	. II9 672I	. 173	. 9437219	. 784598	. II3 8356
. 124	. 9224415	. 364529	. II9 5525	. 174	. 944 I562	. 793387	. I13 7218
2.125	0.9228758	8.372897	O.II9 4330	2.175	0.9445905	8.802185	0.II3 6082
. 126	. 923 3101	.381 275	- II9 3136	. 176	. 9450248	. 810992	. II3 4946
. 127	.923. 7444	. 389660	. II9 1943	. 177	. 9454591	.819807	. II3 38I2
. 128	. 9241787	. 398054	. II9 0752	. 178	. 9458934	. 828631	. II3 2678
. 129	. 924 6I30	. 406456	. 1189562	. 179	. 9463277	.837464	. II3 1546
2. I30	0.9250472	8.414867	0.1188373	2.180	0.9467620	8.846306	O.II3 04I5
.13I	. 925 4815	. 423286	. 1187185	. 181	. 947 1963	. 855 I 57	. 1129285
. 132	. 925 9158	. 431713	. II8 5999	. 182	. 9476306	. 864 O17	. 1128157
. 133	. 9263501	. 440149	. II8 48I3	. 183	. 9480649	. 872885	. II2 7029
. I34	. 9267844	. 448594	. II8 3629	. 184	. 948 499I	. 881762	. I 125903
2. 135	0.9272187	8.457047	0.118 2446	2.185	0.9489334	8.890649	
. I36	. 9276530	.465508	. II8 1264	. 186	. 9493677	. 899544	. I12 3653
. 137	. 9280873	.473978	. II8 0083	. 187	. 9498020	. 908448	. II2 2530
. 138	. 9285216	. 482456	. II7 8904	. 188	. 9502363	.917361	. II2 I408
. 139	. 9289559	. 490942	. 1177726	. 189	. 9506706	. 926282	. I 120287
2. 140	0.9293902	8.499438	0.II7 6548	2. 190	0.9511049	8.935213	0.1119167
. 141	. 9298245	. 50794 I	. II7 5372	. 19I	.951 5392	. 944 I53	. III 8049
. 142	. 9302588	. 516454	.117 4198	. 192	.951 9735	. 953 IOI	. III 693 I
. 143	. 9306931	. 524974	. II7 3024	- 193	. 9524078	. 962059	. III 58I5
. 144	.93I I274	. 533503	. 1171852	. 194	. 952842 I	.971 026	. III 4700
2.145	0.9315617		0.1170680	2. 195	0.9532764	8.980001	O.III 3586
. 146	.931 9960	-550 588	. 1169510	. 196	.9537107	. 988986	. III 2473
. 147	. 9324303	. 559 I42	. 1168341	. 197	. 9541450	. 997979	. III 1361
. 148	. 9328645	$\begin{aligned} & .567706 \\ & .576278 \end{aligned}$. 1167174	. 198	.9545793	9.006982	. III 0250
. 149	. 9332988	- 570278	. 1166007	. 199	. 955 OI36	. 015993	- IIO 9140
2.150	0.933733 I	8.584858	0.II6 4842	2.200	0.9554479	9.025 OI3	O.IIO 8032
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{\text {u }}\right.$)	$e^{\text {a }}$	e^{-}	$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(e^{\text {u }}\right.$)	$e^{\text {u }}$	e^{-u}

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}
2.200	0.9554479	9.025 O13	0.110 8032	2.250	0.9771626	9.487736	O.IO5 3992
. 201	. 9558822	. 034043	. IIO 6924	.25I	. 9775969	. 497228	. IO5 2939
. 202	. 9563164	. 043082	. IIO 58i8	. 252	. 9780312	. 506730	. 1051886
. 203	. 9567507	.052129	. IIO 4712	. 253	. 9784655	. 516242	. 1050835
. 204	. 957 I850	.061 186	. IIO 3608	. 254	. 9788998	. 525763	. 1049785
2.205	0.9576193	9.070252	0.1102505	2.255	0.9793341	9.535293	0.104 8735
. 206	. 9580536	. 079326	. 1101403	. 256	. 9797684	. 544833	. 1047687
. 207	. 9584879	. 088410	. 1100302	. 257	. 9802026	. 554383	. 1046640
. 208	. 9589222	.097503	. 1099203	. 258	. 9806369	. 563942	. 1045594
. 209	. 9593565	. 106605	. 1098104	. 259	.98I 0712	-573 5II	. 1044549
2.210	0.9597908	9.115716	0.1097006	2.260	0.9815055	9.583089	0.104 3505
. 211	. 9602251	. 124837	. 1095910	.26I	. 981 9398	. 592677	. IO4 2462
. 212	. 9606594	. I33966	. 109 48i5	. 262	. 982374 I	. 602275	. 1041420
. 213	.96i 0937	. I43 105	. 1093720	. 263	. 9828084	.6ıI 882	. 1040379
. 214	.96I 5280	. I52 252	. 1092627	. 264	. 9832427	. 621498	. 1039339
2.215	0.9619623	9.161 409	0.109 1535	2.265	0.9836770	9.63 I 125	0.103 8300
. 216	. 9623966	. 170575	. IO9 0444	. 266	. 984 III3	. 640761	. 1037263
. 217	. 9628309	. I79 750	- I08 9354	. 267	. 9845456	. 650406	. 1036226
. 218	. 9632652	. 188935	. 1088265	. 268	. 9849799	. 660061	. 1035190
. 219	. 9636995	. 198128	. 1087178	. 269	.9854142	. 669726	. 1034155
2.220	0.9641337	9.207331	0.1086091	2.270	0.g85 8485	9.679401	0.103 3122
. 22I	. 9645680	. 216543	. 1085006	. 271	. 9852828	. 689085	. 1032089
. 222	. 9650023	. 225764	. 1083921	. 272	. 986 7171	. 698779	. 1031058
.223	.9654366	. 234994	. 1082838	.273	.9871514	. 708483	. 1030027
. 224	.9658709	. 244234	. 1081755	. 274	.9875857	.718 196	. IO2 8998
2.225	0.9663052	9.253483	0.1080674	2.275	0.988 0199	9.727919	0.102 7969
. 226	. 9657395	. 262741	. 1079594	. 276	. 9884542	. 737652	. 1026942
. 227	. 9671738	.272008	. 1078515	. 277	. 9888885	. 747394	. 1025915
. 228	.967 608I	.28I 285	. 1077437	. 278	.9893228	. 757147	. 1024890
. 229	. 9680424	. 29057 I	.1076360	. 279	. 9897571	. 766909	. 1023865
2.230	0.9684767	9.299866	0.107 5284	2.280	0.990 I914	9.776680	0.102 2842
.23I	. 968 9110	. 309 171	. 1074210	.28I	. 9906257	. 786462	. 1021820
. 232	. 9693453	-318 484	. 1073136	.282	.991 0600	. 796253	. 1020798
. 233	. 9697796	. 327808	. 1072063	. 283	.991 4943	. 806054	. IOI 9778
. 234	. 970 2139	. 337140	. 1070992	. 284	.991 9286	.815 865	. IOI 8759
2.235	0.9706482	9.346482	0.106 992I	2.285	0.9923629	9.825686	O.IOI 7741
. 236	. 9710825	. 355833	. 1068852	. 286	. 9927972	. 835517	. IOI 6723
. 237	.971 5168	. 365194	. 1067784	.287	.9932315	. 845357	. IOI 5707
. 238	.971 9511	. 374563	. 1066716	. 288	. 9936658	.855208	. IOI 4692
. 239	. 9723853	. 383943	. 1065650	. 289	. 994 IOOI	. 865068	. IOI 3678
2.240	0.972 8ig6	9.393 331	0.106 4585	2.290	0.9945344	9.874938	O.IOI 2665
. 241	. 9732539	. 402729	. 1063521	. 291	. 9949687	. 884818	. IOI 1652
. 242	. 9736882	. 412137	. 1062458	. 292	. 9954030	.894707	. IOI 064I
. 243	. 9741225	. 421554	. 1061396	. 293	. 9958372	.904607	. 1009631
. 244	. 9745568	. 430980	. 1060335	. 294	. 9962715	. 914 517	. 1008622
2.245	0.974 99II	9.440416	0.105 9275	2.295	0.9967058	9.924436	0.100 7614
. 246	. 9754254	. 449861	. 1058217	. 296	. 997 I401	. 934365	. 1006607
. 247	. 9758597	. 459315	$.1057159$	-. 297	. 9975744	-944 305	$\text { . } 10005601$
. 248	. 9762940	. 468779	. 1056102	. 298	. 9980087	. 954254	. IOO 4596
. 249	. 9767283	. 478253	. 1055047	. 299	. 9984430	. 964213	. 1003592
2.250	0.9771626	9.487736	0.1053992	$2 \cdot 300$	0.9988773	9.974 I82	0.100 2588
$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}
2.300	0.9988773	9.974 I82	0.100 2588	2.350	1.0205920	10.485570	0.0953692
. 301	. 999 3116	.984162	. 1001586	.351	.021 0263	. 496061	. 0952738
. 302	. 9997459	. 994 I5I	. 1000585	- 352	.021 4606	. 506562	. 0951786
. 303	1.000 1802	10.004 I 50	. . 0999585	- 353	.02I 8949	. 517074	. 0950835
- 304	. 0006145	. 014159	. 0998586	. 354	.0223292	. 527596	. 0949884
2.305	I.001 0488	10.024178	0.0997588	2.355	1.0227635	10.538129	0.0948935
. 306	. 0014831	.034207	. 0996591	. 356	. 0231978	. 548672	. 0947987
. 307	.001 9174	. 044247	. 0995595	. 357	.0236321	. 559226	. 0947039
. 308	.0023517	.054296	. 0994600	. 358	. 0240564	. 569791	. 0946093
. 309	. 0027860	. 064355	. 0993606	. 359	.0245007	. 580366	. 0945147
2.310	1.0032203	10.074425	0.0992613	2.360	1. 0249350	10.590951	0.0944202
. 311	.003 6545	. 084504	. 0991620	.36I	.0253693	. 601548	. 0943259
. 312	. 0040888	.094594	. 0990629	. 362	. 0258036	. 612155	. 0942316
.3I3	. 004523 I	. 104693	. 0989639	. 363	. 0262379	. 622772	. 0941374
. 314	. 0049574	. II4 803	. 0988650	- 364	. 0266722	. 633400	. 0940433
2.315	1.0053917	10.124 923	0.0987662	2.365	1.0271064	10.644039	0.0939493
.316	. 0058260	. I35 053	. 0986675	. 356	.0275407	. 654688	. 0938554
.317	. 0062603	. 145193	. 0985688	. 367	.0279750	. 665348	. 0937616
. 318	.006 6946	. 155343	. 0984703	. 368	. 0284093	. 676 O19	.0936679
. 319	. 0071289	. 165504	. 0983719	. 369	.0288436	. 686700	. 0935743
$2 \cdot 320$	1.0075632	10.175 674	0.0982736	2.370	1.0292779	10.697392	0.0934807
. 321	. 0079975	. 185855	. 0981754	. 371	. 0297122	. 708095	. 0933873
. 322	. 0084318	. 196046	. 0980772	. 372	. 0301465	. 718808	. 0932940
. 323	. 0088861	. 206247	. 0979792	. 373	. 0305808	. 729533	. 0932007
. 324	. 0093004	. 216459	. 097 88I3	. 374	.03I OI5I	. 740268	. 0931076
2.325	1. 0097347	10.226680	0.0977834	2.375	I.03I 4494	10.75I OI3	0.0930145
. 326	. 010 I690	. 236912	. 0976857	. 376	.031 8837	.761 770	. 0929215
. 327.	. 0106033	. 247 I54	. 097 588I	. 377	.0323180	. 772537	. 0928286
. 328	.OII 0376	. 257406	. 0974905	-378	.0327523	. 783315	. 0927359
. 329	.OII 4718	.267669	. 097393 I	. 379	. 0331866	. 794103	. 0926432
2.330	I.OII 906I	10.277942	0.0972957	2.380	1. 0336209	10.804903	0.0925506
. 33 I	. 0123404	. 288225	. 0971985	. 38 I	. 0340552	.815 713	. 092458 I
. 332	. 0127747	. 2985 I8	. 097 IOI4	. 382	. 0344895	. 826534	. 0923657
- 333	. 0132090	. 308822	. 0970043	. 383	.0349238	.837366	. 0922733
. 334	.OI3 6433	. 319 I36	. 0969073	. 384	.0353580	.848209	. 092 I8II
2.335	1.0140776	10.329 460	0.0968105	2.385	I. 0357923	10.859063	0.0920890
. 336	. 014 5119	. 339795	. 0967137	. 386	. 0362266	. 869927	.091 9959
. 337	. 0149462	. 350 I40	. 0966171	. 387	.0366609	. 880803	.091 9050
. 338	. OI5 3805	. 360495	. 0965205	. 388	.0370952	. 991689	.091 8i3I
. 339	. OI 58148	. 37086 I	. 0964240	. 389	. 0375295	. 902585	.091 7214
2.340	1.016 2491	10.381 237	0.0963276	2.390	I. 0379638	10.913494	c.091 6297
.34I	. 0166834	.391 623	. 0962314	. 391	. 0383981	. 924 4I3	.091 538I
. 342	. 0171177	. 402020	. 0961352	. 392	. 0388324	. 935343	.091 4466
- 343	. O17 5520	. 412427	. 0960391	- 393	.0392667	. 946284	.091 3552
- 344	. 0179863	. 422845	. 095 943I	- 394	.0397010	. 957235	.091 2639
2.345	I. 0184206	10.433273	0.0958472	2.395	1. 0401353	10.968198	
. 346	. 0188549	. 443711	. 0957514	. 396	. 0405696	. 979 I72	. 091 08I6
- 347	. O19 2891	.454160	. 0956557	. 397	.041 0039	. 990 I56	. 0909905
- 348	. 0197234	. 464620	. 0955601	. 398	.041 4382	II.OOI 152	. 0908996
- 349	. 0201577	. 475089	. 0954646	. 399	.041 8725	. OI 2159	. 0908087
2.350	1.0205920	10.485570	0.0953692	2.400	1.0423068	11.023176	0.0907180
$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	$\mathrm{gog}_{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	$\mathrm{e}^{-\mathrm{a}}$	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-4}
2.400	I. 0423068	11.023176	0.0907180	2.450	1. 0640215	II. 588347	0.0862936
. 401	. 0427411	. 034205	. 0906273	.45I	. 0644558	. 59994 I	. 0862073
. 402	. 0431753	. 045245	. 0905367	. 452	. 0648901	.6II 547	. 0861212
. 403	. 0436096	. 056296	. 0904462	-453	. 0653244	. 623164	. 0860351
. 404	. 0440439	. 067357	. 0903558	-454	. 0657587	. 634793	. 085 9491
2.405	1. 0444782	11.078430	0.0902655	2.455	1. 0661930	II. 646434	0.0858632
. 406	. 0449125	. 089514	. 0901753	. 456	. 0666272	. 658086	. 0857774
. 407	. 0453468	. 100609	. 090085 I	-457	. 0670615	. 669750	. 0856916
. 408	. 045 7811	. 111715	. 0899951	. 458	. 0674958	.681 425	. 0856060
. 409	. 0462154	. 122833	. 0899052	-459	. 067 9301	. 693 II3	. 0855204
2.410	I. 0466497	II. 133961	0.089 8153	2.460	1. 0683644	11.704812	0.0854350
. 411	. 0470840	. I45 IOI	. 0897255	. 461	. 0687987	. 716522	. 0853496
. 41	. 0475183	. 156251	. 0896358	. 462	. 0692330	. 728245	. 0852643
.413	. 0479526	. 167413	. 0895463	. 463	. 0696673	. 739979	. 0851790
. 414	. 0483869	. 178586	. 0894568	-464	. 070 1016	.751 725	. 0850939
2.415	1.048 8212	II. 189770	0.0893673	2.465	1.0705359	11.763482	0.0850088
. 416	. 0492555	. 200966	. 0892780	. 466	. 0709702	. 775252	. 0849239
. 417	. 0496898	. 212172	. 0891888	. 467	. 0714045	. 787033	. 0848390
. 418	. 0501241	. 223390	. 0890996	. 468	. 0718388	. 798826	. 0847542
-419	. 0505584	. 234619	. 0890106	. 469	. 0722731	.810 630	. 0846695
2.420	1. 0509926	11.245859	0.0889216	2.470	1.072 7074	11.822447	0.0845849
. 421	. 0514269	. 257 III	. 0888327	. 471	. 0731417	. 834275	. 0845003
. 422	. 0518512	. 268374	. 0887440	-472	. 0735760	. 846115	. 0844159
. 423	. 0522955	. 279648	. 0886553	-473	. 074 O103	. 857967	. 0843315
. 424	. 0527298	. 290933	. 0885666	-474	. 0744445	. 869831	. 0842472
2.425	1.0531641	11.302229	0.088 4781	2.475	1. 0748788	11.881707	0.0841630
. 426	. 0535984	-3I3 537	. 0883897	-476	. 075 3131	. 893595	. 0840789
. 427	. 0540327	- 324857	. 0883013	. 477	. 0757474	.905 494	. 0839948
. 428	. 0544670	. 336187	. 0882131	-478	. 0761817	. 917406	. 0839109
. 429	. 054 9013	-347 529	. 0881249	-479	. 0766160	. 929329	. 0838270
2.430	I. 0553356	11.358882	0.0880368	2.480	I. 0770503	11.941264	0.0837432
.431	. 0557699	-370 247	. 0879488	. 481	. 0774846	. 953212	. 0836595
-432	. 0562042	-381 623	. 0878609	-482	. 0779189	.965 171	. 8335759
-433	. 0566385	-393 010	. 0877731	. 483	. 0783532	. 977142	. 0834924
-434	. 0570728	. 404409	.087 6854	-484	. 0787875	. 989125	. 0834089
2.435	1.0575071	11.415819	0.0875977	2.485	1.0792218	12.001120	0.0833256
. 436	. 0579414	. 427240	. 0875102	-486	. 0796561	.013 127	. 0832423
-437	. 0583757	. 438673	. 0874227	. 487	. 0800904	. 025147	. 0831591
-438	. 0588099	-450 118	.087 3353	. 488	. 0805247	. 037178	. 0830760
. 439	. 0592442	. 461573	. 087 2481	. 489	. 0809590	. 04922 I	. 0829929
2.440	1. 0596785	11.473041	0.0871609	2.490	1.081 3933	12.061276	0.0829100
. 441	. 0601128	. 484520	.087 0737	.491	.081 8276	. 073343	. 0828271
-412	. 060 5471	-496 10	. 0869867	-492	. 0822618	. 085423	. 0827443
. 443	. 0609814	. 507512	. 0868998	. 493	. 0826961	. 097514	. 0826616
-444	. 0614157	.519 025	. 086 8129	. 494	. 0831304	. 109618	. 0825790
2.445	1. 0618500	11.530550	0.0867261	2.495	1.083 5647	12.121 734	
. 4446	.0622843 .0627186	. 542086	.0866395 .086529	. 496	.0839990 .0844333	. 133861	.0824140 .0823316
. 4448	$\begin{array}{r}.0627186 \\ .0631529 \\ \hline 063\end{array}$. 553634	. 08655429	. 497	.0844333 .0848676	.146 001	.0823316 .0822493
-449	. 0635872	. 576764	. 0863799	. 499	. 0853019	-170 318	. 082167 I
2.450	1. 0640215	II. 588347	0.0862936	2.500	1.0857362	12.182 494	0.0820850
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {a }}$	$\mathrm{e}^{-\mathrm{u}}$	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	e^{u}	$\mathrm{e}^{-\mathrm{u}}$

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\mathbf{u}}$	e^{-0}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-}
2.500	I. 0857362	12.182 494	0.0820850	2.550	I. 1074509	12.807104	0.0780817
. 501	. 0861705	. 194683	. 0820030	. 551	. 1078852	.819 917	. 0780036
. 502	. 0866048	. 206883	.081 9210	- 552	. 1083195	.832744	. 0779257
. 503	.0870391	. 219006	.08I 8391	. 553	. 1087538	.845583	. 0778478
. 504	. 0874734	.23I 322	.08I 7573	. 554	. 109 I88I	.858435	. 0777700
2.505	1.087 9077	12.243559	0.081 6755	2.555	I. 1096224	12.871300	0.0776922
. 506	. 0883420	.255809	.08I 5940	. 556	. IIO 0567	. 884 I77	. 0776146
. 507	. 0887763	. 26807 I	.08I 5124	. 557	. 1104910	. 897068	. 0775370
. 508	. 0892106	. 280345	.08I 4309	. 558	. I IO 9253	. 909972	. 0774595
. 509	. 0896449	. 292 63I	.0SI $3+95$. 559	. III 3596	. 922888	. 077 382I
2.510	I. 0900791	I2.304 930	0.081 2682	2.560	I.III 7939	12.935 817	0.0773047
. 51 I	. 090 . 5134	.317 24I	.081 I370	. 561	. II2 2282	. 948760	. 0772275
. 512	. 0909477	. 329565	.081 1059	. 562	. II2 6625	.96I 715	. 0771503
. 513	.091 3820	.341 900	.081 0248	. 563	. II3 0968	. 974683	. 0770732
. 514	.091 8163	. 354248	.0809438	. 564	. II3 53II	.987664	. 076 9961
2.515	1. 0922506	12.366609	00808629	2.565	I. II3 9653	13.000 658	0.0769192
. 516	. 0926849	. 3781982	.c80 7821	. 566	. II4 3996	.013 666	. 0768423
. 517	. 093 I192	. 391306	.080 7013	. 567	. II4 8339	. 026686	. 0767655
. 518	. 0935535	. 403764	.c80 6207	. 568	. II5 2682	.039719	. 0766888
. 519	. 0939878	. 416 I 14	. 0805401	. 569	. II5 7025	.052765	. 076 6I2I
2.520	I. 094 422I	12.428597	0.0804595	2.570	I. II6 1368	13.065 824	0.0765355
. 521	. 0948564	. 441032	. 0803792	. 571	. II6 57II	. 078897	. 0764590
. 522	. 0952907	. 453 479	. $086 \cdot 2988$. 572	. II7 0054	. 091982	. 0763826
. 523	. 0957250	.465938	. 0802186	. 573	. II7 4397	. 10508 I	. 0763063
. 524	. 0961593	. 478 4II	. 080 I384	. 574	. 1178740	. 118192	. 0762300
2.525	1.096 5936	12.490895	0.0800583	2.575	I. 1183083	13.13I 317	0.0761538
. 526	. 0970279	. 503392	.0799783	. 576	. 1187426	. 144455	. 0760777
. 527	. 0974622	. 515902	. 0798984	. 577	. II9 1769	. 157606	. 0760017
. 528	. 0978965	. 528424	. 079 8185	. 578	. II9 6II2	.170 770	. 0759257
. 529	. 0983307	. 540959	.0797387	. 579	. 1200455	. 183948	. 0758498
2.530	1.098 7650	12.553506	0.0796590	2.580	I. 1204798	I3.197 138	0.0757740
. 53 I	. 0991993	. 566066	. 0795794	. 581	. 1209141	. 210342	. 0756983
. 532	.0996336	. 578638	. 0794999	. 582	.121 3484	. 223559	. 0756226
. 533	. 1000679	. 591223	. 0794204	. 583	. 1217826	.236789	. 0755470
. 534	. 1005022	. 60382 I	. 0793410	. 584	. 1222169	.250032	. 07547 I 5
2.535	I. 1009365	12.616431	0.0792617	2.585	1. 1226512	13.263289	0.0753961
. 536	. IOI 3708	. 629054	. 0791825	. 586	. 1230855	. 276559	. 0753207
. 537	. IOI 805I	. 641689	. 0791034	. 587	. 1235198	. 289842	. 0752454
. 538	. 1022394	. 654337	. 0790243	. 588	. 1239541	. 303139	. 0751702
. 539	. 1026737	. 666998	. 0789453	. 589	. 1243884	. 316449	. 0750951
2.540	1. 1031080	12.679671	0.0788664	2.590	I. 1248227	I3.329 772	0.0750200
. 54 I	. 1035423	. 692357	. 0787876	. 591	. 1252570	. 343108	. 074 9451
. 542	. 1039766	. 705056	. 0787088	. 592	. 1256913	. 356458	. 074 8701
. 543	. 1044109	. 717767	. 0786302	- 593	. 1261256	-369 821	. 0747953
. 544	. 1048452	. 730491	. 0785516	. 594	. 1265599	. 383198	. 0747206
2.545	I. 1052795	12.743228	0.0784731	2.595	I. 1269942	13.396 587	0.0746459
. 546	. 1057138	. 755978	. 0783946	. 596	. 1274285	. 409 991	. 0745713
. 547	. 1061480	-768 740	. 0783163	. 597	. 1278628	. 423407	. 0744967
. 548	. 1065823	.781 515	. 0782380	. 598	. 1282971	.436838	. 0744223
. 549	. 1070166	. 794303	. 0781598	. 599	. 1287314	. 450 28I	. 0743479
2.550	I. 1074509	12.807104	0.078 0817	2.600	I. 1291657	13.463 738	0.0742736
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	$e^{\text {a }}$	e^{-u}	$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(e^{\text {u }}\right.$)	$e^{\text {u }}$	e^{-0}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-a}	u	$\log _{10}\left(e^{u}\right)$	$\mathrm{e}^{\text {u }}$	e^{-u}
2.600	I. 1291657	13.463738	0.0742736	2.650	I. 1508804	I4. I54 039	0.0706512
. 601	. 1295999	. 477208	. 0741993	.651	. I5I 3147	. 168200	$.0705806$
. 602	. 1300342	. 490692	.0741252	. 652	- I5I 7490	. 182375	. 0705101
. 603	. I30 4685	. 504190	. 074 05II	. 653	. 1521833	. 196565	. 0704396
. 604	. I30 9028	. 517701	. 0739771	. 654	. 152 6176	. 210768	.0703692
2.605	I.I3I 337I	13.531 225	0.0739031	2.655	I. 1530518	14.224986	0.0702988
. 606	.131 7714	. 544763	. 0738293	. 656	. I53 486I	. 239218	. 0702286
. 607	. I32 2057	. 558315	.0737555	. 657	. I53 9204	. 253464	.070 1584
. 608	. I326400	. 571880	.07368 I 8	. 658	. 1543547	.267725	. 0700883
. 609	. I33 0743	. 585459	. 073 608I	. 659	. I54 7890	. 282000	. 0700182
2.610	I. I33 5086	13.599051	0.0735345	2.660	I. 1552233	14.296289	0.0699482
.6II	. I33 9429	. 612657	. 0734610	. 66 I	. 1556576	. 310593	. 0698783
. 612	. I34 3772	.626276	.0733876	. 662	. 1560919	. 324910	. 0698085
.6I3	. 1348115	.639909	.0733143	.663	. I565262	- 339242	. 0697387
. 614	. I35 2458	. 653556	. 0732410	. 664	. I56 9605	. 353589	. 0696690
2.615	I. I35 680I	13.667216	0.0731678	2.665	I. 1573948	14.367950	0.0695994
. 616	. I36 II44	. 680890	. 0730947	. 666	. 1578291	. 382325	. 0695298
. 617	. I36 5487	.694578	.0730216	. 667	. I58 2634	. 396714	. 0694603
. 618	- I36 9830	. 708280	.0729486	. 668	. 1586977	. 411118	.0693909
. 619	. 1374172	. 721995	.0728757	. 669	. I59 1320	. 425536	. 0693215
2.620	r. 1378515	13.735724	0.0728029	2.670	I. 1595663	14.439969	0.0692522
. 621	. 1382858	. 749466	. 0727301	. 671	. 1600006	. 454416	. 0691830
. 622	. 1387201	. 763222	. 0726574	. 672	. I60 4349	. 468878	. 069 II39
. 623	. I39 I544	.776993	.0725848	. 673	. I60 8692	. 483354	. 0690448
. 624	. 1395887	.790776	.0725122	. 674	. I6I 3034	. 497845	. 0689758
2.625	I. I40 0230	13.804574	0.0724398	2.675	ェ.161 7377	14.512350	0.0689068
. 626	. I40 4572	. 818386	. 0723674	. 676	. 1621720	. 526869	. 0688380
. 627	. I40 8916	. 8322 II	.0722950	. 677	. 1626063	. 541404	. 0687692
. 628	- I4I 3259	.846050	. 0722228	. 678	. I63 0406	. 555952	. 0687004
. 629	.141 7602	.859903	. 072 I 506	. 679	. I63 4749	:570 515	. 0686318
2.630	I. I42 1945	13.873770	0.0720785	2.680	1. 1639092	14.585093	0.0685632
. 631	. I42 6288	. 887651	. 0720064	.68I	. 1643435	. 599686	. 0684946
. 632	. I43 063I	.901 545	.071 9344	. 682	. 1647778	. 614293	. 0684262
. 633	. I43 4974	.915 454	.071 8626	. 683	. 1652121	. 628914	. 0683578
. 634	. 1439317	.929376	.071 7907	. 684	. 1656464	. 643550	. 0582894
2.635	I. I44 3660	13.943312	0.0717190	2.685	I. 1660807	14.658201	$0.068{ }^{2212}$
. 636	. I44 8003	. 957263	.071 6473	. 686	. 166 5150	. 672867	. 0681530
. 637	. I45 2345	.971 227	.07I 5757	. 687	. I669493	. 687547	. 0680849
. 638	. I45 6688	. 985205	. 0715041	. 688	. 1673836	. 702242	. 0680168
. 639	. I46 103I	. 999197	. 0714327	. 689	. 167 8179	. 716952	. 0679489
2.640	I. 1465374	14.0I3 204	0.07136 I 3	2.690	I. 1682522	14.731676	0.0678809
. 641	. 1469717	.027224	.071 2899	. 691	. 1686865	. 746415	. 067 813I
. 642	. 1474060	.04I 258	. 0712187	. 692	. 169 1207	. 761169	. 0677453
. 643	. 1478403	.055306	.071 1475	. 693	. 1695550	. 775937	.0676776
. 644	. 1482746	.069369	.071 0764	. 694	. 1699893	. 790721	. 0676100
2.645	I. 1487089	14.083445	0.0710054	2.695	I. 1704236	14.805519	0.0675424
. 646	. I49 1432	.097536	. 0709344	. 696	. I70 8579	. 820332	. 0674749
. 647	. I49 5775	. III 640	. 0708635	. 697	. 171 2922	. 835159	. 0674074
. 648	. 1500118	. 125759	. 0707927	. 698	. 1717265	.850002	. 0673401
. 649	. 150446 I	. I39 892	.0707219	. 699	. 1721608	. 864859	. 0672728
2.650	I. 1508804	14.154 039	0.0706512	2.700	1. 1725951	14.879732	0.0672055
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{\text {u }}\right.$)	$e^{\text {u }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}
2.700	I. I72 595I	14.879732	0.0672055	2.750	I. 1943098	15.642632	0.0639279
.701	. 1730294	. 894 619	. 0671383	.751	. 194 7441	. 658282	. 0638540
. 702	- I73 4637	. 90952 I	.0670712	. 752	. 1951784	. 673948	. 0638001
. 703	. I73 8980	. 924438	.0670042	. 753	. 1956127	. 689630	. 0637364
. 704	. 1743323	. 939370	. 0669372	. 754	-196 0470	. 705328	. 0636727
2.705	I. 1747666	14.954317	0.0668703	2.755	I. 19648 I 3	15.721041	0.0636090
. 706	. 1752009	. 969278	. 0668035	. 756	. 1969156	. 736770	. 0635454
. 707	. I75 6352	. 984255	. 0667367	. 757	. 1973499	. 752514	. 063 4819
. 708	. 1760695	. 999247	. 0666700	. 758	-197 7842	. 768275	.0634185
. 709	. 1765038	I5.014 254	. 0666039	. 759	. 1982185	. 784 051	. 063 355I
2.710	1.1769380	15.029275	0.0665368	2.760	I. 1986528	15.799843	0.0632918
. 711	. 1773723	. 044312	.0664703	. 761	. 1990871	.815 651	. 0632285
. 712	. 1778066	.059364	.0664039	. 762	. 1995214	.831 474	. 0631653
. 713	. 1782409	. 07443 I	.0663375	. 763	. 1999557	. 847314	. 0631022
. 714	.178 6752	.089 513	. 0662712	. 764	. 2003899	.863169	. 063 039I
2.715	I.I79 1095	15.104610	0.0662050	2.765	I. 2008242	15.879040	0.062 976I
. 716	. . I79 5438	. 119722	. 066 I388	. 766	. 2012585	. 894927	. 0629132
.717	. I79 978I	. I34 850	. 0660727	. 767	. 2016928	.910 830	. 0628503
. 718	. 1804124	- I49 992	. 0660066	. 768	.2021271	.926749	.062 7875
. 719	. 1808467	. 165149	.0659407	.769	. 2025614	. 942683	. 0627247
2.720	I. 181 2810	15.180322	0.0658748	2.770	I. 2029957	15.958634	0.0626620
.721	. 1817153	. 195510	. 0658089	. 771	. 2034300	. 974601	. 0625994
. 722	. 1821496	. 210713	. 0657431	. 772	. 2038643	.990583	. 0625368
. 723	.1825839	. 225932	. 0656774	. 773	. 2042986	16.006582	. 0624743
. 724	. 1830182	. 241165	. 065 6II8	. 774	. 2047329	. 022596	.062 4119
2.725.	I. 183 4525	I5.256 414	0.0655462	2.775	I. 2051672	16.038 627	0.0623495
. 726	. 1838868	. 271678	. 0654807	. 776	. 2056015	. 054674	. 0622872
. 727	. 1843211	. 286957	. 0654152	. 777	. 2060358	. 070736	. 0622249
. 728	. 1847553	. 302252	. 0653499	. 778	. 2064701	. 086 8i5	. 0621627
. 729	. 185 I896	. 317562	. 0652845	. 779	: 2069044	. 102910	. 0621006
2.730	I. 1856239	15.332887	0.0652193	2.780	I. 2073387	16. 119021	0.0620385
. 731	. 1860582	- 348228	. 0651541	.781	. 2077730	. 135148	.061 9765
. 732	. I86 4925	. 363583	. 0650890	. 782	.2082072	.151 291	.061 9146
. 733	. 1869268	-378955	. 0650239	. 783	. 2086415	. 167451	.06I 8527
. 734	. 1873611	. 394 34I	. 0649589	. 784	. 2090758	. 183626	.06I 7908
2.735	I. 1877954	15.409743	0.0648940	2.785	I. 209 5101	16.199818	0.0617291
. 736	. 1882297	. 425 I6I	. 0648291	. 786	. 2099444	. 216026	.06I 6674
. 737	. 1886640	. 440594	. 0647643	. 787	. 2103787	.232250	.06I 6058
.738	. 1890983	.456 042	. 0646996	. 788	.210 8130	.248490	.06I 5442
.739	. 1895326	. 471506	. 0646349	. 789	. 2II 2473	.264747	.061 4827
2.740	I. 1899669	15.486 985	0.0645703	2.790	1.211 6816	16.281 020	0.0614212
. 741	. 1904012	. 502480	. 0645058	. 791	. 2121159	. 297309	.06I 3598
. 742	. 1908355	. 517990	. 0644413	. 792	. 2125502	-3I3 6I4	.06I 2985
. 743	. I91 2698	. 533516	. 0643769	. 793	. 2129845	. 329936	.06I 2372
. 744	. 1917041	- 549057	. 0643126	. 794	. 2134188	. 346274	.061 1760
2.745	I. 1921384	15.564614	0.0642483	2.795	I. 213853 I	16.362629	0.0611149
. 746	. 1925726	. 580 I86	. 0641841	. 796	. 2142874	. 379000	.06I 0538
. 747	. 1930069	. 595774	$.064 \text { II99 }$. 797	. 2147217	. 395387	. 0609928
. 748	. 19344 I 2	.6II 378	. 0640558	.798 .799	.2151560 .2155903	.411 790	.0609318 .0608709
. 749	. 1938755	. 626997	. 06399	. 799	.215 5903	. 428210	. 0608709
2.750	I. 1943098	15.642632	0.0639279	2.800	I. 2160245	16.444647	0.060 8iot
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{\text {u }}\right.$)	$e^{\text {u }}$	e^{-u}	$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(e^{u}\right)$.	$e^{\text {u }}$	e^{-0}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}
2.800	1. 2160245	16.444 647	0.0508101	2.850	I. 2377393	17.287782	0.0578443
. 801	. 2164588	.461 100	.060 7493	. 851	.2381736	. 305078	. 0577865
. 802	. 216893 I	. 477569	. 0506886	. 852	.2386079	. 322392	. 0577287
. 803	. 2173274	. 494055	. 0606279	. 853	.2390422	. 339723	. 0576710
. 804	.217 7617	. 510557	. 0605673	. 854	.2394765	. 357 07I	. 0576134
2.805	1.218 1960	16.527076	0.0605068	2.855	I. 2399107	17.374 437	0.0575558
. 806	. 2186303	. 543 61 I	. 0604463	. 856	. 2403450	-391 820	. 0574983
. 807	. 2190646	. 560 I63	. 0603859	. 857	. 2407793	. 409221	. 0574408
. 808	. 2194989	. 576732	. 0603255	. 858	. 24I 2136	. 426639	.0573834
. 809	. 2199332	. 593 317	. 0602652	. 859	.24I 6479	. 444074	. 057326 I
2.810	1.2203675	16.609918	0.0602050	2.860	I. 2420822	17.46I 527	0.0572688
.8II	. 2208018	. 626536	. 0601448	.86I	. 2425165	. 478997	. 0572115
. 812	. 2212361	. 643 I71	. 0600847	. 852	. 2429508	. 496485	.0571543
. 813	. 2216704	. 659823	.0500246	. 863	. 243 385I	. 513 990	. 0570972
. 814	.2221047	. 67649 I	.0599647	. 864	. 243 8194	. 53 I 513	. 057 0401
2.815	1. 2225390	16.693176	0.0599047	2.865	1.244 2537	17.549053	0.0569831
.8i6	. 2229733	. 709877	. 0598448	. 866	. 2446880	. 566611	. 0569262
.8I7	.2234076	. 726595	. 0597850	. 857	.2451223	. 584 I86	. 0568693
.818	.2238418	. 743 33I	. 0597253	. 868	. 2455566	. 601779	.056 8124
. 819	. 224 276I	. 760082	.0596656	. 869	. 2459909	. 619390	.0567557
2.820	1.2247104	16.776851	0.0596059	2.870	I. 2464252	17.637 о18	0.0566989
. 82 I	. 22251447	. 793636	. 0595464	. 871	. 2468595	. 654664	. 0566423
. 822	.2255790	. 810438	. 0594868	. 872	. 2472938	. 672328	.0565856
. 823	. 226 OI33	. 827257	.0594274	. 873	.2477280	.690009	.0565291
. 824	.2264476	. 8440092	. 0593680	. 874	.2481623	. 707708	. 0564726
2.825	I. 2268819	16.860 945	0.0593087	2.875	1. 2485966	17.725424	0.056416 I
. 826	. 2273162	. 877 814	. 0592494	. 876	. 2490309	. 743158	. 0563598
. 827	. 2277505	. 894701	. 0591902	. 877	. 2494652	. 760910	. 0563034
. 828	. 228 I848	.91I 604	. 0591310	. 878	. 2498995	. 778680	. 056247 I
. 829	. 228 6191	.928524	. 0590719	. 879	.2503338	.796468	.0561909
2.830	I. 2290534	16.94546 I	0.0590129	2.880	1. 250768 I	17.814 273	0.0561348
. 831	. 2294877	. 962415	. 0589539	. 88 I	.251 2024	. 832096	. 0560787
. 832	. 2299220	.979386	. 0588949	. 882	.251 6367	. 849937	. 0560226
. 833	. 2303563	.996374	. 0588361	. 883	.2520710	.857795	. 0559666
. 834	.2307906	17.013378	.0587773	. 884	.2525053	.885673	.0559107
2.835	1.231 2249	17.030400	0.0587185	2.885	1. 2529396	17.903568	0.0558548
. 836	.231 6592	. 047439	. 0586598	. 886	. 2533739	.921 480	. 0557990
. 837	.2320934	. 064495	. 0586012	. 887	. 2538082	. 939 4II	. 0557432
. 838	. 2325277	.081 568	. 0585426	. 888	.2542425	.957359	$.0556875$
. 839	.2329620	.098658	. 058484 I	. 889	. 2546768	. 975325	. 0556318
2.840	1.2333963	17.115 766	0.0584257	2.890	I. 255 IIII	17.993310	0.0555762
. 84 I	. 2338306	. 132890	. 0583673	. 891	. 2555453	18.011312	. 0555207
. 842	. 2342649	. 150031	. 0583089	. 892	. 2559796	. 029332	. 0554652
. 843	.2346992	. 167190	$.0582507$. 893	.2564139	. 047371	. 0554097
. 844	. 235 I335	. 184365	. 0581924	. 894	. 2568482	. 065427	. 0553544
	I. 2355678	17.201 559	0.0581343	2.895	I. 2572825	18.083501	
. 846	.2360021	. 218769	$.0580762$. 896	$.2577168$	- IOI 594	$.0552438$
. 847	.2364364	.235996	. 058 0181	. 897	. 25815 II	. 119705	.055 1885
. 848	.2368707	.25324 I	. 0579601	. 898	.2585854	. 137833	$.0551334$
. 849	.2373050	.270503	. 0579022	. 899	. 2590197	. 155980	. 0550783
2.850	I. 2377393	17.287 782	0.0578443	2.900	I. 2594540	18.174 145	0.0550232
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	$e^{\text {u }}$	e^{-u}	$\log _{e}\left(e^{u}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-0}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(e^{u}\right)$	$e^{\text {u }}$	e^{-u}
2.900	I. 2594540	18.174 145	0.0550232	2.950	1.281 1687	19. 105954	0.0523397
. 901	. 2598883	. 192329	. 0549682	. 951	.281 6030	. 125069	. 0522874
. 902	. 2603226	. 210530	. 0549133	.952	.2820373	. 144204	. 0522351
. 903	. 2607569	. 228750	. 0548584	. 953	.2824716	. 163358	.0521829
. 904	. 2611912	. 246988	.0548036	. 954	. 2829059	. 18253 I	.0521308
2.905	1.261 6255	18.265244	0.0547488	2.955	1.2833402	19.201723	0.0520787
. 906	. 2620598	.283518	. 0546941	. 956	.2837745	. 220934	. 0520266
. 907	. 262494 I	. 3018 II	.054 6394	. 957	. 2842088	. 240165	.051 9746
. 908	. 2629284	. 320122	.0545848	. 958	. 284643 I	. 259 414	.051 9227
. 909	. 2633626	. 33845 I	.05I 5302	-959	.2850774	.278683	.051 8708
2.910	1. 2637969	18.356799	0.0544757	2.960	1.2855117	19.297972	0.05I 8189
. 911	. 2642312	. 375165	. 0544213	. 961	.2859460	. 317279	.051 7671
. 912	. 2646655	. 393549	. 0543669	. 962	. 2863803	. 336606	.051 7154
. 913	. 2650998	.411 952	.0543125	. 963	. 286 8145	. 355953	.05I 6637
. 914	. 265534 I	. 430373	. 0542583	. 954	. 2872488	. 375 3I8	.05I 6121
2.915	I. 2659684	18.4488 I 2	0.0542040	2.965	1.2876831	19.394703	0.0515605
. 916	. 2664027	.467270	. 0541499	. 966	. 288 1174	.414 108	. 0515089
. 917	. 2668370	. 485747	. 0540957	. 967	. 2885517	. 43353 I	.051 4575
. 918	. 2672713	. 504242	.0540417	. 968	. 2889860	. 452975	.051 4060
. 919	.2677056	. 522755	.0539876	. 969	.2894203	. 472437	.051 3546
2.920	I. 268 I 399	18.541 287	0.0539337	2.970	1.289 8546	19.491 920	0.0513033
. 921	. 2685742	. 559838	. 053 8758	.97I	. 2902889	.5II 421	.05I 2520
. 922	. 2690085	. 578407	. 0538259	. 972	. 2907232	. 530942	.051 2008
. 923	.2694428	. 596995	. 0537721	. 973	.291 1575	. 550483	.051 1496
. 924	. 2698771	.6I5 60I	.0537184	. 974	. 2915918	-570 043	.051 0985
2.925	1.2703114	18.634226	0.0536647	2.975	I. 2920261	19.589623	0.051 0474
. 926	. 2707457	. 652870	. 053 6III	. 976	. 2924604	. 609223	. 0509964
. 927	. 2711799	. 671532	.0535575	. 977	. 2928947	. 628842	. 0509454
. 928	. 2716142	. 690213	.0535039	. 978	. 2933290	. 648480	. 0508945
. 929	.2720485	.708912	. 0534505	. 979	. 2937633	. 668139	. 0508437
2.930	1.272 4828	18.727631	0.0533970	2.980	1. 2941976	19.687 8I7	0.0507928
.93I	. 272 9171	. 746368	. 0533437	.98I	. 2946319	. 707514	. 0507421
. 932	.2733514	. 765123	. 0532904	. 982	. 2950661	. 727232	.050 6913
. 933	.2737857	. 783898	.0532371	. 983	. 2955004	. 746969	.050 6407
. 934	. 2742200	. 802691	. 0531839	. 984	. 2959347	.766726	. 0505901
2.935	I. 2746543	18.821503	0.0531307	2.985	1. 2963690	19.786502	0.0505395
. 936	. 2750886	. 840334	. 0530776	. 986	. 2968033	. 806299	. 0504890
. 937	. 2755229	. 859184	.0530246	. 987	. 2972376	. 826115	. 0504385
. 938	.2759572	. 878052	.0529716	. 988	.2976719	. 845951	. 050 3881
. 939	.2763915	.896940	.0529186	. 989	. 2981062	. 865807	. 0503377
2.940	I. 2768258	18.915846	0.0528657	2.990	1. 2985405	19.885682	0.0502874
. 941	. 2772601	. 934772	.052 8i29	. 991	. 2989748	. 905578	. 0502372
. 942	.2776944	. 953716	.0527601	. 992	. 2994091	. 925494	. 0501870
. 943	. 2781287	. 972679	.0527074	. 993	. 2998434	. 945429	. 0501368
. 944	.2785630	.991 66I	.0526547	. 994	. 3002777	.965385	. 0500867
2.945	I. 2789972	19.010662	0.0526021	2.995	1.300 7120	19.985360	0.0500366
. 946	. 2794315	.029683	.0525495	. 996	. 3011463	20.005355	. 0499866
. 947	. 2798658	$.048722$.0524970	. 997	-301 5806	.025371	. 0499367
.948	.2803001	. 067780	.0524445 .0523921	. 998	. 3020149	.045406	. 0498857
. 949	. 2807344	. 086857	. 052 392I	. 999	. 3024492	. 065461	. 0498369
2.950	1.281 1687	19.105 954	0.0523397	3.000	1. 3028834	20.085537	0.0497871
$\log _{\mathrm{e}}\left(\mathrm{e}^{u}\right)$	$\log _{10}\left(e^{\mathrm{u}}\right)$	e^{u}	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{a}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	$\mathrm{e}^{-\mathrm{a}}$
3.00	I. 3028834	20.085537	0.0497871	3.50	1.5200307	33.115 452	0.0301974
.	. 3072264	. 287400	. 0492917	. 51	. 5243736	. 448268	. 0298969
. 02	-3115693	-491 292	. 0488012	. 52	. 5287 I 66	. 784429	. 0295994
. 03	-315 9123	. 697233	. 0483156	- 53	. 5330595	34.123968	. 0293049
. 04	- 3222552	. 905243	. 0478349	. 54	. 5374025	. 466919	. 029 OI33
3.05	1. 3245982	21.115 344	0.0473589	3.55	I.541 7454	34.813318	0.0287246
. 06	. 32894 II	. 327557	. 0468877	. 56	. 5460884	35.163197	. 0284388
. 07	- 333284 I	. 541903	. 0464212	. 57	. 5504313	. 516593	. 0281559
. 08	- 3376270	. 758402	. 0459593	. 58	. 5547742	. 873541	. 0278757
. 09	-3419699	. 977078	. 0455020	. 59	. 5591172	36.234076	. 0275983
3.10	1. 3463129	22.197 951	0.0450492	3.60	I. 5634601	36.598234	0.0273237
. 1	. 3506558	. 421044	. 044 6010	. 61	. 5678031	. 966053	. 0270518
. 12	- 3549988	. 646380	. 0441572	. 62	. 5721460	37.337568	. 0267827
. 13	- 3593417	. 873980	. 0437178	. 63	.5764890 .5808319	.712817	. 0265162
. 14	- 3636847	23.103 867	. 0432828	. 64	. 5808319	38.091837	. 0262523
3.15	1. 3680276	23.336065	0.0428521	3.65	1. 5851749	38.474666	0.0259911
. 16	. 3723706	. 570596	. 0424257	. 66	. 5895178	. 861343	. 0257325
. 17	- 3767135	. 807484	. 0420036	. 67	- 5938607	39.251906	. 0254765
. 18	-381 0565	24.046754	.041 5857	. 68	- 5982037	. 646394	. 0252230
. 19	-385 3994	.288427	.041 1719	. 69	. 6025466	40.044847	. 0249720
3.20	I. 3897423	24.532530	0.0407622	3.70	1. 6068896	40.447304	0.0247235
,	. 3940853	. 779086	. 0403566	. 71	. 6112325	. 853807	. 0244775
:22	- 3984282	25.028120	. 039 9551	. 72	.615 5755	41.264394	. 0242340
. 23	- 4027712	. 279657	. 0395575	. 73	. 6199184	. 679108	. 0239928
. 24	. 407 II4I	. 533722	. 0391639	. 74	. 6242614	42.097990	. 023 7541
3.25	I.4II 4571	25.790340	0.0387742	3.75	1. 6286043	42.521082	0.023 5177
. 26	.4158000	26.049537	. 0383884	. 76	. 6329473	. 948426	. 0232837
. 27	. 4201430	. 3111339	. 0380064	. 77	. 6372902	43.380055	. 023052 I
. 28	. 4244859	. 575773	. 0376283	. 78	. 641633 I	.816 042	. 0228227
. 29	. 4288288	. 842864	. 0372538	. 79	. 6459761	44.256400	. 0225956
$3 \cdot 30$	1.4331718	27.112 639	0.0368832	3.80	1.6503190	44.701184	0.0223708
. 31	. 4375147	. 385 125	. 0365162	.8I	. 6546620	45.150439	. 0221482
. 32	-4418577	. 660351	. 3361528	. 82	. 6590049	. 604208	. 0219278
. 33	. 4462006	. 938342	. 0357931	. 83	. 6633479	46.062538	. 0217096
- 34	. 4505436	28.219127	. 0354370	. 84	. 6676908	. 525474	.021 4936
$3 \cdot 35$	1. 4548865	28.502734	0.0350844	3.85	1.6720338	46.993063	0.0212797
. 36	- 4592295	. 789 191	. 0347353	. 86	. 6763767	47.465351	. 0210680
. 37	. 4635724	29.078527	. 0343896	. 87	. 6807196	. 942386	. 0208584
. 38	. 4679153	. 370771	. 0340475	. 88	. 6850626	48.424215	. 0206508
- 39	- 4722583	. 665952	. 0337087	. 89	. 6894055	.910 887	. 0204453
3.40	1.476 6012	29.964100	0.0333733	3.90	1. 6937485	49.402449	0.0202419
.41	. 4809442	30.265244	. 0330412	.91	. 6980914	. 898952	. 0200405
. 42	- 4852871	. 569415	. 0327124	. 92	. 7024344	50.400445	.or9 841
-43	. 4896301	. 876643	. 0323869	-93	. 7067773	. 906978	.or9 6437
- 44	- 4939730	31. 186958	. 0320647	. 94	.711 1203	51.418601	.o19 4482
3.45	I. 4983160	31.500392	0.0317456	3.95	1. 7154632	51.935367	0.0192547
. 46	. 5026589	.816 977	.031 4298	. 96	. 7198061	52.457326	. 19080631
. 47	. 5070019	32.136 743	.031 1170	. 97	. 7241491	.984531 53.517034	$\text { . } 188734$
. 48	.5113448 .5156877	.459722 .785948	.0308074 .0305009	. 98	.7284920 .7328350	53.517 54.054 889	$\begin{aligned} & .0186856 \\ & .0184997 \end{aligned}$
.49 3.50	.5156877 1. 5200307	.785948 33.115452	.0305009 0.0301974	.99 4.00	.7328350 1. 7371779	54.054889 54.598150	0.0183156
$\log _{e}\left(e^{\text {u }}\right.$)	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-a}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	${ }^{-}$

Smithsonian Tables

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathbf{u}}\right)$	e^{u}	e^{-u}
4.00	1.7371779	54.598150	0.0183156	4.50	1. 9543252	90.017131	0.011 . 1090
. OI	. 7415209	55.146 871	. 0181334	. 51	. 958 6681	. 921819	.oio 9985
. 02	. 7458538	. 701106	. 0179530	. 52	. 963 O111	91.835598	. 0108890
. 03	. 7502068	56.260911	. 1777743	. 53	. 9673540	92.758 561	. -10 7807
. 04	. 7545497	.826343	. 1775975	. 54	.971 6969	93.690800	.oro 6734
4.05	1.758 8927	57.397457	0.0174224	4.55	1.9760399	94.632408	0.010 5672
. 06	. 7632356	. 974311	. 0172490	. 56	. 9803828	95.583480	.oio 4621
. 07	. 7675785	58.556963	. 1770774	. 57	. 9847258	96.544110	. 0103580
. 08	. 7719215	59.145 470	. 10169075	. 58	. 9890687	97.514394	. 0102549
. 09	. 7762644	. 739892	.016 7392	. 59	. 9934117	98.494430	.oio 1529
4. 10	1. 7806074	60.340288	0.0165727	4.60	1.9977546	99.484316	0.0100518
11	. 7849503	. 9446718	. 0164078	. 61	2.0020976	100.484150	. 0099518
. 12	-. 7892933	61. 559242	. 10162445	. 62	. 0064405	IOI. 494032	. 0098528
. 13	. 7936362	62.177923	. 10160829	. 63	.010 7835	102.514064	.009 7548
. 14	. 7979792	. 80282 I	. 0159229	. 64	. 0151264	103.544348	- .09) 6577
4.15	1.8023221	63.434000	0.0157644	4.65	2.0194693	104.584 986	0.0095616
. 16	. 8066650	64.071523	. 0156076	. 66	. 0238123	105.636082	. 0094665
. 17	. 81110080	. 715452	.or5 4523	. 67	. 0281552	106.697743	. 0093723
. 18	. 8153509	65.365853	. 1152985	. 68	. 0324982	107.770073	. 0092790
. 19	.819 6939	66.022791	.oI5 I463	. 69	. 036841 I	108.853 I8c	. 0091867
4.20	1.8240368	66.686331	0.0149956	4.70	2.041 1841	109.947172	0.0090953
I	. 8283798	67.356540	. 0148464	. 71	. 0455270	111.052160	. 0090048
. 22	. 8327227	68.033484	. 0146986	. 72	. 0498700	112.168 253	. 0089152
. 23	. 8370657	.717232 69.407852	.OI4 5524	. 73.	. 0542129	113.29555 .3	$.0088265$
. 24	. 8414086	69.407852	. 0144076	. 74	. 0585558	114.434 202	.009 7386
	1. 8457515	70. 105412	0.0142642	4.75	2.0628083	115.584285	0.co8 6517
. 26	. 8500945	. 809983	. 0141223	. 76	. 0672417	116.745926	. 0085656
. 27	. 8544374	71.521636	. 0139818	. 77	. 0715847	117.919242	. 0084804
. 28	. 8587804	72.240440	. 0138427	. 78	. 0759276	119.104 351	. 0083960
. 29	. 8631233	.966 468	. 0137049	. 79	. 0802706	120.301 369	. 0083125
$4 \cdot 30$	I. 8674663	73.699794		4.80	2.0846135	121.510418	0.0082297
.31 .32 .33	. 8718092	74.440489	.OI3 4335	.81	. 0889565	122.731618	. 0081479
. 32	. 8761522	75.188 628	.oI3 2999	. 82	-. 0932994	123.965091	. 008.0668
. 33	. 8804951	.944287 76.707539	. 13131675	. 83	. 0976423	125.210961	. 0079865
. 34	. 884 8381	76.707539	.013 0365	. 84	. 1019853	126.469352	. 007907 I
4.35 .36	$\begin{array}{r}1.889 \\ \hline 80310 \\ \hline 8239\end{array}$			4.85	2. 1063282	127.740390	0.0078284
. 36	. 8935239	78.257134	. 0127784	. 86	. 1106712	129.024203	. 0077505
-37	. 8978609	79.043632	.012 6512	. 87	. 1150141	130.320918	. 0076734
. 38	. 9022098	.838033 80.640419	.0125254 .0124007	. 88	. 1193571	131.630665	. 0075970
-39	. 9065528	80.640419	. 0124007	. 89	.1237000	132.953575	. 0075214
4.40	I. 9108957	81.450869	0.0122773	4.90	2.128 0430	134.289780	0.0074466
. 41	. 9152387	82.269464	.OI2 1552	.91	. 1323859	135.639415	. 0073725
. 42	. 9195816	83.096285	. 0120342	. 92	-1367289	137.002613	. 0072991
. 43	. 9239246	.931 417	.oil 9145	. 93	. 1410718	138.379 513	. 0072265
. 44	.928 2675	84.774942	.oII 7959	-94	. 1454147	139.770250	. 0071546
4.45	1.9326104	85.626944	0.011 6786		2. 1497577	141. 174964	0.0070834
. 46	. 9369534	86.487509	.oII 5624	. 96	. 1541006	142.593796	. 0070129
. 47	.941 2963	87.356723	.oil 4473	. 97	. 1584436	144.026888	. 006943 I
. 48	-945 6393	88.234673	.oil 3334	. 98	. 1627865	145.474382	. 0068741
. 49	. 9499822	89.121 446	.OII 2206	.99	. 1671295	146.936424	. 0068057
4.50	1. 9543252	90.017 I3I	0.0111090	5.00	2.171 4724	148.413159	0.0067379
$\log _{\mathrm{e}}\left(\mathrm{e}^{4}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right.$)	$\mathrm{e}^{\text {a }}$	$\mathrm{e}^{-\mathrm{a}}$

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-4}
5.00	2.171 4724	148.413159	0.0067379	$5 \cdot 50$	2.3886197	244.691 932	0.0040868
. OI	. I75 8154	149.904736	. 0066709	. 51	. 3929626	247.151 127	. 004 0461
. 02	. 180 1583	151.411304	. 0066045	. 52	. 3973055	249.635037	. 0040058
. 03	. 1845012	152.933 OI3	. 0065388	. 53	. 4016485	252.143 911	. 0039660
. 04	. I88 8442	I54.470 OI5	. 0064737	. 54	. 4059914	254.677999	. 0039265
5.05	2.1931871	156.022464	0.0064093	$5 \cdot 55$	2.4103344	257.237556	0.0038875
. 06	. 1975301	157.590516	. 0063456	. 56	.414 6773	259.822836	. 0038488
. 07	. 2018730	159.174327	. 0062824	. 57	. 4190203	262.434099	. 003 8105
. 08	. 2062160	160.774056	.0062199	. 58	.4233632	265.071606	$.0037726$
. 09	. 2105589	162.389862	. 0061580	- 59	. 4277062	267.735620	. 0037350
5.10	2.2149019	164.021907	0.0060967	5.60	2.432 0491	270.426407	0.0036979
. II	.2192448	165.670355	. 0060361	.6I	. 4363920	273.144 238	. 0036611
. 12	.2235877	167.335369	. 0059760	. 62	. 4407350	275.889383	. 0036246
. 13	. 2279307	169.017118	.0059166	. 63	. 4450779	278.662 II7	. 0035886
. 14	. 2322736	170.715 768	. 0058577	. 64	. 4494209	281.462 718	. 0035529
5.15	2.2366166	172.431490	0.0057994	5.65	2.4537638	284.291 466	0.003 5175
. 16	. 2409595	I74.164 455	.0057417	. 66	. 4581068	287.148 642	. 0034825
. 17	. 2453025	175.914837	. 0056846	.67	. 4624497	290.034534	. 0034479
. 18	. 2496454	177.6828 II	.0056280	. 68	. 4667927	292.949430	. 0034136
. 19	. 2539884	179.468553	. 0055720	. 69	. 47 I I356	295.893620	. 0033796
5.20	2.2583313	181.272 242	0.0055166	5.70	2.4754785	298.867401	0.0033460
. 21	. 2626743	183.094058	. 0054617	. 71	. 4798215	301.871068	. 003 3127
. 22	. 267 OI72	184.934 I84	.0054073	. 72	. 4841644	304.904923	$.0032797$
.23	. 2713601	186.792804	. 0053535	. 73	. 4885074	307.969268	$.0032471$
. 24	. 275703 I	188.670103	. 0053003	. 74	. 4928503	3II.064 4II	. 0032148
5.25	2.2800460	190.566269	0.0052475	5.75	2.4971933	314.190 660	0.0031828
. 26	.2843890	I92.48I 491	. 0051953	. 76	. 5015362	317.348329	. 0031511
. 27	. 2887319	194.415963	. 0051436	77	. 5058792	320.537733	$.003 \text { I } 198$
. 28	. 2930749	196.369875	. 0050924	. 78	. 5102221	323.759 I90	$.0030887$
.29	. 297 4178	198.343426	.0050418	. 79	. 5145651	327.013024	. 0030580
$5 \cdot 30$	2.3017608	200.336 810	0.0049916	5.80	2.5189080	330.299560	0.0030276
. 3 I	. 3061037	202.350228	. 0049419	. 81	. 5232509	333.619 I26	. 0029974
. 32	-310 4466	204.383 882	.0048928	. 82	. 5275939	336.972054	$.0029676$
- 33	- 3147896	206.437974	. 0048441	. 83	-531 9368	340.358679	. 0029381
. 34	. 3191325	208.512710	. 0047959	. 84	. 5362798	343.779341	. 0029088
$5 \cdot 35$.	2.3234755	210.608 298	0.0047482	5.85	2.5406227	347.23438 I	0.0028799
. 36	. 3278184	212.724946	. 0047009	. 86	. 5449657	350.724144	. 0028512
. 37	. 3321614	214.862868	. 0046541	. 87	- 5493086	354.248980	$.0028229$
. 38	. 3365043	217.022275	. 0046078	. 88	- 5536516	357.809242	. 0027948
- 39	- 3408473	219.203386	. 0045620	. 89	- 5579945	361.405284	. 0027670
5.40	2.3451902	22I.406 416	0.0045166	5.90	2.5623374	365.037468	0.0027394
. 41	. 3495331	223.631588	. 0044716	. 91	. 5666804	368.706 I56	. 0027122
. 42	. 3538761	225.879122	. 0044271	. 92	. 5710233	372.411714	$.0026852$
. 43	. 3582190	228. 149245	. 0043831	. 93	. 5753663	376.154 514	. 0026585
. 44	. 3625620	$230.442 \quad 183$. 0043395	. 94	. 5797092	379.934930	. 0026320
5.45	2.3669049	232.758166	0.0042963	5.95	2.5840522	383.753339	0.0026058
. 46	. 3712479	235.097424	. 0042536	.96	. 588 395I	387.610124	. 0025799
. 47	- 3755908	237.460193	. 0042112	. 97	. 592 7381	391.505 671	$.0025542$
. 48	- 3799338	239.846707	$.0041693$	$\text { . } 98$	$.5970810$	$395.440 \quad 368$	$.0025288$
. 49	. 3842767	242.257207	. 0041278	. 99	. 6014239	399.414610	. 0025037
$5 \cdot 50$	2.3886197	244.691932	0.0040868	6.00	2.6057669	403.428793	0.0024788
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{u}\right)$	$e^{\text {u }}$	e^{-u}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-}

The Exponential.

u	$\log _{10}\left(e^{u}\right)$	$\mathrm{e}^{\mathbf{u}}$			e^{-u}	
1	. 43429 44819	2.71828	183			0.36787944 I
2	. 8585889638	7.38905	610			0.135 335283
3	I. 3028834457	20.0855	369		(I)	497870684
4	1.7371779276	54.598 I	500		(I)	183156389
5	2.1714724095	I48. 413	I59		(2)	673794700
6	2.6057668914	403. 428	793		(2)	247875218
7	3.0400613733	$109,6.63$	316		(3)	911 88ı 966
8	3.4743558552	$298{ }^{\prime \prime} 0.95$	799		(3)	335462628
9	3.9086503371	$810 \quad 3.08$	393		(3)	123409804
10	4.3429448190	22026.4	658		(4)	453999298
II	4.7772393009	598 74.I	417		(4)	167017008
12	5.2115337828	162754.	791		(5)	614421235
13	5.6458282647	442 413.	392		(5)	226032941
14	6.0801227466	120260	4.28		(6)	831528719
15	6.5144 I 72285	326 90I	7.37		(6)	30590232 I
16	6.9487117105	888 6II	0.52		(6)	I12 535175
17	7.3830061924	241549	52.8		(7)	413993772
18	7.8173006743	656599	69.1		(7)	152299797
19	8.2515951562	178482	301.		(8)	560279644
20	8.68588 9638I	$485 \quad 165$	195.		(8)	206 II5 362
2 I	9.1201841200	I3I 88I	573	[I]	(9)	758256043
22	9.5544786019	358 491	285	[I$]$	(9)	278946809
23	9.9887730838	974480	345	[I]	(9)	102618796
24	10.4230675657	264891	22 I	[2]	(IO)	377513454
25	10.8573620475	720048	993	[2]	(IO)	138879439
26	11.29165 65295	195729	609	[3]	(II)	510908903
27	II. 7259510114	532048	241	[3]	(II)	187952882
28	12.16024 54933	144625	707	[4]	(12)	691440 OII
29	12.59453 99752	$393 \quad 133$	430	[4]	(12)	254366565
30	I3.02883 44571	106864	746	[5]	(I3)	935762297
3 I	13.46312 89390	290488	497	[5]	(13)	344247711
32	13.89742 34209	789629	602	[5]	(13)	126641656
33	14.33171 79028	214643	580	[6]	(I4)	465888 6I5
34	14.76601 23847	58346 I	743	[6]	(I4)	I7I 390843
35	15.2003068666	158 601	345	[7]	(15)	630511676
36	15.6346013485	43 I I23	155	[7]	(15)	231952283
37	16.0688958304	117191	424	[8]	(I6)	853304763
38	16.5031903123	318559	318	[8]	(16)	3I3 913 279
39	16.93748 47942	865934	004	[8]	(16)	115482242
40	17.3717792761	$235 \quad 385$	267	[9]	(17)	424835426
4 I	17.8060737580	639843	493	[9]	(17)	156288219
42	18.2403682399	173927	494	[10]	(18)	574952227
43	18.6746627218	472783	$9-47$	[10]	(18)	2 II 513104
44	19.10895 72037	128516	001	[II]	(19)	778 113 22.1
45	19.5432516856	349342	7 II	[II]	(19)	286 251 858
46	19.9775461675	949 6II	942	[II]	(19)	105306174
47	20.4118405495	258 I3I	289	[12]	(20)	387399763
48	20.8461351314	701673	591	[12]	(20)	142516408
49	21.2804296133	190734	657	[13]	(2I)	524288566
50	21.71472 40952	518470	553	[13]	(2I)	192874985

The numbers in square brackets denote the numbers of figures between the last figure given and the decimal point; for example, the first nine figures of ${ }^{50}$ are 518470553 , and there are 13 additional figures before the decimal point is reached. The numbers in parentheses denote the numbers of ciphers between the decimal point and the first significant figure; for example, in e^{-50} there are 2I ciphers between the decimal point and the figures 192874985.

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	eu	$\mathrm{e}-\mathrm{u}$
51	22.14901 85771	140934 908 [14]	(22) 709547416
52	22.5833130590	383 100 800 [14]	(22) 261027907
53	23.0170075409	10+ $137594[15]$	(23) 960268005
54	23.4519020228	283075330 [15]	(23) 353262857
55	23.8861965047	769478527 [15]	(23) 129958143
56	24.3204909866	209165950 [16]	(24) 478089288
57	24.7547854685	568572000 [16]	(24) 175879220
58	25.18907 99504	154553894 [17]	(25) 647023493
59 60	25.6233744323	420121040 [17]	(25) 238026641 (26) 875 751076
60	26.0576689142 26.4919633961	114 200 739 310 429 794 18$]$ 18$]$	$\begin{array}{lllll}\text { (26) } & 875 & 651 & 076 \\ \text { (26) } & 322 & 134 & 029\end{array}$
62	26.9262578780	843835667 [18]	(26) 118506487
63	27.3605523599	229378316 [19]	(27) 435961000
64	27.79484 68418	623514908 [19]	(27) 160 381 089
65	28.2291413237	169488924 [20]	(28) 590009054
66	28.6634358056	460718663 [20]	(28) 217052201
67	29.0977302875	125236317 [21]	(29) 798490425
68	29.5320247694	340427605 [21]	(29) 293748211
69	29.9663192513	925378 172 [21]	(29) 108063928
70	30.4006137332	251543857 [22]	(30) 397544974
71	30.8349082151	683767123 [22]	(30) 146248623
72	31.2692026970	185867175 [23]	(31) 538018616
73	31.70349 71789	505239363 [23]	(31) 197925988
74	32.13779 16608	137338298 [24]	(32) 728129018
75 76	32.5720861427	$\begin{array}{llll}373 & 324 & 200 \\ \text { IOI } & 480 & 030\end{array}$	(32) 267853696 (33) 085415469
76 77	33.0063806246 33.44067 51066		(33) (33) 965 362 51514 1509
77	33.4406751066 33.8749695885	275851 749841 746 700	$\begin{array}{lllll}\text { (33) } & 362 & 514 & 092 \\ \text { (33) } & 133 & 361 & 482\end{array}$
79	34.3092640704	203828 107 [26]	(34) 490609473
80	34.7435585523	554062238 [26]	(34) 180485139
81	35.1778530342	150609 731 [27]	(35) 663967720
82	35.61214 .75161	409399696 [27]	(35) 244260074
83	36.04644 19980	III 286 376 [28]	(36) 898582594
84	36.4807364799	302507732 [28]	(36) 330570063
85	36.9150309618	822301271 [28]	(36) 121 609930
86	37.3493254437	223524660 [29]	(37) 447377931
87	37.7836199256	607603023 [29]	(37) 164581143
88	38.2179144075	165163626 [30]	(38) 605460189
89	38.6522088894	448961282 [30]	(38) 222736356
90	39.0865033713	122040329 [31]	(39) 819401262
91	39.5207978532	331740 о10 [31]	(39) 301 440879
92	39.9550923351	901762841 [31]	
93	40.3893868170	$\begin{array}{llll}245 & 124 & 554 & {[32]} \\ 666617 & 322\end{array}$	(40) (40) 407 150 15058 078 156
94	40.8236812989 41.2579757808	$\begin{array}{lllll}606 & 317 & 622 & {[32]} \\ 181 & 123 & 908 & {[33]}\end{array}$	$\begin{array}{lllll}\text { (40) } & 150 & 078 & 576 \\ \text { (41) } & 552 & 108 & 228\end{array}$
96	41.6922702627	492345829 [33]	(4I) 203109266
97	42.1265647446	133833472 [34]	(42) 747197234
98	42.5608592265	$363797095[34]$	(42) 274878501
99	42.9951537084	988903032 [34]	(42) 101122149
100	43.42944 81903	268 811 714 [35]	(43) 372007598

The numbers in square brackets denote the numbers of figures between the last figure given and the decimal point; for example, the first nine figures of $\mathrm{e}^{\text {so }}$ are 518470553 , and there are 13 additional figures before the decimal point is reached. The numbers in parentheses denote the numbers of ciphers between the decimal point and the first significant figure; for example, in e^{-50} there are 2I. ciphers between the decimal point and the figures 192874985.
($\mathrm{p}=\mathrm{n} \times 43429448 \mathrm{I} 9$. . .)

n	p	n	p	n	D	n	p	n	p
0.000	000	0.050	2171	0.100	4343	0.150	6514	0.200	8686
.001	043	.05I	2215	. IOI	4386	. 151	6558	. 201	8729
. 002	087	. 052	2258	. 102	4430	. 152	6601	. 202	8773
. 003	130	. 053	2302	. 103	4473	. 153	6645	. 203	8816
. 004	174	. 054	2345	. 104	4517	. 154	6688	. 204	8860
0.005	217	0.055	2389	0.105	4560	0.155	6732	0.205	8903
. 006	26 I	. 056	2432	. 106	4604	. 156	6775	. 206	8946
. 007	304	. 057	2475	. 107	4647	. 157	6818	. 207	8990
. 008	347	. 058	2519	. 108	4690	. 158	6862	. 208	9033
. 009	39 I	. 059	2562	. 109	4734	. 159	6905	. 209	9077
0.010	434	0.060	2606	0.110	4777	0.160	6949	0.210	9120
. 017	478	.06I	2649	. III	4821	. I6I	6992	. 211	9164
. 012	521	. 062	2693	. 112	4864	. 162	7036	. 212	9207
. 013	565	. 063	2736	. II3	4908	. 163	7079	. 213	9250
. 014	608	. 064	2779	. II4	495 I	. 164	7122	. 214	9294
0.015	651	0.065	2823	O.II5	4994	0.165	7166	0.215	9337
. 016	695	. 066	2866	. 116	5038	. 166	7209	. 216	938I
. 017	738	. 067	2910	.117	508 I	. 167	7253	. 217	9424
. 018	782	. 068	2953	. 118	5125	. 168	7296	. 218	9468
. 019	825	. 069	2997	. 119	5168	. I69	7340	. 219	9511
0.020	869	0.070	3040	0.120	5212	0.170	7383	0.220	9554
. 021	912	. 071	3083	. 12 I	5255	. I7I	7426	. 22 I	9598
. 022	955	. 072	3127	. 122	5298	. 172	7470	. 222	9641
. 023	999	. 073	3170	. I23	5342	. 173	7513	. 223	9685
. 024	1042	. 074	32 I 4	. 124	5385	. 174	7557	. 224	9728
0.025	1086	0.075	3257	0.125	5429	0.175	7600	0.225	9772
. 026	1129	. 076	3301	. 126	5472	. 176	7644	. 226	9815
. 027	1173	. 077	3344	. 127	5516	. 177	7687	. 227	9858
. 028	1216	. 078	3387	. 128	5559	. 178	7730	. 228	9902
. 029	1259	. 079	343 I	. 129	5602	. 179	7774	. 229	9945
0.030	1303	0.080	3474	0.130	${ }^{5} 546$	0.180	7817	0.230	9989
. 031	I346	.08I	3518	. I3I	5689	. 18 I	786I	. 23 I	10032
. 032	I 390	. 082	3561	. I32	5733	. 182	7904	. 232	10076
. 033	I 433	. 083	3605	. I33	5776	.183	7948	. 233	IOII9
. 034	1477	. 084	3648	. 134	5820	. 184	7991	. 234	10162
0.035	1520	0.085	3692	0.135	5863	0.185	8034	0.235	10206
. 036	1563	. 086	3735	. 136	5906	. 186	8078	. 236	10249
. 037	1607	. 087	3778	. 137	5950	. 187	812I	. 237	10293
. 038	1650	. 088	3822	. 138	5993	. 188	8165	. 238	10336
. 039	I694	. 089	3865	. I39	6037	. I89	8208	. 239	10380
0.040	1737	0.090	3909	0.140	6080	0.190	8252	0.240	10423
.041	1781	.09I	3952	. I4I	6124	. 191	8295	. 241	10466
. 042	1824	. 092	3996	. I42	6167	. 192	8338	. 242	10510
. 043	1867	. 093	4039	. I43	6210	. 193	8382	. 243	10553
. 044	I9II	. 094	4082	. 144	6254	. 194	8425	. 244	10597
		0.095	4126	0.145	6297	0.195	8469		
. 046	1998	. 096	2169	. 146	6341	. 196	8512	. 246	10684
. 047	2041	. 097	4213	. 147	6384	. 197	8556	. 247	10727
. 048	2085	. 098	4256	. 148	6428	. 198	8599	. 248	10771
. 049	2128	. 099	4300	. 149	647 I	. 199	8642	. 249	108I4
0.050	2171	0.100	4343	0.150	6514	0.200	8686	0.250	10857
n	p	n	D	n	D	n	p	n	D

($\mathrm{p}=\mathrm{n} \times 43429$ 44819 . . .)

n	p	n	p	n	p	n	D	n	p
0.250	10857	0.300	I3029	0.350	15200	0.400	17372	0.450	19543
.25I	10901	. 301	13072	.35I	I5244	. 401	17415	.45I	19587
. 252	10944	. 302	13116	- 352	15287	. 402	17459	. 452	19630
. 253	10988	. 303	13159	. 353	1533 I	. 403	17502	. 453	19674
. 254	I IO3I	. 304	13203	- 354	15374	. 404	I7545	. 454	19717
0.255	11075	0.305	13246	0.355	15417	0.405	I7589	0.455	19760
. 256	IIII8	. 306	I 3289	. 356	I5461	. 406	17632	. 456	19804
. 257	I I I6I	. 307	13333	- 357	I5504	. 407	17676	. 457	19847
. 258	I I 205	. 308	13376	- 358	15548	. 408	17719	. 458	I9891
. 259	I I248	. 309	13420	. 359	15591	. 409	17763	-459	19934
0.260	II292	0.310	13463	0.360	15635	0.410	17806	0.460	19978
.26I	II335	.3II	13507	. 361	15678	.41I	17850	. 461	20021
.262	11379	-312	13550	. 362	15721	. 412	17893	. 462	20064
. 263	11422	. 313	13593	. 363	I.5765	. 413	17936	. 463	20108
. 264	II465	. 314	13637	. 364	15808	. 414	17980	. 464	20151
0.265	II509	0.315	13680	0.365	15852	0.415	18023	0.465	20195
. 266	II 552	. 316	13724	. 366	I 5895	. 416	18067	. 466	20238
. 267	I 1596	. 317	13767	. 367	15939	. 417	181 10	. 467	20282
. 268	I I639	. 318	I38II	- 368	15982	. 418	I8I54	. 468	20325
. 269	11683	. 319	I 3854	-369	16025	. 419	18197	. 469	20368
0.270	11726	0.320	13897	0.370	16069	0.420	18240	0.470	20412
. 271	11769	. 321	I3941	. 371	16II2	. 42 I	18284	. 471	20455
. 272	I1813	. 322	13984	. 372	16156	. 422	18327	. 472	20499
. 273	II856	. 323	14028	. 373	16199	.423	18371	. 473	20542
. 274	11900	- 324	14071	. 374	16243	. 424	184I4	. 474	20586
0.275	11943	0.325	14115	0.375	16286	0.425	I84:58	0.475	20629
. 276	11987	. 326	14158	. 376	16329	. 426	18501	. 476	20672
. 277	12030	. 327	14201	. 377	16373	. 427	18544	. 477	20716
.278	12073	- 328	I 4245	- 378	16416	. 428	18588	. 478	20759
.279	I2II7	. 329	I4288	. 379	16460	. 429	1863I	. 479	20803
0.280	12160	0.330	14332	0.380	16503	0.430	I8675	0.480	20846
.28I	12204	. 33 I	I 43375	. 38 I	16547	.431	18718	. 48 I	20890
. 282	12247	- 332	14419	. 382	16590	. 432	18762	. 482	20933
. 283	12291	- 333	14462	. 383	16633	. 433	18805	. 483	20976
. 284	12334	. 334	14505	-384	16677	. 434	18848	. 484	21020
0.285	12377	0.335	14549	0.385	16720	0.435	18892	0.485	21063
. 286	12421	. 336	14592	. 386	16764	. 436	18935	. 486	21107
. 287	12464	. 337	14636	. 387	16807	. 437	18979	.487	21150
. 288	12508	. 338	14679	. 388	16851	. 438	19022	. 488	21194
. 289	12551	. 339	I. 4723	. 389	16894	. 439	19066	. 489	21237
0.290	12595	0.340	14766	0.390	16937	0.440	19109	0.490	21280
. 291	12638	. 341	14809	. 391	16981	. 44 I	19152	. 49 I	21324
. 292	1268 I	- 342	14853	. 392	17024	. 442	19196	. 493	21367
. 293	12725	. 343	I4896	- 393	I 7068	. 443	19239	. 493	214II
. 294	12768	- 344	I4940	-394	I7III	. 444	19283	. 494	21454
0.295	12812	0.345	14983	0.395	17155	0.445	19326	0.495	21498
. 296	I2855	. 346	15027	. 396	I7198	. 446	19370	. 496	21541
. 297	12899	-347	15070	- 397	17241	. 447	19413	. 497	21584
. 298	12942	-348	15113	- 398	17285	. 448	19456	. 498	21628
. 299	12985	- 349	15I'57	-399	17328	. 449	19500	. 499	21671
0.300	13029	0.350	15200	0.400	17372	0.450	19543	0.500	21715
n	p	n	D	n	p	n	p	n	p

TABLE V

NATURAL LOGARITHMS

Note. -In Table V, for u greater than 158 , linear interpolation of $\log _{e} u$ suffices to give a value whose error is not greater than one unit in the last place.

Natural Logarithms.

u	$\log _{\mathrm{e}} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathbf{U}$	$\omega F_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{u}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0	- -	∞	50	3.91202	2000	100	4.60517	1000	150	5.01064	667
1	0.00000	100000	51	3.93183	1961	101	4.61512	990	151	5.01728	662
2	0.69315	50000	52	3.95124	1923	IO2	4.62497	980	152	5.02388	658
3	1.09861	33333	53	3.97029	1887	103	4.63473	971	153	5.03044	654
4	1. 38629	25000	54	3.98898	1852	104	4.64439	962	154	5.03695	649
5	I. 60944	20000	55	4.00733	1818	105	4.65396	952	155	5.04343	645
6	1.79176	16667	56	4.02535	I786	106	4.66344	943	I56	5.04986	641
7	1.94591	14286	57	4.04305	I754	107	4.67283	935	157	5.05625	637
8	2.07944	12500	58	4.06044	I724	108	4.68213	926	I58	5.06260	633
9	2.19722	IIIII	59	4.07754	1695	109	4.69135	917	159	5.06890	629
10	2.30259	10000	60	4.09434	1667	110	4.70048	909	160	5.07517	625
II	2.39790	9091	61	4.11087	1639	III	4.70953	901	161	5.08 I 40	621
12	2.48491	8333	62	4.12713	1613	II2	4.71850	893	162	5.08760	617
13	2.56495	7692	63	4.14313	1587	113	4.72739	885	163	5.09375	613
14	2.63906	7143	64	4. 15888	1562	II4	4.73620	877	164	5.09987	610
15	2.70805	6667	65	4. 17439	1538	115	4.74493	870	165	5. 10595	606
16	2.77259	6250	66	4. 18965	1515	116	4.75359	862	166	5.11199	602
17	2.83321	5882	67	4.20469	1493	117	4.76217	855	167	5.11799	599
18	2.89037	5556	68	4.2195 I	1471	II8	4.77068	847	168	5.12396	595
19	2.94444	5263	69	4.234 II	1449	119	4.77912	840	169	5.12990	592
20	2.99573	5000	70	4.24850	1429	120	4.78749	833	I70	5.13580	588
21	3.04452	4762	71	4.26268	1408	12I	4.79579	826	171	5.14166	585
22	3.09104	4545	72	4.27667	I389	122	4.80402	820	172	5.14749	58 I
23	3.13549	4348	73	4.29046	1370	123	4.8 I 218	813	173	5.15329	578
24	3.17805	4167	74	$4 \cdot 30407$	1351	124	4.82028	806	174	5.15906	575
25	3.21888	4000	75	$4 \cdot 31749$	I333	125	4.82831	800	175	5.16479	571
26	3.25810	3846	76	4.33073	1316	126	4.83628	794	176	5.17048	568
27	3.29584	3704	77	$4 \cdot 34381$	1299	127	4.84419	787	177	5.17615	565
28	3.33220	3571	78	$4 \cdot 35671$	1282	128	4.85203	78 I	178	5.18178	562
29	$3 \cdot 36730$	3448	79	$4 \cdot 36945$	1266	129	4.8598 I	775	I79	5.18739	559
30	3.40120	3333	80	4.38203	1250	130	4.86753	769	180	5.19296	556
31	3.43399	3226	81	$4 \cdot 39445$	1235	I31	4.87520	763	181	5.19850	552
32	3.46574	3125	82	4.40672	1220	132	4.88280	758	182	5.20401	549
33	3.49651	3030	83	4.41884	1205	133	4.89035	752	183	5.20949	546
34	$3 \cdot 52636$	2941	84	4.43082	1190	134	4.89784	746	184	5.21494	543
35	3.55535	2857	85	4.44265	1176	135	4.90527	741	185	5.22036	54 I
36	3.58352	2778	86	4.45435	I 163	136	4.91265	735	186	5.22575	5.38
37	3.61092	2703	87	4.46591	1149	137	4.91998	730	187	5.23 III	535
38	3.63759	2632	88	4.47734	1136	138	4.92725	725	188	5.23644	532
39	3.66356	2564	89	4.48864	I124	I39	4.93447	719	189	5.24175	529
40	3.68888	2500	90	4.49981	IIII	140	4.94164	714	190	5.24702	526
41	3.71357	2439	91	4.51086	1099	141	4.94876	709	191	5.25227	524
42	3.73767	238 I	92	4.52179	1087	142	4.95583	704	192	5.25750	52 I
43	3.76120	2326	93	$4 \cdot 53260$	1075	143	4.96284	699	193	5.26269	518
44	3.78419	2273	94	$4 \cdot 54329$	1064	144	4.9698I	694	194	5.26786	515
45	3.80666	2222	95	4.55388	1053	145	4.97673	690	195	5.27300	513
46	3.82864	2174	96	4.56435	1042	146	4.98361	685	196	5.27811	510
47	3.85015	2128	97	4.57471	1031	147	4.99043	680	197	5.28320	508
48	3.87120	2083	98	4.58497	1020	148	4.9972 I	676	198	5.28827	505
49	3.89182	2041	99	4.59512	1010	149	5.00395	67 I	199	5.29330	503
50	3.91202	2000	100	4.60517	1000	150	5.01064	667	200	5.29832	500
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}

Smithsonian Tables

Natural Logarithms.

u	$\log _{\mathrm{e}} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathbf{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
200	5.29832	500	250	5.52146	400	300	5.70378	333	350	5.85793	286
201	5.30330	498	251	5.52545	398	301	5.70711	332	351	5.86079	285
202	$5 \cdot 30827$	495	252	5.52943	397	302	5.71043	331	352	5.86363	284
203	$5 \cdot 31321$	493	253	5.53339	395	303	5.71373	330	353	5.86647	283
204	5.31812	490	254	$5 \cdot 53733$	394	304	5.71703	329	354	5.86930	282
205	5.32301	488	255	5.54126	392	305	5.72031	328	355	5.87212	282
206	$5 \cdot 32788$	485	256	5.54518	391	306	5.72359	327	356	5.87493	28I
207	5.33272	483	257	5.54908	389	307	5.72685	326	357	5.87774	280
208	5.33754	48 I	258	5.55296	388	308	5.73010	325	358	5.88053	279
209	$5 \cdot 34233$	478	259	$5 \cdot 55683$	386	309	5.73334	324	359	5.88332	279
210	5.347I I	476	260	5.56068	385	310	5.73657	323	360	5.88610	278
211	5.35186	474	261	$5 \cdot 56452$	38.3	311	5.73979	322	36 I	5.88888	277
212	$5 \cdot 35659$	472	262	5.56834	382	312	5.74300	32 I	362	5.89164	276
213	5.36129	469	263	5.57215	380	313	5.74620	319	363	5.89440	275
214	$5 \cdot 36598$	467	264	$5 \cdot 57595$	379	314	5.74939	318	364	5.897 I 5	275
215	$5 \cdot 37064$	465	265	$5 \cdot 57973$	377	315	5.75257	317	365	5.89990	274
216	$5 \cdot 37528$	463	266	5.58350	376	316	5.75574	316	366	5.90253	273
217	5:37990	461	267	5.58725	375	317	5.75890	315	367	5.90536	272
218	$5 \cdot 38450$	459	268	5.59099	373	318	5.76205	314	368	5.90808	272
219	$5 \cdot 38907$	457	269	5.59471	372	319	5.76519	313	369	5.91080	271
220	$5 \cdot 39363$	455	270	5.59842	370	320	5.76832	312	370	5.91350	270
221	5.39816	452	271	5.60212	369	321	5.77144	312	371	5.91620	270
222	5.40268	450	272	5.60580	368	322	5.77455	3 II	372	5.91889	259
223	5.40717	448	273	5.60947	366	323	5.77765	310	373	5.92158	258
224	5.41165	446	274	5.61313	365	324	5.78074	309	374	5.92426	267
225	5.41610	444	275	5.61677	364	325	5.78383	308	375	5.92693	267
226	5.42053	442	276.	5.62040	362	326	5.78690	307	376	5.92959	256
227	5.42495	441	277	5.62402	361	327	5.78996	306	377	5.93225	265
228	5.42935	439	278	5.62762	360	328	5.79301	305	378	5.93489	265
229	5.43372	437	279	5.63121	358	329	5.79606	304	379	5.93754	264
230	5.43808	435	280	5.63479	357	330	5.79909	303	380	$5 \cdot 94017$	253
231	5.44242	433	281	5.63835	356	331	5.80212	302	381	5.94280	252
232	5.44674	43 I	282	5.64191	355	332	5.80513	301	382	5.94542	262
233	5.45104	429	283	5.64545	353	333	5.808 I 4	300	383	5.94803	26 I
234	5.45532	427	284	5.64897	352	334	5.8III4	299	384	5.95064	260
235	5.45959	426	285	5.65249	351	335	5.81413	299	385	5.95324	260
236	5.46383	424	286	5.65599	350	336	5.81711	298	386	5.95584	259
237	5.46806	422	287	5.65948	348	337	5.82008	297	387	5.958 .42	258
238	5.47227	420	288	5.66296	347	338	5.82305	296	388	5.96101	258
239	5.47646	418	289	5.66643	346	339	5.82600	295	389	5.96358	257
240	5.48064	417	290	5.66988	345	340	5.82895	294	390	5.96615	256
24 I	5.48480	415	291	5.67332	344	341	5.83188	293	391	5.96871	256
242	5.48894	413	292	5.67675	342	342	5.8348 I	292	392	5.97126	255
243	5.49306	412	293	5.68017	341	343	5.83773	292	393	5.97381	254
244	5.49717	410	294	5.68358	340	344	5.84064	291	394	5.97635	254
	5.50126	408	295	5.68698	339	345	5.84354	290	395	5.97889	253
246	$5 \cdot 50533$	407	296	5.69036	338	346	5.84644	289	396	5.98141	253
247	$5 \cdot 50939$	405	297	5.69373	337	347	5.84932	288	397	5.98394	252
248	5.51343	403	298	5.69709	336	348	5.85220	287	398	5.98645	25 I
249	5.51745	402	299	$5 \cdot 70044$	334	349	5.85507	287	399	5.98896	25 I
250	5.52146	400	300	5.70378	333	350	5.85793	286	400	5.99146	250
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}

Natural Logarithms.

u	$\log _{\mathrm{e}} \mathbf{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	$\log _{\mathrm{e}} \mathbf{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	${ }_{\text {logeu }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\text {e }} \mathbf{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
400	5.99146	250	450	6. 10925	222	500	6.2146 I	200	550	6.30992	182
401	5.99396	249	451	6.11147	222	501	6.21661	200	551	6.31173	181
402	5.99645	249	452	6.11368	221	502	6.21860	199	552	6.31355	18 I
403	5.99894	248	453	6.11589	221	503	6.22059	199	553	6.31536	I8I
404	6.00141	248	454	6.11810	220	504	6.22258	198	554	6.31716	181
405	6.00389	247	455	6.12030	220	505	6.22456	198	555	6.31897	180
406	6.00635	246	456	6.12249	219	506	6.22654	198	556	6.32077	I80
407	6.0088 I	246	457	6. 12468	219	507	6.22851	197	557	6.32257	I80
408	6.01127	245	458	6. 12687	218	508	6.23048	197	558	6.32436	I79
409	6.01372	244	459	6. 12905	218	509	C. 23245	196	559	6.32615	179
410	6.01616	244	460	6. I3I23	217	510	6.23441	196	560	6.32794	179
4II	6.01859	243	46 I	6. 13340	217	511	6.23637	196	561	6.32972	178
412	6.02102	243	462	6.13556	216	512	6.23832	195	562	6.33150	178
413	6.02345	242	463	6. 13773	216	513	6.24028	195	563	6.33328	178
414	6.02587	242	464	6. 13988	216	514	6.24222	195	564	6.33505	177
415	6.02828	241	465	6. 14204	215	515	6.24417	194	565	6. 33683	177
416	6.03069	240	466	6.14419	215	516	6.246 I I	194	566	6.33859	177
417	6.03309	240	467	6. I4633	214	517	6.24804	193	567	6.34036	176
418	6.03548	239	468	6.14847	214	518	6.24998	193	568	6.34212	I76
419	6.03787	239	469	6.15060	213	519	6.25190	193	569	6.34388	176
420	6.04025	238	470	6.15273	213	520	6.25383	192	570	6.34564	175
421	6.04263	238	471	6. 15486	212	521	6.25575	192	571	6.34739	175
422	6.04501	237	472	6.15698	212	522	6.25767	192	572	6.34914	175
423	6.04737	236	473	6.15910	2 II	523	6.25958	191	573	6.35089	175
424	6.04973	236	474	6.16121	2 II	524	6.26149	I9I	574	6.35263	I74
425	6.05209	235	475	6.16331	2 II	525	6.26340	190	575	6.35437	I74
426	6.05444	235	476	6.16542	210	526	6.26530	190	576	6.35611	174
427	6.05678	234	477	6.16752	210	527	6.26720	190	577	6.35784	173
428	6.05912	234	478	6.16961	209	528	6.26910	189	578	6.35957	173
429	6.06146	233	479	6.17170	209	529	6.27099	189	579	6.36130	173
430	6.06379	233	480	6.17379	208	530	6.27288	189	580	6.36303	172
43 I	6.066 II	232	48I	6.17587	208	531	6.27476	188	581	6.36475	172
432	6.06843	231	482	6.17794	207	532	6.27664	188	582	6.36647	172
433	6.07074	231	483	6.18002	207	533	6.27852	188	583	6.36819	172
434	6.07304	230	484	6.18208	207	534	6.28040	187	584	6.36990	171
435	6.07535	230	485	6.18415	206	535	6.28227	187	585	6.37161	I71
436	6.07764	229	486	6.18621	206	536	6.28413	187	586	6.37332	171
437	6.07993	229	487	6. 18826	205	537	6.28600	185	587	6.37502	170
438	6.08222	228	488	6.19032	205	538	6.28786	186	588	6.37673	170
439	6.08450	228	489	6.19236	204	539	6.28972	186	589	6.37843	170
440	6.08677	227	490	6. 1944	204	540	6.29157	185	590	6.38012	169
441	6.08904	227.	491	6.19544	204	54 I	6.29342	185	591	6.38182	169
442	6.09131	226	492	6.19848	203	542	6.29527	185	592	6.38351	169
443	6.09357	226	493	6.20051	203	543	6.29711	184	593	6.38519	169
444	6.09582	225	494	6.20254	202	544	6.29895	I84	594	6. 38688	168
445	6.09807	225	495	6.20456	202	545	6.30079	183	595	6.38856	168
446	6.10032	224	496	6.20658	202	546	6.30262	183	596	6.39024	168
447	6.10256	224	497	6.20859	201	547	6.30445	183	597	6.39192	168
448	6. 10479	223	498	6.21060	201	548	6.30628	182	598	6.39359	167
449	6.10702	223	499	6.21261	200	549	6.30810	182	599	6.39526	167
450	6. 10925	222	500	6.21461	200	550	6.30992	182	600	6.39693	167
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}

Natural Logarithms.

u	$\log _{\mathrm{e}} \mathbf{U}$	$\omega F_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathbf{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
600	6.39693	167	650	6.47697	154	700	6.55108	143	750	6.62007	133
601	6.39859	166	651	6.47851	154	701	6.5525 I	143	751	6.62141	I33
602	6.40026	166	652	6.48004	I 53	702	6.55393	142	752	6.62274	I33
603	6.40192	166	653	6.48 I 58	153	703	6.55536	142	753	6.62407	I33
604	6.40357	166	654	6.4831 I	153	704	6.55678	142	754	6.62539	I33
605	6.40523	165	655	6.48464	153	705	6.55820	142	755	6.62672	I32
606	6.40688	165	656	6.48616	152	706	6.55962	142	756	6.62804	132
607	6.40853	165	657	6.48768	152	707	6.56103	141	757	6.62936	I32
608	6.41017	164	658	6.48920	152	708	6.56244	141	758	6.63068	132
609	6.41182	164	659	6.49072	152	709	6.56386	141	759	6.63200	I32
610	6.41346	164	660	6.49224	152	710	6.56526	141	760	6.63332	132
6 II	6.41510	164	661	6.49375	15 I	711	6.56667	141	761	6.63463	131
612	6.41673	163	662	6.49527	15 I	712	6.56808	140	762	6.63595	I3I
613	6.41836	163	663	6.49677	15 I	713	6.56948	140	763	6.63726	I3I
614	6.41999	163	664	6.49828	151	714	6.57088	140	764	6.63857	I3I
615	6.42162	163	665	6.49979	150	715	6.57228	140	765	6.63988	13 I
616	6.42325	162	666	6.50129	150	716	6.57368	140	766	6.64118	131
6 I 7	6.42487	162	667	6.50279	150	717	6.57508	139	767	6.64249	130
618	6.42649	162	668	6.50429	150	718	6.57647	139	768	6.64379	I 30
619	6.428 II	162	669	6.50578	149	719	6.57786	I 39	769	6.64509	I 30
620	6.42972	16I	670	6.50728	149	720	6.57925	139	770	6.64639	I 30
621	6.43133	16I	671	6.50877	I49	721	6.58064	I39	771	6.64769	130
622	6.43294	161	672	6.51026	149	722	6.58203	I39	772	6.64898	I30
623	6.43455	161	673	6.51175	149	723	6.5834 I	138	773	6.65028	129
624	6.43615	160	674	6.51323	148	724	6.58479	I38	774	6.65157	129
625	6.43775	160	675	6.5147 I	148	725	6.58617	138	775	6.65286	129
626	6.43935	160	676	6.51619	148	726	6.58755	I38	776	6.65415	129
627	6.44095	159	677	6.51767	148	727	6.58893	138	777	6.65544	129
628	6.44254	159	678	6.51915	147	728	6.59030	137	778	6.65673	129
629	6.44413	159	679	6.52062	147	729	6.59167	137	779	6.65801	128
630	6.44572	159	680	6.52209	147	730	6.59304	137	780	6.65929	128
631	6.44731	158	681	6.52356	147	731	6.59441	137	78i	6.66058	128
632	6.44889	158	682	6.52503	147	732	6.59578	137	782	6.66185	128
633	6.45047	158	683	6.52649	1.46	733	6.59715	136	783	6.66313	128
634	6.45205	158	684	6.52796	146	734	6.59851	I36	784	6.66441	128
635	6.45362	157	685	6.52942	146	735	6.59987	136	785	6.66568	127
636	6.45520	157	686	6.53088	146	736	6.60123	I36	786	6.66696	127
637	6.45677	157	687	6. 53233	146	737	6.60259	I36	787	6.66823	127
638	6.45834	157	688	6. 53379	145	738	6.60394	I36	788	6.66950	127
639	6.45990	156	689	6.53524	145	739	6.60530	I 35	789	6.67077	127
640	6.46147	156	690	$6.53{ }^{1} 669$	145	740	6.60665	135	790	6.67203	127
641	6.46303	${ }^{1} 56$	691	6.53814	145	741	6.60800	135	791	6.67330	126
642	6.46459	156	692	6.53959	145	742	6.60935	135	792	6.67456	126
643	6.46614	156	693	6.54103	144	743	6.61070	I35	793	6.67582	126
644	6.46770	155	694	6.54247	144	744	6.61204	I 34	794	6.67708	126
645	6.46925	155	695	6.54391	144	745	6.61338	134	795	6.67834	126
646	6.47080	155	696	6.54535	144	746	6.61473	I 34	796	6.67960	126
647	6.47235	155	697	6.54679	143	747	6.61607	134	797	6.68085	125
648	6.47389	154	698	6.54822	143	748	6.61740	134	798	6.682 II	125
649	6.47543	154	699	6.54965	143	749	6.61874	I34	799	6.68336	125
650	6.47697	154	700	6.55108	143	750	6.62007	133	800	6.68461	125
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}

Natural Logarithms.

u	$\log _{\mathrm{e}} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{L}$	$\omega \mathrm{F}_{0}$	u	$\log _{\text {e }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\mathbf{l o g}_{\mathrm{e}} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
800	6.68461	125	850	6.74524	118	900	6.80239	III	950	6.85646	105
801	6.68586	125	851	6.74641	118	901	6.80351	III	951	6.85751	105
802	6.687 II	125	852	6.74759	117	902	6.80461	III	952	6.85857	105
803	6.68835	125	853	6.74876	117	903	6.80572	III	953	6.85961	105
804	6.68960	124	854	6.74993	II7	904	6.80683	III	954	6.86066	$105{ }^{-}$
805	6.69084	124	855	6.75110	II7	905	6.80793	110	955	6.86171	105
806	6.69208	124	856	6.75227	117	906	6.80904	I 10	956	6.86276	105
807	6.69332	124	857	6.75344	117	907	6.81014	I 10	957	6.86380	104
808	6.69456	124	858	6.75460	117	908	6.81124	110	958	6.86485	104
809	6.69580	124	859	6.75577	116	909	6.81235	110	959	6.86589	104
810	6.69703	123	860	6.75693	116	910	6.8I344	IIO	960	6.86693	104
8II	6.69827	123	861	6.75809	116	911	6.81454	110	961	6.86797	104
812	6.69950	123	862	6.75926	116	912	6.81564	110	962	6.86901	104
813	6.70073	123	863	6.76041	116	913	6.81674	110	963	6.87005	104
8I4	6.70196	123	864	6.75157	116	914	6.81783	109	964	6.87109	104
8 I 5	6.70319	123	865	6.76273	II6	915	6.81892	109	965	6.87213	104
816	6.70441	123	866	6.76388	II5	916	6.82002	109	966	6.87316	104
817	6.70564	122	867	6.76504	II5	917	6.821 I I	109	967	6.87420	103
818	6.70686	122	868	6.76619	II5	918	6.82220	109	968	6.87523	103
819	6.70808	122	869	6.76734	II5	919	6.82329	109	969	6.87626	103
820	6.70930	122	870	6.76849	II5	920	6.82437	109	970	6.87730	103
821	6.71052	122	871	6.76964	II5	921	6.82546	109	971	6.87833	103
822	6.71174	122	872	6.77079	115	922	6.82655	108	972	6.87936	103
823	6.71296	122	873	6.77194	115	923	6.82763	108	973	6.88038	103
824	6.714 I 7	121	874	6.77308	II4	924	6.82871	108	974	6.88 I 4 I	103
825	6.71538	I2I	875	6.77422	II4	925	6.82979	108	975	6.88244	103
826	6.71659	12 I	876	6.77537	II4	926	6.83087	108	976	6.88346	102
827	6.71780	121	877	6.77651	II4	927	6.83195	108	977	6.88449	102
828	6.71901	121	878	6.77765	II4	928	6.83303	108	978	6.8855 I	102
829	6.72022	I2I	879	6.77878	II4	929	6.834 II	108	979	6.88653	102
830	6.72143	120	880	6.77992	II4	930	6.83518	108	980	6.88755	102
831	6.72263	120	88I	6.78106	II4	931	6.83626	107	981	6.88857	102
832	6.72383	120	882	6.78219	II3	932	6.83733	107	982	6.88959	102
833	6.72503	120	883	6.78333	II3	933	6.83841	107	983	6.89061	102
834	6.72623	120	884	6.78446	II3	934	6.83948	107	984	6.89163	102
835	6.72743	120	885	6.78559	113	935	6.84055	107	985	6.89264	102
835	6.72863	120	886	6.78572	II3	936	6.84162	107	986	6.89366	IOI
837	6.72982	119	887	6.78784	II3	937	6.84268	107	987	6.89467	IOI
838	6.73102	119	888	6.78897	II3	938	6.84375	107	988	6.89568	IOI
839	6.73221	119	889	6.79010	112	939	6.84482	106	989	6.89669	101
840	6.73340	II9	890	6.79122	112	940	6.84588	106	990	6.89770	101
841	6.73459	119	891	6.79234	112	94 I	6.84694	106	991	6.89871	IOI
842	6.73578	119	892	6.79347	112	942	6.84801	106	992	6.89972	101
843	6.73697	119	893	6.79459	112	943	6.84907	106	993	6.90073	IOI
844	6.73815	118	894	6.79571	112	944	6.85013	106	994	6.90174	IOI
845	6.73934	118	895	6.79682	112	945	6.85118	106	995	6.90274	IOI
846	6.74052	118	896	6.79794	112	946	6.85224	106	996	6.90375	100
847	6.74170	118	897	6.79906	III	947	6.85330	106	997	6.90475	100
848	6.74288	118	898	6.80017	III	948	6.85435	105	998	6.90575	100
849	6.74406	118	899	6.80128	III	949	6.85541	105	999	6.90675	100
850	6.74524	118	900	6.80239	III	950	6.85646	105	1000	6.90776	100
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	X	e^{-x}	e^{x}	x	e^{-x}

Natural Logarithms.

u	Logeu	u	Logeu	u	$\log _{\mathrm{e}} \mathbf{u}$	u	$\mathrm{Log}_{\mathrm{e}} \mathrm{u}$	4	$L_{\text {oge }} \mathrm{U}$
1000	6.90776	1361	7.21598	1721	7.45066	2III	7.65492	2503	7.82525
1009	6.91672	I367	7.22037	1723	7.45182	2113	7.65586	2521	7.83241
'1013	6.92067	1373	7.22475	1733	7.45761	12.129	7.66341	2531	7.83637
1019	6.92658	1381	7.23056	I74 I	7.46221	21311	7.66435	2539	7.83953
102I	6.92854	I 399	7.2435 I	I747	7.46566	2137	7.66716	2543	7.84 II
IO3I	6.93828	1409	7.25064	1753	7.46908	2141	7.66903	2549	7.84346
1033	6.94022	1423	7.26052	1759	7.47250	2143	7.66996	2551	7.84424
1039	6.94601	1427	7.25333	1777	7.48268	2153	7.67462	2557	7.84659
1049	6.95559	1429	7.26473	1783	7.48605	2161	7.67833	2579	7.85516
1051	6.95750	1433	7.26753	1787	7.48829	2179	7.68662	2591	7.85980
1061	6.96697	I439	7.27170	I'89	7.48941	2203	7.69758	2593	7.86057
1063	6.96885	1447	7.27725	180I	7.49610	2207	7.69939	2609	7.86672
1069	6.97448	I451	7.28001	I8II	7.50163	2213	7.70210	2617	7.86978
1087	6.99118	1453	7.28139	1823	7.50824	222I	7.70571	2521	7.87131
1091	6.99485	1459	7.2855 I	1831	7.51262	2237	7.71289	2633	7.87588
1093	6.99568	1471	7.29370	1847	7.52132	2239	7.71378	2647	7.88118
1097	7.00033	I48I	7.30047	1861	7.52887	2243	7.7155.7	2657	7.88495
1103	7.00579	1483	7.30182	1857	7.53209	2251	7.71913	2659	7.88571
I 109	7.01121	1487	$7 \cdot 30452$	1871	7.53423	2267	7.72621	2663	7.88721
III7	7.01840	1489	$7 \cdot 30586$	1873	7.53530	2269	7.72709	2671	7.89021
1123	7.02376	1493	$7 \cdot 30854$	1877	7.537.43	2273	7.72886	2677	7.89245
II 29	7.02909	I499	$7 \cdot 31255$	1879	7.53849	228I	7.73237	2683	7.89469
II5I	7.04839	I5II	$7 \cdot 32053$	1889	7.54380	2287	7.73500	2687	7.89518
II53	7.05012	1523	$7 \cdot 32844$	1901	7.55014	2293	7.73762	2689	7.80692
1163	7.05876	153 I	$7 \cdot 33368$	1907	7.55329	2297	7.73936	2693	7.89841
1171	7.06561	1543	7.34148	1913	7.55643	2309	7.74457	2699	7.90064
II8I	7.0741 .2	I. 549	7.34536	1931	7.56579	2311	7.74544	2707	7.90360
1187	7.07918	1553	7.34794	1933	7.56683	2333	7.75491	27 II	7.90507
1193	7.08423	I559	7.35180	1949	7.57507	2339	7.75748	2713	7.90581
I201	7.09091	I 567	$7 \cdot 35692$	1951	7.57610	2341	7.75833	2719	7.90802
1213	7. 10085	1571	7.35947	1973	7.58731	12347	7.76089	2729	7.911169
1217	7.10414	1579	7.36455	1979	7.59035	2351	7.76260	2731	7.91242
1223	7. 10906	1583	7.36708	1987	7.59438	2357	7.76514	27.41	7.91608
1229	7. 11396	1597	7.37588	1993	7.597.40	2371	7.77107	2749	7.91899
1231	7.11558	1601	$7 \cdot 37838$	1997	7.59940	2377	7.77359	2753	7.92045
1237	7. 12044	1607	7.38212	1999	7.60040	2381	7.77528	2767	7.92552
1249	7.13010	1609	7.38337	2003	7.60240	2383	7.77612	12777	7.92913
1259	7. 13807	1613	7.38585	2011	7.60639	2389	7.77853	2789	7.93344
1277	7.15227	1619	7.38956	2017	7.60937	2393	7.78030	2791	7.93416
1279	7.15383	162I	$7 \cdot 39080$	2027	7.61431	2399	7.78281	2797	7.93630
1283	7.15696	1627	7.39449	2029	7.6II 530	24 II	7.78780	2801	7.93773
1289	7.16162	1637	7.40062	2039	7.62021	2417	7.79028	2803	7.93845
I291	7.16317	1657	7.41276	2053	7.62706	2423	7.79276	2819	7.94414
1297	7. 16781	. 1663	7.41638	2063	7.63192	2437	7.79852	2833	7.94909
1301	7.17089	1667	7.41878	2069	7.63482	244 I	7.80016	2837	7.95050
1303	7.17,242	1669	7.41998	2081	7.64060	2447	7.80262	2843	7.95262
1307	7.17549	1693	7.43426	2083	7.64156	2459	7.80751	285 I	7.95543
1319	$7 \cdot 18463$	1697	7.43662	2087	7.64348	2.467	7.81076	2857	7.95753
1321	7.18514	1699	7.43780	2089	7.64444	12473	7.81319	2861	7.95893
1327	7.19068	1709	7.44366	2099	7.64922	2477	7.81480	2879	7.96520
e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x

Natural Logarithms.

u	$L^{\text {oge }}$	u	$L^{\text {Logeu }}$	u	$\log _{\mathrm{e}} \mathrm{U}$	u	$\mathrm{Log}_{\mathrm{e}} \mathrm{U}$	u	Logell
2887	7.96797	3323	8. 10862	3709	8.21852	4129	8.32579	456I	8.42530
2897	7.97143	3329	8.11043	3719	8.22 I 21	4 I 33	8.32676	4567	8.42661
2903	7.97350	333I	8.11103	3727	8.22336	4139	8.32821	4583	8.4301 I
2909	7.97556	3343	8.11462	3733	8.22497	$4{ }^{15} 5$	8.33159	4591	8.43185
2917	7.9783 I	3347	8. I 1582	3739	8.22657	4157	8.33255	4597	8.43316
2927	7.98173	3359	8. 11940	3761	8.23244	4 I 59	8.33303	4603	8.43446
2959	7.98582	3361	8.11999	3767	8.23403	4177	8.33735	4621	8.43837
2953	7.99058	3371	8.12296	3769	8.23456	4201	8.334308	4637	8.44 I 82
2957	7.99193	3373	8. I2356	3779	8.23721	42 II	8.34546	4639	8.44225
2963	7.99396	3389	8.12829	3793	8.24091	4217	8.34688	4643	8.44312
2969	7.99598	3391	8. 12888	3797	8.24197	4219	8.34735	4649	8.4444 I
2971	7.99665	3407	8. 13359	3803	8.24355	4229	8.34972	4651	8.44484
2999	8.00603	34I3	8. 13535	3821	8.24827	4231	8.35019	4657	8.44613
3001	8.00670	3433	8.14119	3823	8.24879	4241	8.35255	4663	8.44741
3011	8.01003	3449	8.14584	3833	8.251 I 40	4243	8.35303	4673	8.44956
3019	8.01268	3457	8. 148 I 6	3847	8.25505	4253	8.35538	4679	8.45084
3023	8.01400	3461	8.14931	3851	8.25609	4259	8.35679	4691	8.45340
3037	8.01853	3463	8. 14989	3853	8.25661	4261	8.35726	4703	8.45596
3041	8.01994	3467	8. 15104	3863	8.25920	4271	8.35960	4721	8.45978
3049	8.02257	3469	8.15162	3777	8.26282	4273	8.36007	4723	8.46020
3061	8.02650	3491	8. 15794	388 I	8.26385	4283	8.36241	4729	8.46147
3067	8.02846	3499	8.16023	3889	8.26591	4289	8.36381	4733	8.46231
3079	8.03236	3511	8. 16366	3907	8.27053	4297	8.36567	4751	8.46611
3083	8.03366	3517	8.16536	39 II	8.27155	4327	8.37263	4759	8.46779
3089	8.03560	3527	'8. 16820	3917	8.27308	4337	8.37494	4783	8.47282
3109	8.04206	3529	8. 16877	3919	8.27359	4339	8.37540	4787	8.47366
3119	8.04527	3533	8. 16990	3923	8.27461	4349	8.37770	4789	8.47408
3121	8.04591	3539	8. 17160	3929	8.27614	4357	8.37954	4793	8.47491
3137	8.05102	354 I	8.17216	393.1	8.27665	4363	8.38092	4799	8.47616
3163	8.05928	3547	8. 17386	3943	8.27970	4373	8.38320	480 I	8.47653
3167	8.06054	3557	8.117667	3947	8.2807 1	4391	8.38731	4813	8.47908
3169	8.06117	3559	8. 17723	3967	8.28577	4397	8.38868	4817	8.47991
3181	8.06495	3571	8. 18060	3989	8.29130	4409	8.39140	4831	8.4828 I
3187	8.06684	3581	8.18340	4001	8.294:30	4421	8.39412	486 I	8.48900
3191	8.06809	3583	8. 18396	4003	8.29480	4423	8.39457	4871	8.49105
3203	8.07184	3593	8. 18674	4007	8.29580	4441	8.39863	4877	8.49229
3209	8.07371	3607	8. 19063	4013	8.29729	4447	8.39998	4889	8.49474
3217	8.07620	3613	8. 19229	4019	8.29879	4451	8.40088	4903	8.49760
3221	8.07745	3617	8. 19340	4021	8.29929	4457	8.40223	4909	8.49883
3229	8.07993	3623	8. 19506	4027	8.30078	4463	8.40358	4919	8.50086
3251	8.08672	3631	8. 19726	4049	8.30623	448I	8.40760	493'I	8.50330
3253	8.08733	3637	8. 19891	4051	8.30672	4483	8.40805	4933	8.50370
3257	8.08856	3643	8.20056	4057	8.30820	4493	8.41028	4937	8.50451
3259	8.08918	3659	8.20495	4073	8.312114	4507	8.41339	4943	8.50573
3271	8.09285	3671	8.20822	4079	8.31361	4513	8.41472	4951	8.50734
3299	8. 10137	3673	8.20876	4091	8.31654	4517	8.41560	4957	8.50856
3301	8.10198	3677	8.20985	4093	8.31703	4519	8.41605	4967	8.51057
3307	8.10380	3691	8.21365	4099	8.31850	4523	8.4 I 693	4969	8.51097
3313	8.10561	3697	8.21528	4111	8.32142	4547	8.42222	4973	8.51178
3319	8.10742	3701	8.21636	4127	8.3253!	4549	8.42266	4987	8.514 .59
e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x

Natural Logarithms.

u	$\mathrm{Log}_{\mathrm{e}} \mathrm{U}$	u	$\mathrm{LoO}_{\mathrm{e}} \mathrm{U}$	u	Logeu $^{\text {u }}$	u	$\mathrm{Log}_{\text {el }}$	u	Logeu
4993	8.51579	5437	8.60098	5849	8.67403	6287	8.74624	6733	8.81478
4999	8.51699	5441	8.60172	5851	8.67437	6299	8.74815	6737	8.81537
5003	8.51779	5443	8.60209	5857	8.67539	6301	8.74846	6761	8.31893
5009	8.51899	5449	8.60319	5861	8.67608	631 I	8.75005	6763	8.81922
5011	8.51939	5471	8.60722	5867	8.67710	6317	8.75100	6779	8.82158
'5021	8.52138	5477	8.60831	5869	8.67744	6323	8.75195	6781	8.82188
5023	8.52178	5479	8.60868	15879	8.67914	6329	8.75290	6791	8.82335
5039	8.52496	5483	8.6094 I	5881	8.67948	6337	8.75416	6793	8.82365
5051	8.52734	5501	8.61269	5897	8.68220	6343	8.755 II	6803	8.82512
5059	8.52892	5503	8.61305	5903	8.68322	6353	8.75668	6823	8.82805
5077	8. 53248	5507	8.61378	5923	8.68660	6359	8.75763	6827	8.82864
5081	8. 53326	5519	8.61595	5927	8.68727	6361	8.75794	6829	8.82893
5087	8.53444	5521	8.61631	5939	8.68930	6367	8.75888	6833	8.82952
5099	8. 53680	5527	8.61740	'5953	8.69165	6373	8.75983	684 I	8.83069
5101	8.53719	5531	8.6 I 812	5981	8.69634	6379	8.76077	6857	8.83303
5107	8.53837	5557	8.62281	5987	8.69735	6389	8.76233	6863	8.83390
5113	8.53954	5563	8.62389	6007	8.70068	6397	8.76358	6869	8.83477
5119	8.54071	5569	8.62497	6011	8.70135	6421	8.76733	6871	8.83506
5147	8.54617	5573	8.62569	6029	8.70434	6427	8.76826	6883	8.8368 I
5153	8.54733	5581	8.62712	6037	8.70566	6449	8.77168	6889	8.83768
5167	8.55005	5591	8.62891	6043	8.70666	6451	8.77199	6907	8.84029
5171	8. 55082	5623	8.63462	6047	8.70732	6469	8.77478	6911	8.84087
5179	8.55237	5639	8.63746	6053	8.70831	6473	8.77539	6917	8.84174
5189	8.55430	5641	8.63782	6067	8.71062	648 I	8.77663	6947	8.84607
5197	8.55584	5647	8.63888	6073	8.71161	6491	8.77817	6949	8.84635
5209	8.55814	5651	8.63959	6079	8.71260	6521	8.78278	6959	8.84779
5227	8.56159	5653	8.63994	6089	8.71424	6529	8.78401	6961	8.84808
5231	8.56236	5657	8.64065	6091	8.71457	6547	8.78676	6967	8.84894
5233	8.56274	5659	8.64100	6101	8.71621	655 I	8.78737	6971	8.8495 I
5237	8.56350	5669	8.64277	6II3	8.71817	6553	8.78768	6977	8.85037
5261	8.56808	5683	8.64523	6121	8.71948	6563	8.78920	6983	8.85123
5273	8.57035	5689	8.64629	6 GI 31	8.72111	6569	8.79012	6991	8.85238
5279	8.57149	5693	8.64699	6133	8.72144	6571	8.79042	6997	8.85324
5281	8.57187	5701	8.64840	6143	8.72307	6577	8.79133	7001	8.85381
5297	8.57490	5711	8.65015	6151	8.72437	6581	8.79194	7013	8.85552
5303	8.57603	5717	8.65120	6163	8.72632	6599	8.79467	7019	8.85638
5309	8.57716	5737	8.65469	6173	8.72794	6607	8.79588	7027	8.85752
5323	8.57979	5741	8.65539	6197	8.73182	6619	8.79770	7039	8.85922
5333	8.58167 8.58429	5743	8.65574	6199	8.73214	6637	8.80042	7043	8.85979
5347	8.58429	5749	8.65678	6203	8.73279	6653	8.80282	7057	8.86178
5351	8.58504	5779	8.66199	6211	8.73408	6659	8.80372	7069	8.86347
5381	8.59063	5783	8.66268	6217	8.73504	6661	8.80402	7079	8.86489
5387	8.59174	5791	8.66406	6221	8.73569	6673	8.80582	7103	8.86827
5393	8.59286	5801 5807	8.66579 8.66682		8.73697	6679	8.80672	7109	8.86912
5399	8.59397	5807	8.66682	6247	8.73986	6689	8.80822	7121	8.87080
5407	8.59545	5813	8.66785	6257	8.74146	6691	8.80852	7127	8.87165
5413	8.59656	5821	8.66923	6263	8.74241	6701	8.81001	7129	8.87193
5417	8.59730	5827	8.67026	6269	8.74337	6703	8.81031	7151	8.87501
5419	8.59767	5839	8.67231	6271	8.74369	6709	8.81121	7159	8.87613
542 I	8.59988	5843	8.67300	6277	8.74465	6719	8.81269	7177	8.87864
e^{x}	x	e^{x}	x	e^{x}		e^{x}	\times	e^{x}	x

Natural Logarithms.

u	Logeu	u	$\mathrm{Log}_{\mathrm{e}} \mathrm{H}$	4	$\log _{\text {e }} \mathbf{U}$	u	Logeu	u	Logeu
7187	8.88003	7621	8.93866	8093	8.99875	8573	9.05637	9001	9. 10509
7193	8.88086	7639	8.94102	8101	8.99974	858I	9.05731	9007	9.10576
7207	8.88281	7643	8.94155	8 III	9.00098	8597	9.05917	9011	9.10620
7211	8.88336	7649	8.94233	8117	9.00172	8599	9.05940	9013	9. 10642
7213	8.88364	7669	8.94494	8123	9.00245	8609	9.06056	9029	9.10820
7219	8.88447	7673	8.94546	8147	9.0054I	8623	9.06219	9041	9. 10953
7229	8.88586	7681	8.946511	8161	9.00712	8627	9.06265	9043	9. 10975
7237	8.88696	7687	8.94729	8167	9.00786	8629	9.06288	9049	9.11041
7243	8.88779	7691	8.94781	8171	9.00835	8641	9.06427	9059	9.11151
7247	8.88834	7699	8.94885	8179	9.00933	8647	9.06497	9067	9. 11240
7253	8.88917	7703	8.94937	8191	9.01079	8663	9.06682	9091	9. 11504
7283	8.89330	7717	8.95118	8209	9.01299	8669	9.06751I	9103	9.11636
7297	8.89522	7723	8.95196	8219	9.01420	8677	9.06843	9109	9.11702
7307	8.89659	7727	8.95248	8221	9.01445	8681	9.06889	9127	9. 11899
7309	8.89686	7741	8.95429	8231	9.0r566	8689	9.06981	9133	9.11965
7321	8.89850	7753	8.95584	8233	9.01591	8693	9.07027	9137	9.12009
733:	8.89987	7757	8.95635	8237	9.01639	8699	9.07096	9151	9.12162
7333	8.90014	7759	8.95661	8243	9.01712	8707	9.07188	9157	9.12227
7349	8.90232	7789	8.96047	8263	9.01954	8713	9.07257	9161	9.1227I
7351	8.90259	7793	8.96098	8269	9.02027	8719	9.07326	9173	9.12402
7369	8.90504	7817	8.96406	8273	9.02075	8731	9.07464	918 I	9.12489
7393	8.90829	7823	8.96482	8287	9.022	8737	9.07532	9187	9. 12554
7411	8.91072	7829	8.96559	8291	9.0229	8741	9.07578	9199	9. 12685
7417	8.91153	7841	8.96712	8293	9.02317	8747	9.07647	9203	9.12728
7433	8.91368	7853	8.96765	8297	9.02365	8753	9.07715	9209	9. 12794
7451	8.91610	7867	8.97043	8311	9.02534	8761	9.07807	922 I	. 12924
7457	8.91691	7873	8.97119	8317	9.02606	8779	9.08012	9227	9.12989
7459	8.91718	7877	8.97170	8329	9.02750	8783	9.08057	9239	9.13119
7477	8.91959	7879	8.97196	8353	9.03038	8803	9.08285	9241	9.13141
7481	8.92012	7883	8.97246	8363	9.03157	8807	9.08330	9257	9.13314
7487	8.92092	7901	8.97474	8369	9.03229	8819	9.08466	9277	9. 13529
7489	8.92119	7907	8.97550	8377	9.03325	8821	9.08489	928 I	9. 13572
7499	8.92252	7919	8.97702	8387	9.03444	8831	9.08602	9283	9. 13594
7507	8.92359	7927	8.97803	8389	9.03468	8837	9.08670	9293	9.13702
7517	8.92492	7933	8.97879	8419	9.03825	8839	9.08693	93II	9.13895
7523	8.92572	7937	8.97929	8423	9.03872	8849	9.08806	93.19	9. 13981
7529	8.92652	7949	8.98080	8429	9.03943	8861	9.08941	9323	9. 14024
7537	8.92758	795I	8.98105	8431	9.03967	8863	9.08964	9337	9.14174
7541	8.928II	7963	8.98256	8443	9.04109	8867	9.09009	9341	9.14217
7547	8.92891	7993	8.98632	8447	9.04157	8887	9.09234	9343	9.14238
7549	8.92917	8009	8.98832	8461	9.04322	8893	9.09302	9349	9. 14302
7559	8.93049	801 I	8.98857	8467	9.04393	8923	9.09639	9371	9. 14538
7561	8.93076	8017	8.98932	8501	9.04794	8929	9.09706	9377	9. 14602
7573	8.93234	8039	8.99206	8513	9.04935	8933	9.09751	9391	9.1475I
7577	8.93287	8053	8.99380	8521	9.05029	8941	9.09840	9397	9.14815
7583	8.93366	8059	8.99454	8527	9.05099	8951	9.09952	9403	9.14878
7589	8.93446	8069	8.99578	8537	9.05216	8963	9. 10086	94 I 3	9. 14985
7591	8.93472	808I	8.99727	8539	9.05240	8969	9. 10153	9419	9. 15048
7603	8.93630	8087	8.99801	8543	9.05287	8971	9.10175	942 I	9.15070
7607	8.93682	8089	8.99826	8563	9.05521	8999	9.10487	9431	9.15176
e^{x}	x	e^{x}	\times	e^{x}	\times	e^{x}	x	e^{x}	x

Natural Logarithms.

u	Logeu	u	$\mathbf{L o g}_{\text {e }} \mathbf{U}$	u	$\mathbf{L o g}_{\text {e }} \mathbf{U}$	4	$\mathrm{Log}_{\mathrm{e}} \mathrm{U}$	u	$\mathrm{Log}_{\mathrm{e}} \mathrm{u}$
9433	9.15197	9551	9.16440	9719	9.18184	9833	9.19350	9967	9.20703
9437	9.15239	9587	9.16816	9721	9.18204	9839	9.194II	9973	9.20764
9439	9.1526I	9601	9.16962	9733	9.18328	9851	9.19533	10000	9.21034
9461	9. 15493	9613	9.17087	9739	9.18389	9857	9.19594	100000	II. 51293
9463	9.15514	9619	9.17150	9743	9.18430	9859	9.19614		
9467	9.15557	9623	9.17191	9749	9.18492	9871	9. 19736		
9473	9.15620	9629	9.17253	9767	9.18676	9883	9.19857		
9479	9.15683	9631	9.17274	9769	9. 18697	9887	9.19898		
9491	9.15810	9643	9.17399	9781	9.18820	9901	9.20039		
9497	9.15873	9649	9.1746I	9787	9.1888I	9907	9.20100		
9511	9.16020	966I	9.17585	9791	9.18922	9923	9.20261		
9521	9.16126	9677	9.17751	9803	9.19044	9929	9.20322		
9533	9.16251	9679	9.17771	98 II	9.19126	9931	9.20342		
9539	9.16314	9689	9.17875	9817	9. 19187	994I	9.20442		
9547	9.16398	9697	9.17957	9829	9. 19309	9949	9.20523		
e^{x}	x	$\mathrm{e}^{\text {x }}$	x	e^{x}	x	e^{x}	x	e^{x}	x

Coefficients for Computing,

$$
\mathrm{F}_{ \pm_{\mathrm{n}}}=\mathrm{F}_{0} \pm \mathrm{n} \omega\left[\mathrm{~F}_{0}^{\prime} \pm \frac{\mathrm{n}}{2} \alpha_{0}+\frac{\mathrm{n}^{2}}{6} \beta_{0} \pm \frac{\mathrm{n}}{12}\left(\frac{n^{2}}{2}-\mathrm{I}\right) \gamma_{0}\right] .
$$

n	$\frac{\mathrm{n}^{2}}{6}$	Diff.	$\frac{n}{12}\left(\frac{n^{2}}{2}-1\right)$	Diff.	n	$\frac{n^{2}}{6}$	Diff.	$\frac{n}{12}\left(\frac{n^{2}}{2}-1\right)$	Diff.
0.00	+0.0000		-0.0000		0.25	+0.0104		$\bigcirc 0.0202$	
. 01	. 0000	0	. 0008	8	. 26	. 0113	9	. 0209	7
. 02	. 00001	I	- . 0017 .0025	8	. 27	. 0122	9	. 0217	7
. 03	. 00002	I	. 0025	8	. 28	.0131	9	. 02224	8
		1		9			10		7
0.05	+0.0004	2	-0.0042	8	0.30	+0.0150		-0.0239	
. 06	. 0006	2	. 0050	8	. 31	. 0160	10	. 0246	7
. 07	. 0008	3	. 0058	8	. 32	. 0171	11	. 0253	7
. 08	. 0011	3	. 0066	9	. 33	. 0182	II	. 0260	7
. 09	. 0014	3	. 0075	8	-34	. 0193	II	. 0267	7
-. 10	+0.0017		-0.0083		0.35	+0.0204		-0.0274	
. II	. 0020	4	. 0091	8	. 36	. 0216	12	.0281	6
. 12	. 0024	4	. 0099	8	- 37	. 0228	12	. 0287	
. 13	. 0028	5	. 0107	9	. 38	. 0241	13	. 0294	6
. 14	. 0033	5	.OII6	8	-39	. 0254	13	. 0300	7
0.15	+0.0038		-0.0124		0.40	+0.0267		$\bigcirc 0.0307$	
. 16	. 0043		. 0132	8	. 41	. 0280	13	.0313	6
. 17	. 0048	6	. 0140	8	. 42	. 0294	14	. 0319	6
. 18	. 0054	6	. 0148	7	. 43	. 0308	14	. 0325	6
. 19	. 0060	7	. 0155	8	. 44	. 0323	15	.0331	6
0.20	+0.0067		-0.0163		0.45	+0.0338		-0.0337	
. 21	. 0074	7	. 0171	8	. 46	. . 0353		. 0343	
. 22	. 0081	7	.0179	8	. 47	. 0368	15	. 0348	5
. 23	. 0088	8	. 0187	7	- 48	. 0384	16	. 0354	5
. 24	. 0096	8	. 0194	8	-49	. 0400	17	. 0359	6
0.25	+0.0104		$\bigcirc .0202$		0.50	+0.0417		$\bigcirc .0365$	

TABLE VI

THE GUDERMANNIAN

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.000	0.0000000	I 0000	$0^{\circ} 0000.00 .00$	206.26					
. 0.00	.001 0000	100000	0 0326.26	205.26	0.050	0.0499792 .0509779		95	
. 002	. 0020000	I 0000	0 0652.53	206.26	. 052	.051 9766	9986	25840.94	99
. 003	. 0030000	I 0000	- 10 18.79	206.26	. 053	. 0529752	9986	30206.92	205.98
. 004	. 0040000	I 0000	0 I3 45.06	206.26	. 054	.0539738	9985	30532.89	205.96
0.005	0.0050000	0000	0 I7 II. 32	206.26	0.055	0.0549723	9985	30858.85	205.95
. 006	. 0060000	0000	- 2037.58	206.26	. 056	. 0559708	9984	$\begin{array}{llll}3 & 12 & 24.80\end{array}$	205.94
. 007	. 0069999	I 0000	- 2403.84	206.26	. 057	. 0569692	9984	31550.73	205.93
. 008	. 0079999	I 0000	- 2730.10	206.26	. 058	. 0579575	9983	31916.66	205.92
. 009	. 0089999	I 0000	- 3056.36	206.26	. 059	. 0589658	9983	32242.57	205.91
0.010	0.0099998	99	o 3422.61		0.060	0.0599640	82	32608.47	205.89
. 011	. 0109998	9999	o 3748.87	206.25	.061	. 0609622	9981	$\begin{array}{llll}3 & 29 & 34 \cdot 36\end{array}$	205.88
. 012	. OII 9997	9999	0 4115.12	206.25	. 062	.061 9603	9981	33300.23	205.87
. 013	. 0129996	9999	- 4441.37	206.25	. 063	. 0629584	9980	33626.10	205.86
. 014	. O13 9995	9999	04807.61	206.24	. 064	. 0639564	9980	33951.94	205.84
0.015	0.014 999	99	- 5133.86	206.24	0.065	0.0649543	79	34317.78	205.83
. 016	. 0159993	9999	- 55 00.10	206.24	. 066	. 065952 I	9978	34643.60	205.82
. 017	. O16 9992	9999	- 5826.33	206.23	. 067	. 0669499	9978	35009.41	205.80
. 018	. 0179990	9998	I OI 52.57	206.23	. 068	. 0679477	9977	353 35.21	205.79
. 019	. 0189989	9998	I 05.18 .80	206.23	. 069	. 0689453	9976	35700.99	205.77
0.020	0.0199987	9998	I 0845.02		0.070	0.0699429	997	40026.76	205.76
. 021	. 0209985	9998	11211.24	206.22	. 07 I	. 0709404	9975	40352.51	205.75
. 022	. 0219982	9998	I 1537.46	205.21	. 072	. 0719379	9974	40718.25	205.73
. 023	. 0229980	9997	11903.67	206.2I	. 073	. 0729352	9973	4 Io 43.98	205.72
. 024	.0239977	9997	I 2229.88	206.21	. 074	. 0739326	9973	41409.68	$205 \cdot 70$
0.025	0.0249974	997	I 2556.08	206.20	0.075	0.0749298	972	4 I7 35.38	205.69
. 026	. 0259971	9997	I 2922.28	206.20	. 076	. 0759269	9971	4 21 OI. 06	205.67
. 027	. 0269967	9996	I 3248.47	206. 19	. 077	. 0769240	9970	42426.72	205.65
. 028	. 0279963	9996	I 3614.66	206. 18	. 078	. 0779210	9970	42752.37	205.64
. 029	. 0289959	9996	I 3940.84	206.18	. 079	. 0789180	9969	43118.00	205.62
0.030	0.0299955	9995	I 4307.02	206.17	0.080	0.0799148	9968	434 43.6I	205.61
. 031	. 0309950	9995	I 4633.19	206. 17	.08I	.080 9116	9967	43809.21	205.59
. 032	.031 9945	9995	I 4959.35	206. 16	. 082	.081 9083	9966	44134.79	205.57
. 033	.0329940	9995	I 5325.50	206. 15	. 083	. 0829049	9966	44500.36	205.56
. 034	.0339935	9994	I 5651.65	206. 15	. 084	.0839014	9965	44825.90	205.54
0.035	0.0349929	星	20017.79	206. I4	0.085	0.0848978	9964	4 5I 5I. 44	205.52
. 036	. 0359922	9994	20343.93	206. I3	. 086	. 0858942	9963	455 16.95	205.50
. 037	. 0369916	9993	20710.06	206. I2	. 087	. 0868905	9962	45842.44	205.49
. 038	.0379909	9993	2 IO 36.18	206. 12	. 088	. 0878866	996 I	50207.92	205.47
. 039	. 038 990I	9992	21402.29	206. II	. 089	. 0888827	996 I	50533.38	205.45
0.040	0.0399893	992	$\begin{array}{llll}2 & 17 & 28.39\end{array}$	206. 10	0.090	0.0898787	9960	50858.82	205.43
. 041	. 0409885	9992	22054.49	206.09	. 091	.090 8747	9959	51224.25	205.41
. 042	.041 9877	9991	22420.58	206.08	. 092	.091 8705	9958	51549.65	205.39
. 043	. 0429868	9991	22746.65	206.07	. 093	. 0928662	9957	51915.03	205.38
. 044	. 0439858	9990	23112.72	206.07	. 094	. 0938619	9956	52240.40	205.36
0.045	0.0449848	9990	23438.79	206.06	0.095	0.0948574	9955	52605.75	205.34
. 046	. 0459838	9989	23804.84	206.05	. 096	. 0958529	9954	529 31.08	205.32
. 047	. 0469827	9989	24130.88	206.04	. 097	. 0968482	9953	53256.38	205.30
. 048	. 0479816	9988	24456.91	206.03	. 098	. 0978435	9952	55621.67	205.28
. 049	. 0489804	9988	24822.93	206.02	. 099	.0988387	0051	53946.94	205.26
0.050	0.0499792	9988	25148.95	206.01	0.100	0.0998337	9950	543 12.19	205.24
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	$\omega \mathrm{s}$ ¢ $\mathrm{ch} u$	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	w sechu	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-90^{\circ}$	ω sech

The Gudermannian.

u	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
			○ ' "	"				$8^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}$	"
0.100	0.0998337	9950	54312.19	205.24	0.150	0.149 4406	9889	83344.35	203.97
. IOI	. 1008287	9949	54637.42	205.22	. 151	. I50 4294	9887	83708.30	203.94
. 102	. IO1 8236	9948	55002.62	205.20	. 152	. I5I 418I	9886	84032.22	203.90
. 103	. 1028 I 84	9947	55327.81	205.18	. 153	. I52 4065	9884	843 56.1I	203.87
. 104	. 1038130	9946	55652.97	205.15	. 154	. I53 3949	9883	847 19.96	203.84
0. 105	0.1048076	9945	60018.12	205.13	0.155	0.154383 I	988 I	85043.79	203.81
. 106	. 1058021	9944	60343.24	205. 11	. 156	. I55 37II	9880	85407.59	203.78
. 107	. 1067964	9943	60708.34	205.09	. 157	. I56 3590	9878	85731.35	203.75
. 108	. 1077907	9942	6 10 33.42	205.07	. I58	. I573467	9876	90055.08	203.72
. 109	. 1087848	994 I	6 I3 58.48	205.05	. 159	. I58 3343	9875	90418.78	203.68
0.110	0.1097788	9940	6 I7 23.51	205.02	0.160	O.I59 3217	9873	90742.45	203.65
. III	. IIO 7728	9939	62048.52	205.00	. 161	. 1603089	9872	9 II 06.09	203.62
. I I2	. II I 7656	9938	62413.51	204.98	. 162	. I6I 2960	9870	9 I4 29.69	203.59
. II3	. 1127603	9936	62738.48	204.95	. 163	. 1622830	9869	91753.26	203.55
. II4	. II3 7539	9935	63103.42	204.93	. I64	. 1632697	9867	92116.80	203.52
O.II5	O.II4 7474	9934	63428.34	204.91	0.165	0.164 2564	9865	92440.31	203.49
. II6	. II5 7407	9933	63753.24	204.88	. 166	. 1652428	9864	92803.78	203.46
. 117	. 1167340	9932	641 I8.II	204.86	. 167	. 1662291	9862	93127.22	203.42
. 118	. 1177271	9931	64442.96	204.84	. 168	. 1672153	986 I	93450.62	203.39
. 119	. 1187201	9930	64807.78	204.81	. 169	. 168.2012	9859	93813.99	203.35
0.120	0.119 7130	928	65132.59	204.79	0.170	0.1691870	9857	94137.33	$203 \cdot 32$
. 121	. 1207058	9927	$65457 \cdot 36$	204.76	.171	. 1701727	9856	94500.63	203.29
. 122	. I2I 6985	9926	65822.11	204.74	. 172	.171 I58I	9854	94823.90	203.25
. 123	. 1226910	9925	7 OI 46.84	204.71	. 173	. I72 I434	9852	95147.14	203.22
. 124	. 1236834	9924	70511.54	204.69	. 174	. 173 I286	c85I	95510.33	203.18
0.125.	0.1246757	9922	70836.22	204.66	0.175	0.174 1136	9849	9.5833 .50	203. 15
. 126	. I25 6679	992 I	7 I2 00.87	204.64	. 176	. I75 0983	9847	IO OI 56.63	203. I 1
. 127	. 1266600	9920	7 I5 25.49	204.61	. 177	. 1760830	9845	100519.72	203.08
. 128	. 1276519	9919	7 I8 50.09	204.59	. 178	. 1770674	9844	100842.78	203.04
. 129	. 1286437	9917	72214.67	$204 \cdot 56$. 179	. 1780517	9842	101205.80	203.00
0.130	O.I29 6354	9916	72539.22	204.53	0.180	0.179 0358	9840	IO $15 \quad 28.78$	202.97
. I3I	. I30 6269	9915	72903.74	204.51	. 181	. 180 0197	9838	10 1851.73	202.93
. 132	. 13I 6i83	9913	73228.23	204.48	. 182	. I81 0035	9837	102214.65	202.90
. I33	. 1326096	9912	73552.70	204.45	. 183	. I8I 987I	9835	IO 2537.52	202.86
. 134	. 1336008	99 II	73917.14	204.43	. 184	. 1829705	9833	102900.35	202.82
0. I35	0.134 5918	9910	742 41.55	204.40	0.185	0.1839537	983 I	IO 3223.17	202.78
. 136	. I35 5827	9908	74605.94	$204 \cdot 37$. 186	. 1849367	9829	IO 3545.93	202.75
. 137	. I36 5734	9907	74930.29	204. 34	. 187	. 1859196	9828	Io 3908.66	202.71
. I38	. 1375641	9906	75254.62	204. 32	. 188	. 1869022	9826	104231.35	202.67
. 139	. I38 5545	9904	$7 \quad 56$ I8.93	204. 29	. 189	. 1878847	9824	10 4554.01	202.63
0. 140	O. I39 5449	9903	75943.20	204.26	0.190	0. 1888670	9822	10 49 16.62	202.60
. 141	. 140535 I	9901	80307.45	204.23	. I9I	. 1898492	9820	105239.20	202.56
. I42	. I4I 5252	9900	80631.66	204.20	. 192	. 1908311	9818	IO 56 O1. 74	202.52
. I43	. I42 5I5I	9899	80955.85	204.17	. 193	. 1918129	9817	IO 5924.24	202.48
. 144	. 1435049	9897	8 I3 20.01	204. 14	. 194	. 1927944	9815	II 0246.71	202.44
0. I45	0.144 4946	9896	8 16 44.14	204. 12	0. 195	0.193 7758	9813	II 0609.13	202.40
. 146	. 145484 I	9894	82008.24	204.09	. 196	- 1947570	98II	II 0931.51	202.37
. 147	. I46 4734	9893	$\begin{array}{llllllllllll}8 & 23 & 32.31\end{array}$	204.06	. 197	. 1957380	9809	II 1253.86	202.33
. 148	. 1474626	9891	82656.35	204.03	. 198	. 1967188	9807	II I6 16.17	202.29
. 149	. 1484517	9890	83020.36	204.00	. 199	. 1976994	9805	I I I9 38.43	202.25
0.150	0. 1494406	9889	$83344 \cdot 35$	203.97	0.200	0.1986798	9803	II 2300.66	202.21
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathbf{F}_{0}{ }^{\text {n }}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.200	0. 1986798	9803	II 2300.66	202.21					
. 201	. 1996601	9801	II 2622.85	202.17					
. 202	. 2006401	9799	II 2944.99	202.13					
. 203	. 2016200	9797	II 33 07.10	202.09	. 253	. 2503434	9688	2037.02	
. 204	. 2025996	9795	II 3629.17	202.05	. 254	. 251 I 3 I 2 I	9686	$14 \quad 23 \quad 56.83$	199.79
0.205	0.2035790	9794	II 39 5I.I9	202.01	0.255	0.2522805	9683	$14 \quad 2716.59$	
. 206	. 2045583	9792	II 43 I3.18	201.96	. 256	. 2532488	968 I	143036.31	199.69
. 207	. 2055374	9790	II 4635.12	201.92	. 257	. 2542167	9679	143355.97	199.64
. 208	. 2065162	9788	II 4957.02	201.88	. 258	. 255 I845	9676	$\begin{array}{lllllllllllllllllllll}14 & 37 & 15.58\end{array}$	199.59
. 209	. 2074949	9786	II 5318.89	201.84	. 259	. 256 I520	9674	144035.14	199.53
0.210	0.2084733	978	II 5640.71	201.80	0.260	0.257 II92	9671	144354.65	199.48
. 211	. 20945 I 5	978 I	120002.48	201.76	. 261	. 2580862	9669	I4 47 14.10	199.43
. 2	. 2104296	9779	1203124.22	201.71	. 252	. 2590530	9666	145033.51	199.38
. 213	. 2II 4074	9777	120645.91	201.67	. 263	. 260 0195	9664	145352.87	199.33
. 214	. 212385 I	9775	121007.56	201.63	. 264	. 2609857	9661	145712.18	199.29
0.215	0.2133625	9773	121329.17	201. 59	0.265	0.261 9518	9659	150031.43	
. 216	. 2143397	9771	12 I6 50.74	201. 54	. 266	.2629175	9656	150350.63	199.19
. 217	. 2153167	9769	122012.26	201. 50	. 267	. 2638830	9654	150709.78	199.13
. 218	. 2162935	9767	$12 \begin{array}{llll}12 & 23 & 33.74\end{array}$	201. 46	. 268	. 2648483	9651	15 IO 28.88	199.08
.219	. 2172701	9765	I2 2655.18	201.42	. 269	. 265 8I33	9649	I5 13 47.93	199.03
0.220	0.2182465	976	I2 30	201.37	0.270	0.266778 I	9646	151706.92	
.22I	. 2192227	9761	$12333 \begin{array}{lll}12 & 37.92\end{array}$	201. 33	. 271	. 2677425	9644	I5 2025.86	198.93
. 222	. 2201986	9759	123659.23	201.28	. 272	. 2687068	9641	I5 2344.75	198.87
. 223	. 221 I744	9756	124020.49	201.24	. 273	. 2696708	9639	$15 \quad 2703.59$	198.82
. 224	. 222 I499	9754	I2 43 4I.7I	201.20	. 274	. 2706345	9636	153022.37	198.77
0.225	0.2231252	9752	124702.88	201. 15	0.275	0.2715980	9633	153341.10	198.71
. 226	. 2241003	9750	125024.01	201. II	. 276	. 2725612	9631	153659.78	198.66
.227	. 2250752	9748	I2 53345.10	201. 06	. 277	. 2735242	9628	1540 18.41	198.61
. 228	. 2260499	9746	125706.14	201. 02	. 278	. 2744868	9626	154336.98	198.55
. 229	. 2270243	9743	I3 0027.13	200	. 279	.2754493	9623	I5 4655.49	198.50
0.230	0.2279986	9741	I3 0348.08	200.93	0.280	0.2764114	9620	155013.95	198.45
. 231	. 2289726	9739	130708.99	200.88	. 28I	. 2773734	9618	155332.36	198.38
. 232	. 2299464	9737	I3 10 29.85	200.84	. 282	.2783350	96 I 5	I5 5650.72	198.33
.233	. 2309199	9735	I3 13 50.66	200.79	.283	. 2792964	9612	160009.02	198.27
. 234	. 2318933	9732	I3 17 II. 42	200.74	. 284	. 2802575	9610	160327.26	198.22
0.235	0.2328664	9730	I3 2032.15	200.70	0.285	0.28I 2184	9607	160645.45	198.16
. 236	. 2338393	9728	I3 23252.82	200.65	. 286	. 2821789	9604	16 10 03.58	198. 11
. 237	. 234 8120	9726	132713.45	200.60	. 287	. 283 I393	9602	16 I3 21.66	198.05
. 238	.2357844	9723	$13 \quad 30 \quad 34.03$	200.56	. 288	. 2840993	9599	161639.69	198.00
. 239	.2367566	9721	I3 $33 \begin{array}{lll} & 54.56\end{array}$	200.51	. 289	.2850591	9596	I6 19 57.66	197.94
0.240	0.2377286	9719	$\begin{array}{llll}13 & 37 & 15.05\end{array}$	200.46	0.290	0.2860186	594	$16 \quad 23 \quad 15.57$	197.89
. 241	. 2387004	9716	I3 $40 \begin{array}{lll}35.49\end{array}$	200.42	. 291	. 2869778	9591	162633.43	197.83
. 242	. 2396719	9714	I3 4355.88	200.37	.292	. 2879368	9588	162951.23	197.77
. 243	. 2406432	9712	I3 4716.23	200.32	. 293	. 2888955	9586	I6 3308.97	197.72
. 244	. 24I 6I43	9710	I3 5036.53	200.27	.294	. 2898539	9583	I6 3626.66	197.66
0.245	0.242585 I	9707	1315356.77	200.23	0.295	0.2908121	9580	I6 3944.30	197.60
. 246	. 2435557	9705	135716.98	200. 18	. 296	. 2917699	9577	164301.87	197.55
. 247	. 244 526I	9703	140037.13	200. 13	. 297	. 2927275	9575	$1646 \quad 19.39$	197.49
. 248	. 2454962	9700	140357.23	200.08	. 298	. 2936849	9572	I6 4936.85	197.43
. 249	. 2464661	9698	140717.29	200.03	. 299	.2946419	9569	165254.26	197.38
0.250	0.2474358	9695	14 IO $37 \cdot 30$	199.98	0.300	0.2955987	9566	1656 II .60	$197 \cdot 32$
u	$2 \tan ^{-1}\left(e^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech u

SMITHSONIAN TABLES

The Gudermannian.

u	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
		0566	$16^{\circ} 56^{\prime}$ II " 60	197				19 $39^{\prime} 22.13$	19 ${ }^{\prime \prime}$
0.300	0.2955987	9566	165011.60	19	0.350	0.3430655	9417	193922.34	94.25
. 301	. 2965552	9563	I6 5928.89	197.26	.351	. 344007 I	9414	194236.55	194.18
. 302	. 297 5114	9561	I7 0246.13	197.20	- 352	- 3449483	941 I	194550.70	194. 11
. 303	. 2984673	9558	170603.30	197. 15	. 353	- 3458893	9408	194904.78	194.05
. 304	. 2994229	9555	170920.42	197.09	- 354	. 3468299	9405	195218.80	193.98
0.305	0.3003783	9552	I7 I2 37.48	197.03	0.355	0.3477702	9401	195532.75	193.92
. 306	. 3013334	9549	17 I5 54.48	196.97	. 356	. 3487101	9398	I9 5846.63	193.85
. 307	. 3022882	9547	1719 II. 42	196.91	- 357	. 3496498	9395	200200.45	193.78
. 308	. 3032427	9544	$17 \quad 2228.30$	196.85	-358	. 3505891	9392	200514.20	193.72
. 309	.3041969	954 I	172545.12	196.79	. 359	.351 528I	9388	$20 \quad 0827.88$	193.65
0.310	0.3051509	9538	I7 29 O1. 89	196.74	0.360	0.3524668	9385	20 II 41.50	193.58
. 311	. 3061045	9535	$17{ }_{17} 3218.60$	196.68	. 36 I	. 3534052	9382	20 I4 55.05	193.52
. 312	. 3070579	9532	I7 3535.24	196.62	. 362	. 3543432	9378	20.1808 .54	193.45
-313	. 308 0110	9529	173851.83	196.56	. 363	. 3552809	9375	202121.95	193.38
. 314	. 3089638	9526	174208.36	196.50	. 364	. 3562183	9372	$202435 \cdot 30$	193.32
0.315	0.3099163	9524	I7 $45 \quad 24.83$	196. 4	0.365	0.3571554	9369	202748.59	193.25
. 316	. 3108685	9521	I7 4841.23	196.38	. 366	. 3580921	9366	203101.80	193.18
. 317	.3II 8204	9518	I7 5157.58	196.32	. 367	. 3590285	9362	$20 \quad 3414.95$	193.II
. 318	.312 772I	9515	$17 \quad 5513.87$	196.26	. 368	. 3599646	9359	203728.03	193.05
. 319	. 3137234	9512	I7 58 30.10	196.20	. 369	. 3609003	9356	204041.04	192.98
0.320	0.3146744	9509	I8 oi 46.26	196.14	0.370	0.361 8358	9352	204353.98	192.91
. 32 I	.315 62.52	9506	180502.37	196.08	. 371	. 3627708	9349	204706.86	192.84
. 322	. 3165757	9503	$\begin{array}{llllll}18 & 08 & 18.42\end{array}$	196.01	. 372	. 3637056	9346	2050.19 .66	192.77
. 323	-3175258	9500	I8 II 34.40	195.95	- 373	. 3646400	9343	205332.40	192.70
. 324	. 3184757	9497	181450.32	195.89	-374	. 3655741	9339	205645.07	192.63
0.325	O.319 4252	9494	18 18 06. 19	195.83	0.375	0.3665078	9336	$20 \quad 5957.67$	192.57
. 326	. 3203745	9491	182121.99	195.77	- 376	. 3674413	9332	210310.20	192.50
. 327	. 3213235	9488	I8 2437.72	195.71	. 377	. 3683743	9329	21 0622.66	192.43
. 328	. 3222721	9485	I8 $27 \quad 53.40$	195.65	- 378	. 3693071	9326	210935.05	192.36
. 329	. 3232205	9482	I8 3I 09.02	195.58	- 379	- 3702395	9322	211247.38	192.29
0.330	0.3241686	9479	I8 3424.57	195.52	0.380	0.371 1716	9319	21 I5 59.63	192.22
. 331	. 325 I163	9476	I8 3740.06	195.46	.381	. 3721033	9316	21 I9 II. 82	192.15
. 332	. 3260638	9473	I8 $40 \quad 55.49$	195.40	. 382	. 3730347	9312	212223.93	192.08
. 333	. 327 O1 10	9470	I8 4410.85	195.33	. 383	- 3739658	9309		192.01
. 334	. 3279578	9467	I8 47 26.16	195.27	. 384	- 3748965	9305	212847.95	191.94
0.335	0.3289044	946	I8 504 I .40	195.21	0.385	0.3758268	9302	21 31 59.85	191.87
. 336	. 3298506	9461	I8 5356.57	195. 15	. 386	. 3767569	9299	213511.68	191. 80
- 337	. 3307965	9458	I8 57 II .69	195.08	. 387	. 3776866	9295	2138123.45	191. 73
. 338	. 3317422	9455	$19 \quad 00 \quad 26.74$	195.02	. 388	. 378 6159	9292	2I 4135.14	191. 66
. 339	. 3326875	9452	190341.72	194.95	. 389	- 3795449	9288	2I 4446.76	191. 59
0.340	0.3336325	9449	F9 0656.65	194.89	0.390	0.3804736	9285	21 4758.3 I	191.51
. 341	- 3345772	9445	I9 10 II.50	194.83	.39I	-381 4019	928 I	21 51 09.79	191. 44
. 342	. 3355216	9442	19 I3 26.30	194.76	- 392	. 3823299	9278	215421.20	191.37
. 343	. 3364657	9439	19 I6 41.03	194.70	- 393	. 3832575	9275	215732.53	191. 30
- 344	. 3374095	9436	19 I9 55.70	194.63	- 394	-384 I848	927 I	220043.80	191.23
0.345	0.3383529	9433	192310.30	194.57	0.395	0.385 1117	9268	220354.99	191.16
. 346	. 339 296i	9430	192624.84	194.51	. 396	. 3860383	9264	220706.11	191.09
- 347	. 3402389	9427	192939.31	194.44	- 397	- 3869645	9261	22 10 17.16	191.OI
. 348	. 341 I8I4	9424	193253.72	194.38	- 398	. 3878904	9257	22 I3 28. I4	190.94
. 349	. 3421236	9420	193608.06	194.31	. 399	- 388 8159	9254	22 I6 39.04	190.87
0.350	0.3430655	9417	I9 3922.34	194.25	0.400	0.389741 I	9250	22 I9 49.88	190.80
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	$\omega \mathrm{s}$	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	$\mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.400	0.3897411	9250	$22^{\circ} 19^{\prime} 449^{\prime \prime} .88$	190.80	0.450	0.4355388	9066		
. 401	. 3906660	9247	222300.64	190.72	.45I	. 4364453	9063	250023.3 I	
. 402	-3915904	9243	2226 II. 32	190.65	. 452	. 4373514	9059	250330.20	186.85
.403	- 3925146	9240	2229 2I.94	190.58	. 453	. 4382571	9055	250637.01	186.77
. 404	- 3934383	9236	223232.48	190.51	. 454	. 439 I624	9051	250943.74	186.69
0.405	0.3943618	9232	223542.95	190.43	0.455	0.4400673	9047	25.1250 .39	I86.6I
. 406	. 3952848	9229	$22 \quad 38 \quad 53.35$	190.36	. 456	. 4409718	9043	25 I5 56.96	I86.53
. 407	. 3962075	9225	224203.67	190.29	. 457	. 4418759	9040	$25 \quad 1903.46$	186.45
. 408	. 3971299	9222	$2245 \quad 13.92$	190.21	. 458	. 4427797	9036	252209.87	I86.37
. 409	. 3980519	9218	224824.09	190. 14	. 459	. 4436831	9032	$25 \quad 2516.20$	I86.29
0.410	0.3989735	9215	225134.19	190.06	0.460	0.4445861	9028	252822.46	I86.2I
. 41 II	. 3998948	9211	225444.22	189.99	. 46 I	. 4454886	9024	$25 \quad 3128.63$	186. 13
. 412	. 400 8157	9207	225754.18	189.92	. 462	. 4463909	9020	253434.72	186.05
. 413	. 4017363	9204	23 OI 04.06	I89.84	. 463	. 4472927	9016	253740.74	I85.97
. 414	.4026565	9200	230413.86	189.77	. 464	. 448 1941	9012	254046.67	185.89
0.415	0.4035763	9197	$2307 \quad 23.59$	189.69	0.465	0.4490951	9008	254352.52	I85.8I
. 416	. 4044958	9193	23 10 33.25	I89.62	. 466	. 4499958	9004	254658.29	I85.73
.417	. 4054149	9189	$\begin{array}{llll}23 & 13 & 42.83\end{array}$	189.54	. 467	. 4508960	9001	255003.98	185.65
. 418	. 4063337	9186	23 I6 52.34	189.47	. 468	. 4517959	8997	$25 \quad 5309.59$	I85.57
. 419	. 407252 I	9182	232001.77	189.39	. 469	. 4526954	8993	2556 15.12	185.49
0.420	0.408 1701	917	2323 II. I3	189.32	0.470	0.4535944	8989	$25 \quad 5920.57$	I85.41
. 42 I	. 4090878	9175	232620.41	189.24	. 471	. 454 493I	8985	260225.93	I85.33
. 422	.410 0051	9171	232929.62	189.17	. 472	. 4553914	8,81	260531.22	I85.24
. 423	. 4109220	9168	233238.75	189.09	. 473	. 4562893	8977	260836.42	185.16
. 424	.411 8385	9164	233547.8 I	189.02	. 474	. 4571858	8973	26 II 41.54	185.08
0.425	0.4127548	9160	233856.79		0.475	0.4580839	8069	261446.58	185.00
. 426	. 4136706	9157	234205.69	188.87	. 476	. 4589806	8965	261751.54	184.92
. 427	. 4145861	9153	$\begin{array}{lllll}23 & 45 & 14.52\end{array}$	188.79	.477	. 4598769	8961	262056.42	184.84
. 428	.4155012	9149		188.71	. 478	. 4607728	8957	2624 OI. 21	184.75
. 429	. 4164159	9145	23 51 31.95	188.64	. 479	. 4616683	8953	262705.93	184.67
0.430	0.4173303	9142	235440.55	188.56	0.480	0.4625634	8949	263010.56	184.59
. 43 I	. 4182443	9138	235749.07	188.49	.481	. 463458 I	8945	2633 I5.10	184.5I
. 432	. 4191579	9134	240057.52	I88.41	. 482	. 4643524	8941	$26 \quad 3619.57$	184.42
. 433	. 4200711	9131	240405.89	188.33	. 483	. 4652464	8937	263923.95	184.34
. 434	. 4209840	9127	2407 I4.18	188.26	. 484	. 466 I 399	8933	264228.25	184.26
0.435	0.421 8965	9123	241022.40	188.18	0.485	0.4670330	8929	$2645 \quad 32.47$	I84. 18
. 436	. 4228086	9119	$\begin{array}{lllll}24 & 13 & 30.54\end{array}$	188. 10	. 485	. 4679257	8925	264836.60	184.09
. 437	. 4237204	-9116	241638.60	188.02	.487	. 468 8180	8921	265140.65	I84.01
. 438	. 4246318	91.12	241946.59	187.95	. 488	.4697099	8917	265444.62	183.93
. 439	. 4255428	9108	242254.50	187.87	. 489	. 4706014	8013	265748.50	I83.84
0.440	0.4264534	9104	$24 \quad 2602.33$	187.79	0.490	0.4714925	8909	270052.31	183.76
. 441	. 4273636	910I	242910.08	187.71	. 49 I	. 4723832	8905	270356.02	183.68
. 442	. 4282735	9097	2432 17.75	187.64	. 492	. 4732735	8901	270659.65	I83.59
. 443	. 4291830	9093	$24 \quad 35 \quad 25 \cdot 35$	187.56	. 493	. 4741633	8897	271003.21	183.5I
. 444	. 430092 I	co89	$2438 \quad 32.87$	187.48	. 494	. 4750528	8893	27 I3 06.68	I83.42
0.445	0.4310009	9085	244140.31	187.40	0.495	0.4759419	8889	271610.06	183.34
. 446	. 4319092	9082	244447.67	187.32	. 496	. 4768305	8885	$27 \quad 1913.36$	183.26
. 447	. 432 8I72	9078	244754.96	187.24	. 497	. 4777188	8880	272216.57	183.17
. 448	. 4337248	9074	245102.16	187.17	. 498	. 4786066	8876	$\begin{array}{llll}27 & 25 & 19.70\end{array}$	183.09
. 449	. 4346320	9070	245409.29	187.09	. 499	. 479494 I	8872	$27 \quad 28 \quad 22.75$	183.00
0.450	0.4355388	9066	$2457 \quad 16.34$	187.01	0.500	0.48038 II	8868	273125.71	182.92
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(e^{u}\right)-90^{2}$	w sech u	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

Smithsonian tables

The Gudermannian.

u	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
		8868	27 31 25.71	182.92			8657	0203.92	
0.500	0.4803811	8868	273125.71		0.550	0.5241996	8657	$30 \quad 0203.92$	57
. 501	. 4812677	8864	$\begin{array}{llll}27 & 34 & 28.59\end{array}$	182.83	551	. 5250651	8653	$\begin{array}{llll}30 & 05 & 02.45\end{array}$	178.48
. 502	. 4821539	8860	273731.38	182.75	. 55.2	. 5259302	8649	300800.88	178.39
. 503	. 4830397	8856	274034.09	182.67	. 553	. 5267948	8644	301059.23	178.30
. 504	. 483 925I	8852	274336.71	I82.58	. 554	. 5276590	8640	30 I3 57.48	I78.2I
0.505	0.4848100	8848	274639.25	182.50	0.555	0. 5285228	8636	30 16 55.65	178.12
. 506	. 4856946	8844	2749 41.7.0	182.41	. 556	. 529 386I	8631	301953.72	178.03
. 507	.4865787	8839	275244.07	182.33	- 557	. 5302490	8627	302251.71	177.94
. 508	. 4874625	8835	275546.35	182.24	. 558	. 53 I III5	8622	$30 \quad 2549.60$	177.85
. 509	. 4883458	883 I	275848.55	182.15	. 559	-531 9735	8618	302847.41	177.76
0.510	0.4892287	8827	28 OI 50.66	182.07	0.560	0.5328351	8614	303145.12	177.67
.511	. 490 I I 12	8823	280452.69	181.98	. 561	. 5336962	8609	303442.75	177.58
. 512	. 4909933	8819	280754.63	I8I.90	. 562	. 5345569	8605	303740.28	I77.49
. 513	. 4918749	8814	28 10 56.48	18i.8I	. 563	. 5354172	8601	304037.73	177.40
. 514	. 4927562	88ı0	28 I3 58.25	181. 73	. 564	. 5362771	8596	304335.08	177.3I
0.515	0.4936370	880	28 I6 59.94	181. 64	0.565	0.5371365	8592	$30 \quad 4632.35$	I77.22
. 516	. 494 5174	8802	2820 OI. 53	I8I. 55	. 566	. 5379954	8587	304929.52	I77.13
. 517	. 4953974	8798	$28 \quad 2303.04$	181.47	. 567	. 5388539	8583	305226.60	177.04
. 518	. 4962769	8794	$28 \quad 2604.47$	181.38	. 568	. 5397120	8579	$3055 \quad 23.59$	176.95
. 519	. 497 I56I	8789	$28 \quad 29$ 05.8I	I8I. 29	. 569	. 5405696	8574	305820.49	176.85
0.520	0.4980348	8785	$28 \quad 3207.06$	18I.2I	0.570	0.5414268	8570	31 OI 17.30	176.76
. 521	. 498 913I	8781	$28 \quad 3508.22$	I8I. 12	. 571	. 5422836	8565	310414.02	176.67
. 522	. 4997910	8777	$28 \quad 38 \quad 09.30$	181.04	. 572	. 5431399	8561	310710.65	176.58
. 523	. 5006685	8773	284 I 10.29	180.95	. 573	. 5439958	8556	311007.18	I76.49
. 524	. 5015456	8768	2844 II. 20	180.86	. 574	. 5448512	8552	311303.63	176.40
0.525	0.5024222	8764	2847 12.01	180.77	0.575	0.5457062	8548	3 I I5 59.98	176.31
. 526	. 5032984	8760	285012.75	180.69	. 576	. 5465607	8543	311856.24	176.22
. 527	. 5041742	8756	$28 \quad 5313.39$	180.60	. 577	. 5474148	8539	3 I 2 I 52.4 I	176. 12
. 528	. 5050495	8752	$28 \quad 56$ I 3.95	180.51	. 578	. 5482685	8534	312448.49	176.03
. 529	. 5059245	8747	2859 14.4I	180.43	. 579	. 549 1217	8530	312744.47	175.94
0.530	0.5067990	8743	290214.80	180.34	0.580	0.5499744	8525	3 I 3040.37	175.85
. 53 I	. 507673 I	8739	290515.09	180.25	. 581	. 5508267	8521	313336.17	175.76
. 532	. 5085468	8735	290815.30	180.16	. 582	-551 6786	8516	3 I 3631.88	175.66
. 533	. 5094200	8730	29 II I5.42	180.07	. 583	. 552 5300	8512	3 I 3927.50	175.57
. 534	. 5102928	8726	29 I4 I5.45	179.99	. 584	. 553 3810	8508	3I 4223.03	I75.48
0.53	0.5111652	8722	291715.39	179.90	0.585	0.5542315	8503	3 I 4518.46	175.39
. 536	. 5120372	8717	292015.24	I79.8I	. 586	. 5550816	8499	314813.80	175.30
. 537	. 5129087	8713	2923 I5.01	179.72	. 587	. 5559313	8494	315109.05	175.20
. 538	. 5137798	8709	2926 I4. 69	179.63	. 588	. 5567804	8490	3 I 5404.2 I	I75.1 I
. 539	. 5146505	8705	2929 I4.28	179.55	. 589	. 5576292	8485	315659.27	175.02
0.540	0.5155207	8700	293213.78	179.46	0.590	-. 5584775	848 I	315954.25	174.93
-541	- 5163905	8696	293513.20	179.37	-591	- 5593253	8476	320249.13	I74.83
. 542	. 5172599	8692	2938 I2.52	179.28	. 592	. 5601727	8472	$320543 \cdot 91$	174.74
. 543	. 5181289	8687	2941 II. 76	179.19	- 593	. 5610196	8467	320838.61	174.65
. 544	. 5189974	8683	2944 10.91	179.10	. 594	. 561886 I	8463	32. II 33.21	174.55
0.545	0.5198655	8679	294709.95	179.01	0.595	0.562 .7122	8458	32 I4 27.71	174.46
. 546	. 5207332	8675	295008.93	178.93	. 596	. 5635577	8454	3217122.13	I74.37
- 547	. 5216004	8670	295307.81	178.84	- 597	. 5644029	8449	322016.45	174.27
- 548	. 5224673	8666	2956	178.75	. 598	. 5652476	8445	322310.68	I74.18
- 549	. 5233336	8662	2959 05.3I	178.66	. 599	. 5660918	8440	$32 \quad 2604.81$	174.09
0.550	0.5241996	8657	$30 \quad 02 \quad 03.92$	178.57	0.600	0.5669356	8436	$32 \quad 28 \quad 58.85$	173.99
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ech	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	gdu	$\omega F_{0}{ }^{\prime}$
0.600	0.5669356	8436	$32^{\circ} 28^{\prime} 58.85$	173.99	0.650	0.6085398	8205	$34^{\circ} 52^{\prime} 00.134$	169.24
. 601	. 5677789	8431	323152.80	173.90	. 651	. 6093600	8200	$\begin{array}{llll}34 & 54 & 49.52\end{array}$	169.14
. 602	. 56862 I 8	8426	$\begin{array}{llll}32 & 34 & 46.66\end{array}$	I73.8I	. 652	.6I0 1798	8195	345738.62	169.04
. 603	. 5694642	8422	$\begin{array}{llll}32 & 37 & 40.42\end{array}$	173.71	. 653	. 6109991	8191	350027.61	168.95
. 604	. 570306 I	8417	324034.09	I'73.62	. 654	.6II 8ı79	8186	350316.51	I68.85
0.605	0.5711476	8413	324327.66	I73.53	0.655	0.6126363	8 I 8 I	$350605 \cdot 31$	168.75
. 606	. 5719887	8408	3246 21.14	173.43	. 656	. 6134542	8177	350854.01	I68.66
. 607	. 5728293	8404		173.34	. 657	. 6142716	8172	35 II 42.62	I68.56
. 608	. 5736694	8399	325207.82	173.24	. 658	. 6150886	8167	35 I4 3I. 13	168.46
. 609	. 574 509I	8395	3255 OI .01	173.15	. 659	.6I5 905I	8163	35 I7 I9.54	168.36
0.610	0.5753484	8390	3257 54.12	173.06	0.660	0.6167211	8I58	$35 \quad 2007.86$	168.27
. 611	. 5761871	8385	330047.13	172.96	.66I	. 6175366	8 I 53	$35 \quad 2256.08$	168.17
.612	. 5770255	838 I	330340.04	172.87	. 662	. 6183517	8148	$\begin{array}{llllllllll}35 & 25 & 44.20\end{array}$	168.07
.613	. 5778633	8376	330632.86	172.77	. 663	. 6191663	8 I 44		167.97
.6I4	. 5787007	8372	330925.59	I72.68	. 664	. 6199804	8I 39	35 3I 20.14	167.88
0.615	0.5795377	8367	331218.22	I72.59	0.665	0.6207941	8 I 34	$35 \quad 3407.97$	167.78
. 616	. 580374 I	8363	331510.76	I72.49	. 666	. 6216073	8 I 29	353655.70	167.68
. 617	. 581 2102	8358	$\begin{array}{llllllllllll}33 & 18 & 03.20\end{array}$	172.40	. 667	. 6224200	8125	$35 \quad 3943.34$	167.58
. 618	. 5820457	8353	332055.55	I72.30	. 668	. 6232322	8 I 20	354230.87	167.49
. 619	. 5828809	8349	332347.81	172.21	. 669	. 6240440	8II5	3545 I 8.3 I	167.39
0.620	0.5837155	8344	$\begin{array}{llll}33 & 26 & 39.97\end{array}$	I72.II	0.670	0.6248553	8iro	$35 \quad 4805.65$	167.219
. 62 I	. 5845497	8340	3312932.03	172.02	. 671	. 625666 I	8106	$35 \quad 5052.89$	167.19
. 622	. 5853834	8335	$\begin{array}{llll}33 & 32 & 24.00\end{array}$	171.92	. 672	. 6264764	8 I 101	355340.03	167.09
. 623	. 5862167	8330		171.83	. 673	. 6272863	8096	355627.08	167.00
. 624	. 5870495	8326	$33 \quad 38 \quad 07.65$	171.73	. 674	. 6280956	8091	355914.03	166.90
0.625	0.5878819	8321	334059.34	I\%1. 64	0.675	0.6289046	8087	$36 \quad 0200.88$	166.80
. 626	. 5887137	8317	334350.93	I71. 54	. 676	. 6297130	8082	360447.63	166.70
. 627	. 5895452	8312	334642.42	I71. 45	. 677	.6305209	8077	360734.28	$166.6 \bigcirc$
. 628	. 5903761	8307	334933.82	I71. 35	. 678	. 6313284	8072	36 10 20.84	166.51
. 629	. 5912066	8303	335225.12	I71. 26	. 679	. 632 I354	8068	$\begin{array}{llllllllllllll}36 & 13 & 07.29\end{array}$	166.41
0.630	0.5920367	8298	335516.33	171.16	0.680	0.6329420	8063	36 15 53.65	166.31
.63I	. 5928662	8293		171.06	.681	. 6337480	8058	3618189.91	166.21
. 632	. 5936954	8289	340058.46	I70.97	. 682	. 6345536	8053	362126.07	166.11
. 633	. 5945240	8284	340349.38	170.87	. 683	. 6353587	8049		166.01
. 634	. 5953522	8280	340640.20	170.78	. 684	. 6361633	8044	362658.10	165.92
0.635	0.5961799	8275	340930.93	170.68	0.685	0.6369675	8039	$36 \quad 2943.97$	165.82
. 636	. 5970072	8270	$\begin{array}{llll}34 & 12 & 21.56\end{array}$	170.59	. 686	. 637 7711	8034	$\begin{array}{llll}36 & 32 & 29.74\end{array}$	165.72
. 637	. 5978339	8266	34 I5 12.10	170.49	. 687	. 6385743	8029	363515.41	165.62
. 638	. 5986603	8261	$\begin{array}{lllll}34 & 18 & 02.54\end{array}$	170.39	. 688	. 6393770	8025	363800.98	165.52
. 639	. 599 4861	8256	$34 \quad 20 \quad 52.89$	170.30	. 689	. 6401792	8020	364046.45	165.42
0.640	0.6003115	8252	$\begin{array}{llll}34 & 23 & 43.14\end{array}$	170.20	0.690	0.6409810	8015	3643.31 .82	165.32
. 641	. 6011364	8247	$\begin{array}{lllll}34 & 26 & 33.29\end{array}$	I70.11	. 691	. 6417823	8010	364617.09	165.22
. 642	. 6019609	8242	$\begin{array}{llll}34 & 29 & 23.35\end{array}$	170.01	. 692	.6425830	8006	364902.27	165.13
. 643	. 6027849	8238	$\begin{array}{llll}34 & 32 & 13.31\end{array}$	169.91	. 693	. 6433834	8001	3651747.34	165.03
. 644	.6036084	8233	343503.17	169.82	. 694	. 644 I832	7996	365432.32	164.93
0.645	0.6044315	8228	343752.94	169.72	0.695	0.6449825	7991	$36 \quad 5717.20$	164.83
. 646	. 605254 I	8224	344042.6 I	169.62	. 696	. 6457814	7986	370001.98	164.73
. 647	. 6060762	8219	344332.19	169.53	. 697	. 6465798	7981	370246.66	164.63
. 648	. 6068979	8214	344621.67	169.43	. 608	. 6473777	7977	3705121.24	164.53
. 649	. 6077190	8210	3449 II. 05	169.33	. 699	. 648 I75I	7972	$37 \quad 0815.72$	164.43
0.650	0.6085398	8205	345200.34	169.24	0.700	0.6489721	7967	37 II 00.10	164.33
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
			- ' "					- " "	
0.700	0.6489721	7967	37 II 00.10	164.33	0.750	0.6882014	7724	3925 51.72	159.32
. 701	. 6497685	7962	$371344 \cdot 38$	164.23	. 751	. 6889735	7719	392830.98	159.22
. 702	. 6505645	7957	37 I6 28.57	164.13	. 752	. 689 745I	7714	39 31 IO.15	I59.1
: 703	.651 3600	7953	371912.65	164.03	. 753	. 6905163	7709	3933 49.2I	I 59.01
.704	. 652 I550	7948	37 21 56.63	163.93	. 754	. 6912870	7704	393628.18	I 58.91
0.705	0.6529496	7943	372440.52	163.84	0.755	0.6920572	7699	393907.04	I 58.8 I
. 706	.6537436	7938	372724.31	163.74	. 756	. 6928269	7694	39 41 45.80	158.71
. 707	. 6545372	7933	$37 \quad 30 \quad 07.99$	163.64	. 757	. 693 5961	7690	394424.46	I 58.6 I
. 708	. 6553303	7928	373251.58	163.54	. 758	. 6943648	7685	3947 03.01	I58.5I
. 709	. 656 I229	7924	373535.06	163.44	. 759	. 695 I330	7680	3949 4I. 47	I 58.40
0.710	0.6569150	7919	373818.45	163.34	0.760	0.6959007	7675	395219.82	158.30
. 711	. 6577067	7914	3741 OI. 74	163.24	. 761	. 6966679	7670	395458.07	158.20
. 712	. 6584978	7909	374344.92	163.14	. 762	. 6974347	7665	395736.23	I58.10
. 713	.6592885	7904	374628.01	163.04	. 763	. 6982009	7660	400014.28	158.00
. 714	. 6600787	7899	3749 II.00	162.94	. 764	. 6989667	7655	400252.22	157.90
0.715	0.6608684	7895	375153.89	162.84	0.765	0.6997319	7650	400530.07	157.80
. 716	. 66i 6576	7890	375436.68		. 766	. 7004967	7645	400807.81	157.69
. 717	. 6624463	7885	375719.36	162.64	. 767	. 7012610	7640	40 10 45.46	157.59
. 718	. 6632346	7880	3800 O1. 95	162.54	. 768	. 7020248	7635	40 13.23.00	157.49
. 719	. 6640223	7875	$38 \quad 0244.44$	162.44	. 769	.7027880	7630	401600.44	I 57.39
0.720	0.6648	7870	3805026.83		0.770	0.7035508	7625	40 18 37.78	157.29
. 721	. 6655964	7865	380809.11	162.24	. 771	. 704 313I	7620	402115.01	157.19
. 722	. 6663827	7861	38 10 51.30	162.14	. 772	. 7050750	7616	402352.1	157.08
. 723	. 6671685	7856	38 I3 33.39	162.04	. 773	. 7058363	7611	$40 \quad 26 \quad 29.18$	156.98
. 724	. 6679539	785 I	$\begin{array}{llllllllllllll}38 & 16 & 15\end{array}$	161.94	. 774	. 706597 I	6	4029 06.1I	156.88
0.725	0.6687387	7846	38 I8 57.26	161. 84	0.775	0.7073574	7601	40 3I 42.94	156.78
. 726	. 669523 I	7841	38 21 39.05	161. 74	. 776	. 7081173	7596	403419.67	156.68
. 727	. 6703069	7836	$38 \quad 24 \quad 20.73$	161. 64	. 777	. 7088766	7591	$40 \quad 36 \quad 56.29$	156.57
. 728	. 6710903	7831	$38 \quad 27 \quad 02.32$	161. 54	. 778	. 7096354	7586	403932.82	I 56.47
. 729	. 6718732	7827	382943.80	161. 43	. 779	. 7103938	7581	$40 \quad 4209.24$	I 56.37
0.730	0.6726556	7822	$38 \quad 32$ 25.19	161. 33	0.780	0.711 1516	7576	404445.56	I56.27
. 731	. 6734376	7817		161. 23	.78I	.711 9090	7571	404721.77	156.17
. 732	. 6742190	7812		16I. 13	. 782	. 7126659	7566	$40 \quad 4957.89$	156.06
. 733	. 6750000	7807	384028.74	161.03	. 783	. 7134223	7561	405233.90	I 55.96
. 734	. 6757804	7802	$\begin{array}{lllll}38 & 43 & 09.72\end{array}$	160.93	. 784	. 714 I78I	7556	405509.8 I	I 55.86
0.735	0.6765604	7797	$3845 \quad 50.60$	160.83	0.785	0.7149335	7551	$40 \quad 5745.62$	155.76
. 736	. 6773399	7792	3848 31.38	160.73	. 786	. 7156884	7546	410021.33	I 55.66
. 737	. 6781189	7788	3851512.06	160.63	. 787	. 7164428	7541	410256.94	I55.55
. 738	. 6788974	7783	38535152.64	160.53	. 788	. 7171967	7537	410532.44	I 55.45
. 739	. 6796754	7778	$38 \quad 5633.12$	160.43	.789	. 7179501	7532	410807.84	155.35
0.740	0.6804530	7773	3859 13.50	160.33	0.790	0.7187030	7527	41 IO 43.14	155.25
. 741	.681 2300	7768	39 OI 53.77	160.23	.791	. 7194554	7522	$41 \quad 1318.33$	I55. 15
. 742	.6820065	7763	390433.95	160.13	. 792	. 7202073	7517	41 I5 53.43	I55.04
. 743	. 6827826	7758	390714.02	160.02	. 793	. 7209588	7512	41 I8 28.42	154.94
. 744	.6835582	7753	390954.00	159.92	. 794	. 7217097	7507	4 I 2103.3 I	154.84
0.745	0.6843333	7748	391233.87	I 59.82	0.795	0.7224601	7502	412338.10	154.74
. 746	. 6851079	7744	391513.64	159.72	. 796	. 7232101	7497	412612.78	I 54.63
. 747	. 6858820	7739	39 17 53.31	I 59.62	. 797	. 7239595	7492	$412847 \cdot 36$	I 54.53
. 748	. 6866556	7734	$\begin{array}{llll}39 & 20 & 32.88\end{array}$	I 59.52	. 798	. 7247084	7487	413121.84	I 54.43
. 749	.6874287	7729	$\begin{array}{llll}39 & 23 & 12.35\end{array}$	I 59.42	. 799	. 7254569	7482	41 3356.22	154.33
0.750	0.6882014	7724	392551.72	159.32	0.800	0.7262048	7477	413630.50	154.22
u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	hu	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	h	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.800	0.7262048	747	413630.50	154.22	0.850	0.7629677	7228	- $42{ }^{\prime} \quad 53.38$	90
. 801	0.7269523 .72048	7472	413904.67	154.12	- 8.85	0.7629677 .763692	7223	$\begin{array}{llll}43 & 42 & 53 \cdot 38 \\ 43 & 45 & 22.41\end{array}$	88
. 802	. 7276992	7467	$4 \mathrm{I} 4 \mathrm{I} \quad 38.74$	154.02	. 852	. 7644122	7218	434751.34	I48.88
. 803	. 7284457	7462	414412.71	153.92	. 853	. 7651338	7213	435020.17	I48.78
. 804	.7291916	7457	41 4646.57	I53.8I	. 854	.7658548	7208	435248.89	148.67
0.805	0.7299371	7452	414920.34	153.71	0.855	0.7665754	7203	4355 I7.52	I48.57
. 806	. 7306821	7447	4 I 5 I 54.00	I53.6I	. 856	. 7672954	7198	435746.04	148.47
. 807	. 7314266	7442	41 5427.56	I 53.5 I	. 857	. 7680149	7193	4400 I 4.45	I48.36
. 808	. 7321705	7437	4 I 57 OI.OI	153.40	. 858	. 7687340	7188	440242.76	I48.26
. 809	. 7329140	7432	415934.36	153.30	. 859	.7694525	7183	440510.97	148.16
0.810	0.7336570	7427	420207.62	I53.20	0.860	0.7701706	7178	440739.08	148.05
.8II	. 7343995	7422	420440.76	153.10	.86I	. 770 888I	7173	44 10 07.08	147.95
.8I2	. 735 I414	7417	420713.81	152.99	. 862	. 7716051	7168	$44 \quad 1234.98$	147.85
. 813	. 7358829	7412	420946.75	152.89	. 863	. 7723217	7163	44 I5 02.78	147.75
.814	.7366239	7407	42 I2 19.59	152.79	. 864	.7730377	7158	441730.48	147.64
0.815	0.7373644	7402	42 14 52.33	152.69	0.865	0.7737533	7153	44 I9 58.07	147.54
.816	.7381044	7397	42 17 24.96	I 52.58	. 866	. 7744683	7148	442225.56	147.44
.817	. 7388439	7392	421957.50	152.48	. 867	. 775 I829	7143	442452.94	147.33
. 818	. 7395829	7387	422229.93	152.38	. 868	. 7758959	7138	442720.22	147.23
. 819	. 7403214	7383	422502.25	152.28	. 869	. 7766104	7133	442947.40	147.13
0.820	0.7410594	7378	$42 \quad 2734.48$	152.17	0.870	0.7773235	7128	$4432 \quad 14.48$	147.02
. 82 I	. 7417969	7373	423006.60	152.07	. 871	. 7780360	7123	4434 41.45	146.92
. 822	. 7425339	7368	$\begin{array}{llll}42 & 32 & 38.62\end{array}$	151.97	. 872	. 778 7481	7118	443708.32	146.82
. 823	. 7432704	7363	423510.53	151.85	. 873	. 7794596	7113	443935.09	146.71
. 824	.7440064	7358	423742.34	151.76	. 874	.7801707	7108	4442 OI. 75	I46.6I
0.825	0.7447420	7353	424014.05	151.66	0.875	0.780 88I2	7103	444428.31	146.51
. 826	. 7454770	7348	$42 \quad 4245.66$	151.56	. 876	.781 5912	7098	$44 \quad 4654.77$	146.41
. 827	. 746 2115	7343	4245 I7. I7	I51.45	. 877	. 7823008	7093	4449 21.12	146.30
. 828	. 7469455	7338	424748.57	I51.35	. 878	.7830098	7088	44 51 47.37	146.20
. 829	. 7476790	7333	425019.87	151.25	. 879	.7837184	7083	445413.52	146.10
0.830	0.7484120	7328	425251.05	151.14	0.880	0.7844264	7078	445639.56	145.99
. 831	. 749 I446	7323	425522.16	151.04	. 881	. 7851340	7073	445905.50	145.89
. 832	. 7498766	7318	4257 53.15	150.94	. 882	. 7858410	7068	45 OI 31.34	I 45.79
. 833	. 7506081	7313	430024.04	150.84	. 883	. 7865476	7063	450357.08	I45.68
. 834	.751 3391	7308	430254.82	150.73	. 884	. 7872536	7058	450522.71	145.58
0.835	0.7520697	7303	430525.50	150.63	0.885	0.7879591	7053	$\begin{array}{llll}45 & 08 & 48.24\end{array}$	145.48
. 836	. 7527997	7298	430756.08	150.53	. 886	. 7886642	7048	45 II I3.66	145.37
. 837	. 7535292	7293	43 Io 26.56	150.42	. 887	.7893687	7043	$45 \quad 1338.59$	I45.27
. 838	. 7542582	7288	43 I2 56.93	I 50.32	. 888	. 7900728	7038	45 I6 04.21	145. 17
. 839	. 7549868	7283	43 I5 27.20	150.22	. 889	. 7907763	7033	45 I8 29.32	145.06
0.840	0.7557148	7278		150.12	0.890	0.7914794	7028	$45 \quad 2054.34$	I44.96
. 841	. 7564423	7273	$43 \quad 20 \quad 27.43$	150.01	. 891	. 792 1819	7023	$45 \quad 2319.25$	144.86
. 842	. 7571694	7268	$43 \quad 22 \begin{array}{lll}43 & 39\end{array}$	149.91	. 892	. 7928839	7018	452544.05	144.76
. 843	. 7578959	7263	$43125 \begin{array}{lll}43 & 27.25\end{array}$	I 49.8I	. 893	. 7935855	7013		I 44.65
. 844	. 7586219	7258	432757.01	149.70	. 894	. 7942865	7008	$45 \quad 3033 \cdot 36$	144.55
0.845	0.7593475	7253	$43 \quad 3026.66$	149.60	0.895	0.794987 I	7003	$45 \quad 32 \begin{array}{lll}47.85\end{array}$	I44.45
. 846	. 7600725	7248	$43 \quad 3256.21$	149.50	. 896	. 795687 I	6998	$45 \quad 35 \quad 22.25$	I 44.34
. 847	. 7607970	7243	$\begin{array}{lllll}43 & 35 & 25.65\end{array}$	149.39	. 897	. 7963857	6993	453746.54	I44.24
. 848	. 76 I 521I	7238	433755.00	149.29	. 898	. 7970857	6988	454010.73	I44. I4
. 849	. 7622446	7233	$43 \quad 4024.24$	149. 19	. 899	. 7977843	6983	454234.8 I	144.03
0.850	0.7629677	7228	434253.38	149.09	0.900	0.7984823	6978	454458.80	143.93
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	sech	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

SMITHSONIAN TABLES

u	od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	odu	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.900	0.7984823	6978	$45^{\circ} 4458.80$	143.93	0.950	0.8327479	6728	$47^{\circ} 42^{\prime} 46.58$	138.78
. 901	. 7991798	6973	454722.67	143.83	.951	. 8334205	6723	474505.3 I	138.68
. 902	. 7998769	6968	454946.45	143.72	. 952	. 8340926	6719	474723.94	138.58
. 903	. 8005734	6963	4552 10.12	143.62	. 953	. 8347642	6714	474942.47	138.48
. 904	. 8012695	6958	455433.69	143.52	-954	. 8354353	6709	475200.89	138.37
0.905	0.801 9650	6953	455657.16	143.42	0.955	0.8361059	6704	475419.22	138.27
. 906	. 8026601	6948	455920.52	$143 \cdot 31$. 956	. 8367760	6699	475637.44	138.17
. 907	. 8033546	6943	46 or 43.78	143.21	. 957	. 8374456	6694	475855.55	138.07
. 908	. 8040487	6938	460406.94	I43. I I	. 958	. 8381147	6689	48 OI I3.57	137.96
. 909	. 8047422	6933	460630.00	143.00	. 959	. 8387833	6684	4803 31.48	137.86
0.910	0.8054353	6928	460852.95	142.90	0.960	0.8394514	6679	480549.29	137.76
. 911	. 8061278	6923	46 II 15.79	142.80	. 961	. 840119 I	6674	480807.00	137.66
. 912	. 806 8198	6918	46 I3 38.54	I42.69	. 962	. 8407862	6669	48 10 24.60	137.55
.913	. 8075114	6913	46 I6 or. 18	142.59	.963	. 8414528	6664	48 I2 42.10	137.45
. 914	. 8082024	6908	$46 \quad 18 \quad 23.72$	142.49	. 964	. 8421190	6659	48 I4 59.50	137.35
0.915	0.8088930		462046.16	142.38	0.965	0.8427846	6654	481716.80	137.25
.916	. 8095830	6898	$46 \quad 2308.49$	142.28	. 966	. 8434497	6649	48 19 33.99	137. 14
.917	. 8102726	68	$46 \quad 2530.72$	142.18	. 967	. 8441144	6644	48 21 51.09	137.04
.918	. 8109616	6888	462752.85	142.08	.958	. 8447785	6639	482408.08	136.94
. 919	. 8116502	6883	463014.87	141.97	. 969	. 8454422	6634	$48 \quad 2624.96$	I36.84
0.920	0.8123383	6878	463236.79	141.87	0.970	0.8461053	6629	482841.75	136.73
. 921	.813 0258	6873	463458.61	141.77	. 971	. 8467680	6624	483058.43	136.63
. 922	. 8137129	6858	463720.33	141.66	. 972	. 8474301	6619	4833 15.01	I36.53
. 923	. 8143994	6863	463941.94	141. 56	. 973	. 8480918	6614	48353 I .49	${ }_{1} 136.43$
. 924	. 8150855	6858	464203.45	141.46	-974	. 8487530	6609	483747.87	I 36.32
0.925	0.8157710	6853	464424.85	141.35	0.975	0.8494136	6604	484004.14	136.22
. 926	.816 4561	6848	464646.16	141.25	. 976	. 8500738	6599	484220.3 I	136.12
. 927	. 8171406	6843	$464907 \cdot 36$	I41.15	. 977	. 8507335	6594	484436.38	136.02
-928	. 8178247	6838	465128.45	141.05	-978	. 8513927	6589	484652.34	${ }_{1} 135.92$
. 929	.8185083	6833	465349.45	140.94	-979	. 8520514	6584	484908.21	135.81
0.930	0.819 1913	6828	46	140.84	0.980	0.8527096	6579		
. 931	.8198739 .820560	6823 6818	46 47 47 0	140.74 140.63	. 988	.8533673 .854 245	6574 6570	$\begin{array}{llll}48 & 53 & 39.63 \\ 48 & 55 & 55.19\end{array}$	I35.61 I35.51
. 932	.8205560 .8212375	6818 6813	$\begin{array}{llll}47 & 00 & 51.81 \\ 47 & \text { o3 } & 12.40\end{array}$	140.63 140.53	. 988	.8540245 .8546812	6570 6565	$\begin{array}{llll}48 & 55 & 55.19 \\ 48 & 58 \\ \text { 10.64 }\end{array}$	I35.51 I 35.40
. 934	. 8219186	6808	470532.88	140.43	. 984	. 8553374	6560	490026.00	135.30
0.935	0.8225992	6803	470753.25	140.33	0.985	0.8559931	6555	49024 i .25	135.20
. 936	. 8232792	67	47 Io 13.53	140.22	. 986	. 8566483	6550	490456.40	135. 10
-937	. 8239588	679	471233.70	140.12	. 987	. 8573030	6545	4907 II. 44	I 35.00
-938	. 8246379	678	471453.77	140.02	.988	. 8579573	6540	490926.39	134.89
. 939	. 8253164	6783	$47 \begin{array}{llll}47 & 13.74\end{array}$	139.91	. 989	. 858 6ı10	6535	49 II 41.23	134.79
0.940	0.8259945	6778	471933.60	139.8I	0.990	0.8592642	6530	491355.97	134.69
.94I	. 8266721	6773	472153.36	139.71	. 991	. 8599170	6525	491610.61	134.59
. 942	. 8273492	6768	$47 \quad 2413.02$	139.61	. 992	. 8605692	6520	491825.15	I 34.49
-943	. 8280257	6763	472632.57	139.50	. 993	.861 2210	6515	492039.58	134.38
. 944	. 8287018	6758	472852.02	139.40	. 994	. 8518723	6510	492253.92	134.28
0.945	0.8293774	6753	473111.37	139.30	0.995	0.8625230	6505		134.18
. 946	. 8300525	6748	473330.62	139.20	. 996	. 8631733	6500	492722.28	I35.08
. 947	. 8307271	6743	473549.76	139.09	. 997	. 8638231	6495	492936.30	133.98
. 948	. 8314012	6738	473808.80	138.99 I 38.89	. 998	. 8644724	6490	493150.23	133.87
-949	. 8320748	6733	474027.74	138.89	. 999	. 8651112	6485	493404.05	133.77
0.950	0.8327479	6728	474246.58	138.78	1.000	0.8657695	648 I	493617.77	133.67
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ws		$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	hu	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

Smithsonian tables

The Gudermannian.

u	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 000	0.8657695	648 I	$49^{\circ} 36^{\prime}$ I7." 77	$\begin{gathered} \text { " } \\ 133.6 \end{gathered}$	1.050	5576			
.00I	. 8664173	6476	4938 31.39	I 33.57	.051	. 89881809			
. 002	. 8670646	6471	494044.91	133.47	. 052	. 8988037	6225	5 I 2951.57	128.41
. 003	. 867 7114	6466	494258.33	133.37	. 053	.8994260	6221	513159.92	I28.3I
. 004	.8583578	6461	4945 II. 64	I 33.26	. 054	. 9000478	6216	5134 08.18	128.21
1.005	0.8690036	6456	494724.86	133.16	1.055	0.9006691	6211	515616.34	I28. 11
. 006	. 8796489	6451	494937.97	133.06	. 056	. 9012900	6206	513824.40	I28.01
. 007	. 8702938	6446	49 51 50.98	132.96	. 057	.901 9103	6201	514032.36	127.91
. 008	. 870 9381	6441	495403.89	I 32.86	. 058	. 8025302	6196	51 4240.21	127.8I
. 009	. 8715820	6436	4956 16.69	132.76	. 059	. 9031496	6191	514447.97	127.71
1.010	0.8722254	6431	$4958 \quad 29.40$	I32.65	1.060	0.9037685	6187	514655.63	127.6I
. OII	. 8728582	6426	500042.00	132.55	.0SI	. 9043869	6182	5149 03.18	127.51
. 012	.8735106	6421	500254.50	I 32.45	. 052	. 9050048	6177	515110.64	127.41
. 013	. 874 I525	6416	500506.90	I 32.35	. 063	. 9056222	6172	515318.00	127.3I
. 014	. 8747939	6412	500719.20	I32.25	. 064	. 9062392	6167	51 $55 \quad 25.25$	127.21
1.015	0.8754348	6407	500931.40	132.15	1.055	0.9068557	6162	5 I 5732.41	I27. II
. 016	. 8760752	6402	50 II 43.49	132.04	. 065	. 9074716	6157	51 5939.46	127.01
. 017	. 8767152	6397	50 I3 55.49	I3I. 94	. 057	. 9080871	6 6 53	52 OI 46.42	126.91
. 018	. 8773546	6392	$50 \quad 16 \quad 07.38$	131.84	. 058	. 9087022	6148	520353.27	126.8I
. 019	. 8779936	6387	5018 19.17	I31.74	. 069	. 9093167	6143	520600.03	126.71
1.020	0.8786320	6382	502030.86	131.64	1.070	0.9099307	6138	520806.68	126.6I
.02I	. 8792700	6377	502242.45	131.54	. 071	. 9105443	6133	52 10 13.24	126.51
. 022	. 8799074	6372	'50 2453.94	131.44	. 072	.911 1574	6128	52 I2 19.70	126.4I
. 023	. 8805444	6367	502705.32	131.34	. 073	.911 7699	6123	52 I4 26.05	126.3I
. 024	.881 1809	6362	5029 16.61	131.23	. 074	. 912382 I	6118	52 16 32.31	I26.21
I. 025	0.881 8169	6357	503127.79	131.13	1.075	0.9129937	6II4	$\begin{array}{llll}52 & 18 & 38.46\end{array}$	126.11
. 026	. 8824524	6353	$\begin{array}{lllll}50 & 33 & 38.87\end{array}$	131.03	. 076	. 9136048	6109	$52 \quad 2044.52$	126.01
. 027	.8830874	6348	503549.85	I 30.93	. 077	. 9142155	6104	522250.48	I25.9I
. 028	.8837219	6343	$5038 \quad 00.73$	I 30.83	. 078	. 9148256	6099	522456.33	I25.8I
. 029	.8843560	6338	5040 II.5I	130.73	. 079	. 9154353	6094	522702.09	125.71
1.030	0.8849895	6333	5042 22.19	130.63	1.080	0.9160445	6090	522907.75	125.6 I
. 031	. 8856226	6328	504432.76	130.53	.08I	. 9166532	6085	52 31 13.30	125.51
. 032	. 8862551	6323	504643.24	130.42	. 082	. 9172615	6080		125.41
. 033	. 8868872	6318	5048 53.6I	I30. 32	. 083	.917 8692	6075	5235124.12	I25.3I
. 034	. 8875188	6313	505103.89	130.22	. 084	.918 4765	6070	523729.38	125.21
1.035	0.8881499	6308	505314.06	130.12	1.085	0.9190833	6065	523934.54	I25. II
. 036	.8887805	6304	5055 24.13	130.02	. 086	. 9196896	6061	524139.60	I25.01
. 037	. 889 4106	6299	505734.10	129.92	. 087	. 9202954	6056	524344.56	124.91
. 038	.8900402	6294	505943.97	129.82	. 088	. 9209008	6051	524549.42	I24.8I
. 039	.8906693	6289	5 I O1 53.74	129.72	. 089	.921 5056	6046	5247 54.18	124.71
1.040	0.8912980	628	5I 0403.41	129.62	1.090	0.9221100	6041	524958.85	124.6I
. 041	. 8919262	6279	510612.98	129.52	.09I	. 9227139	6037	525203.41	124.51
. 042	. 8925538	6274	51 0822.44	129.42	. 092	.9233173	6032	525407.87	I24.4I
. 043	. 893 I810	6269	5 I 10 31.81	129.32	. 093	.923 9203	6027	525612.24	124.32
. 044	.8938077	6264	511241.07	129.2I	. 094	. 9245227	6022	5258 16.50	124.22
1.045	0.8944339	6260	5I I4 50.24	I29. II	1.095	0.9251247	6017	$53 \quad 0020.67$	124.12
. 046	. 8950596	6255	511659.30	129.01	. 096	.9257262	6013		124.02
. 047	. 8956848	6250	511908.26	128.91	. 097	. 9263272	6008	530428.70	123.92
. 048	.8963096	6245	512117.12	128.81	. 098	. 9269278	6003	$\begin{array}{lllll}53 & 06 & 32.57\end{array}$	123.82
. 049	.8969338	6240	512325.88	128.71	. 099	.9275278	5998	$\begin{array}{lllll}53 & 08 & 36.34\end{array}$	123.72
1.050	0.8975576	6235	512534.55	128.6I	1. 100	0.9281274	5993	53 10 40.01	123.62
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	w sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	sech	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u

Smithsonian tables

The Gudermannian.

u	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\text {n }}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 100	0.9281274	5993	53 10 40.01	123.6	I. 150	0.9574980	5756	545138.15	II8.72
. 101	. 9287265	5989	$531243 \cdot 59$	123.52	.15I	. 9580734	5751	545336.82	I 18.62
. 102	. 929 325I	5984	53 I4 47.06	123.42	. I52	. 9586482	5746	$\begin{array}{lllllllllllll}54 & 55 & 39\end{array}$	I 18.53
. 103	. 9299232	5979	531650.43	123.32	. 153	. 5592226	5742	545733.87	118.43
. 134	. 9305209	5974	53 I8 53.71	123.23	- 154	. 9597965	5737	545932.25	I 18.33
I. 105	0.931 II8I	5959	$53 \quad 2056.89$	123.13	I. I55	0.9603 .700	5732	55 OI 30.53	II8.23
. 106	.931 7148	5965	532259.96	123.03	. 156	. 9609430	5727	550328.72	I18.14
. 107	. 932 3110	5960	$\begin{array}{llllll}53 & 25 & 02.94\end{array}$	122.93	. 157	. 9615155	5723	550526.81	I 18.04
. 108	. 9329067	5955	532705.82	122.83	. 158	. 9520875	5718	550724.80	II7.94
. 109	. 9335020	5950	$53 \quad 2908.60$	122.73	- 159	. 9626591	5713	550922.69	II7.85
I.IIO	0.9340968	5945	53 3I II. 29	122.63	1. 160	0.9632302	5709	55 II 20.49	II7.75
. III	. 934 691I	5941	533313.87	122.54	. 161	. 9638008	5704	55 I3 18.19	117.65
. I	. 9352849	5936	$\begin{array}{llllllllllllllllllll}53 & 35 & 16.36\end{array}$	I22.44	. 162	. 9643710	5699	55 15 15.80	117.56
. II3	. 9358782	593 I	$\begin{array}{llllllllllll}53 & 37 & 18.75\end{array}$	122.34	. 163	. 9649407	5695	55 I7 13.31	117.46
. II4	. 93647 II	5926	5339 21.03	122.24	. 164	. 9655099	5690	55 I9 10.72	117.36
I.II5	0.9370635	5922	534123.22	122.14	I. 165	0.9660787	5685	552108.04	II7.27
. 116	. 9376554	5917	$5343 \quad 25.32$	122.04	. 166	. 9666470	5681	552305.26	117.17
. 117	. 938.2469	5912		122.94	. 167	.9672148	5676	$\begin{array}{llllllllllll}55 & 25 & 02.38\end{array}$	117.07
. 118	. 9388378	5907	$\begin{array}{lllll}53 & 47 & 29.21\end{array}$	121.85	. 168	.9677822	5671	552659.41	116.98
. 119	. 9394283	5902	5349 31.00	121.75	. 169	. 968 349I	5667	$\begin{array}{lllllllllllll}55 & 28 & 56.34\end{array}$	116.88
1.120	0.940 0I83	5	53 51 32.70		I. I70	0.9689155	5662	$55 \quad 3053.17$	116.79
. 12 I	. 9406079	5893	$\begin{array}{lllll}53 & 53 & 34 \cdot 30\end{array}$	I2I. 55	. 171	. 9694815	5657	$\begin{array}{lllll}55 & 32 & 49.91\end{array}$	116.69
. 1	.94I 1969	5888	$\begin{array}{llllllllll}53 & 55 & 350\end{array}$	121.45	. 172	. 9700470	5653	553446.55	I16. 59
. I23	. 9417855	5883		121. 35	. 173	. 970 6I20	5648	55	I 16.50
. 124	. 9423736	5879	535938.51	121.26	. 174	.971 1766	5643	$\begin{array}{llll}55 & 38 & 39.54\end{array}$	I 16.40
I. 125	0.9429613	5874	54 OI 39.72	121.16	I. 175	0.9717407	5639	554035.90	116.31
. 126	. 9435484	5869	540340.83	121.06	. 1.76	. 9723043	5634	5542 32.16	116.21
. 1	. 944 I35I	5864	540541.84	120.9	. 177	. 9728675	5629	554428.32	II6. II
. I	-944 72I3	5860	540742.76	120.86	. 178	. 9734301	5625	$5546 \quad 24.38$	116.02
. 129	-945 3070	5855	$540943 \cdot 57$	120.77	. 179	. 9739924	5620	554820.35	I 15.92
1. I30	0.9458923	5850	54 II 44.29	120.67	I. 180	0.9745542	5615	$55 \quad 5016.22$	115.83
.131	. 9464771	5845	54 I3 44.91	I20.57	. 181	. 9751155	5611	$55 \quad 5212.00$	II5.73
. 132	. 947 06I4	584 I	54 I5 45.43	120.47	. 182	.9756763	5606	555407.68	115.63
. I33	- 9476452	5836	54 I7 45.86	120.38	. 183	. 9762367	5601	$55 \quad 5603.27$	II5.54
. 134	. 9482286	5831	54 I9 46.18	120.28	. 184	. 9767966	5597	555758.76	II5.44
I. 135	0.948 8II5	5826	54 21 46.41	120.18	I. 185	0.9773560	5592	5559 54.15	I15.35
.136	. 9493939	5822	542346.54	120.08	. 186	. 977 9150	5588	56 O1 49.45	II5.25
. 137	- 9499758	5817	$\begin{array}{llll}54 & 25 & 46.58\end{array}$	I 19.98	. 187	. 9784735	5583	56	II5.16
. 138	-950 5573	5812	542746.51	119.89	. 188	. 9790316	5578	560539.76	II5.06
. 139	-951 I383	5807	542946.35	119.79	. 189	. 9795892	5574	560734.78	114.96
1. 140	0.9517188	5803	54 3I 46.09	I 19.69	I. 190	0.980 I463	5569	$56 \quad 0929.69$	II4.87
. 141	. 952 2588.	5798	543345.74	119.59	. I9I	. 9807030	5564	56 II 24.51	114.77
. 142	. 9528784	5793	543545.28	119.50	. 192	.98I 2592	5560	56	I I 4.68
. 143	-953 4575	5789	543744.73	119.40	- 193	.98i 8i49	5555	561513.87	I I 4.58
. I44	. 954 036I	5784	543944.08	I 19.30	. 194	.9823702	555 I	56 I7 08.4I	I 14.49
I. I45	0.9546143	5779	54 41 43.34	I 19.21	I. 195	0.9829251	5546	56 I9 02.85	II4.39
. 146	. 9551920	5775	544342.49	II9.1I	. 196	. 9834794	5541	5620 57.19	II 4.30
. 147	. 9557692	5770	54454 I .55	119.01	. 197	. 9840333	5537	562251.44	I I4.20
. I48	. 9563460	5765	544740.51	I 18.91	. 198	.984 5858	5532	562445.60	II4. I I
. 149	-956 9222	5760	544939.38	II8.82	. 199	. 985 I397	5527	562639.66	II4.0I
I. 150	0.9574980	5756	545138.15	118.72	I. 200	0.9856922	5523	$56 \quad 2833.62$	113.92
u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$\mathrm{an}^{-1}\left(e^{\mathrm{x}}\right)-\frac{\pi}{2}$	h	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\text {f }}$	u	gd u	$\omega \mathrm{F}^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 200	0.		$56^{\circ} 28^{\prime} 33.162$	I 13.		1.012 7356		$0^{\circ}{ }^{\prime}{ }^{\prime \prime}$	
. 201	. 9862443	5518	$56 \quad 3027.49$	II3.82	. 251	.OI3 2649	5291	580320.89	
. 202	. 9867959	5514	5632 21. 26	113.73	. 252	. 0137938	5286	$\begin{array}{lllll}58 & 05 & 09.98\end{array}$	109.04
. 203	.9873470	5509	563.414 .94	113.63	. 253	. O14 3222	5282	580658.98	108.95
. 204	. 9878977	5504	563608.53	II3.54	. 254	. 0148502	5277	580847.88	108.86
I. 205	0.9884479	5500	563802.02	113.44	I. 255	I.OI5 3777	5273	58 10 36.69	108.76
. 206	. 9889977	5495	563955.42	II3.35	. 256	. 0159048	5269	58 12 25.40	108.67
. 207	. 9895470	5491	564148.72	II3.25	. 257	.016 4314	5264	581414.03	108.58
. 208	.9900958	5486	5643 41.92	113.16	. 258	.016 9576	5260	$58 \quad 1602.56$	108.49
. 209	. 9906442	5482	564535.03	II3.06	. 259	. 0174833	5255	58 I7 51.00	108.39
1. 210	0.991 1921	5477	564728.05	112.97	1.260	1.018 0086	5251	58 19 39.35	108.30
. 211	. 9917396	5472	564920.97	I 12.88	. 261	. 0185335	5246	58 21 27.61	108.21
. 212	. 9922866	5468	565113.80	I 12.78	. 262	. 0190578	5242	$\begin{array}{lllllllllllllll}58 & 23 & 15.77\end{array}$	108.12
. 213	. 9928331	5463	565306.54	I12.69	. 263	. 0195818	5237		108.03
. 214	.9933792	5459	5654 59.17	I 12.59	. 264	. 0201053	5233	582651.82	107.93
1.215	0.9939249	5454	565651.72	I 12.50	I. 265	I. 0206283	5228	$58 \quad 2839.71$	107.84
. 216	. 9944700	5449	565844.17	I 12.40	. 266	.021 1510	5224	$58 \quad 3027.50$	107.75
. 217	. 9950148	5445	570036.53	I I2.3I	. 267	.021 673I	5219	5832 I5.21	107.66
. 218	. 9955590	5440	$\begin{array}{llll}57 & 02 & 28.79\end{array}$	I 12.22	. 268	.0221948	5215	$\begin{array}{lllllllllllll}58 & 34 & 02.82\end{array}$	107.57
. 219	. 9961028	5436	570420.96	I12.12	. 269	.022716 I	5210	583550.34	107.47
1.220	0.9966462	5431	570613.03	112.03	1.270	1.023 2369	5206	$\begin{array}{llll}58 & 37 & 37.77\end{array}$	107.38
. 22I	. 997 I891	5427	570805.01	III. 93	. 271	.0237573	5202	583925.10	107.29
. 222	. 997 7315	5422	570956.90	III. 84	. 272	.0242772	5197	58 41 I2.35	107.20
. 223	. 9982735	5418	57 II 48.69	III. 74	. 273	. 0247967	5193	584259.50	107. 11
. 224	. 998 8150	5413	57.1340 .39	III. 65	. 274	. 025 3I58	5188	584446.56	107.02
1.225	0.999356 I	5408	57 I5 31.99	III. 56	1.275	I. 0258344	5184	584633.53	106.92
. 226	. 9998967	5404	57 I7 23.50	II I . 46	. 276	. 0263526	5179	5848 20.41	106.83
. 227	I.000 4369	5399	57 I9 14.92	III. 37	. 277	.0268703	5175	$58 \quad 5007.20$	106.74
. 228	. 0009766	5395	57 21 06.24	III. 28	. 278	.0273876	5171	585153.90	106.65
. 229	. OOI 5I58	5390	572257.47	III. 18	. 279	.0279044	5166	585340.50	106.56
1.230	1.002 0546	5386	572448.60	II I . 09	I. 280	I. 0284208	5162	$5855 \quad 27.02$	106.47
. 231	. 0025930	538 I	572639.64	I 10.99	. 281	. 0289367	5157	$\begin{array}{llllllll}58 & 57 & 13.44\end{array}$	106.38
. 232	. 0031309	5377	$57 \quad 2830.59$	110.90	. 282	. 0294523	5153		106.29
. 233	. 0036683	5372	57302 I .45	I 10.8I	.283	.0299673	5148	590046.01	106. 19
. 234	. 0042053	5368	5732 12.2I	110.71	. 284	.0304819	5144	590232.16	106. 10
1.235	1.0047418	5363	$57 \quad 3402.88$	110.62	1. 285	1.0309961	5140	590418.22	106.01
. 236	. 0052779	5359	$57 \quad 35 \quad 53.45$	110.53	. 286	.031 5099	5135	590604.19	105.92
. 237	. 005 8ı35	5354	573743.93	110.43	. 287	.0320232	5131	590750.06	105.83
. 238	. 0063487	5349	$573934 \cdot 32$	110.34	. 288	.0325360	5126	590935.85	105.74
. 239	. 0068834	5345	574124.6 I	110.25	. 289	.0330485	5122	59 II 2I. 54	105.65
I. 240	1.0074177	5340	574314.82	110.15	1.290	1.0335605	5118	59 I3 07.15	105.56
. 241	. 0079515	5336	$57 \quad 4504.92$	110.06	. 291	. 0340720	5113	591452.66	105.47
. 242	. 0084840	5331	574654.94	109.97	. 292	.0345831	5109	59 16 38.08	105.38
. 243	. 009 0178	5327	574844.86	109.88	. 293	.0350938	5104	59 I8 23.4I	105.29
. 244	. 0095503	5322	575034.69	109.78	. 294	.0356040	5100	592008.66	105.20
1.245	I. 10100823	5318	575224.43	109.69	I. 295	1.036 II38	5096	59 21 53.81	105. 11
. 246	. 0106139	5313	575414.07	109.60	. 296	. 036 623I	5091	$\begin{array}{lllll}59 & 23 & 38.87\end{array}$	105.02
.247	.OII 1450	5309	5756	109.50	. 297	. 0371320	5087	$\begin{array}{llll}59 & 25 & 23.84\end{array}$	104.93
. 248	. OII 6756	5304	575753.08	109.41	. 298	. 0376405	5083	$\begin{array}{llll}59 & 27 & 08.72 \\ 59 & 28 & 53.51\end{array}$	104.83
. 249	. 0122058	5300	575942.44	109.32	. 299	.0381485	5078	5928 53.5I	104.74
1.250	1. OI 27356	5295	58 OI 31.72	109.23	1.300	1.0386561	5074	593038.21	104.65
u	$2 \tan ^{-1}\left(e^{4}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

SMITHSONIAN TABLES

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	od u	${ } \mathrm{F}_{0}{ }^{\prime}$	a	du	$\omega \mathrm{F}_{0}{ }^{\prime}$	ad u	${ }^{\prime}{ }_{0}{ }^{\prime}$
1.300	1.038 6561		$5930 \quad 38.21$	104.65	1.350	1.0634837	4858	$60^{\circ} 55 \quad 59.27$. 21
301	. 0391633	506	593222.82		. 35	. 06	4854	605739.43	100.12
. 302	. 0396700	5065	593407.34	104.47	. 352	. 0644546	4850	6059 19.51	100.03
. 303	. 0401763	5061	5935 51.77	104.38	. 353	. 0649393	4846	610059.50	99.95
-304	. 0406822	5056	5937 36.10	104.29	- 354	. 0654237	4841	610239.41	99.86
I. 305	1.041 1876	5052	593920.35	104.20	I. 355	1. 0659076	4837	61 0419.22	99.77
. 30	.041 6926	5048	5941 04.51	104.II	. 356	. 0663911	4833	61 0558.95	99.69
. 3	. 0421971	5043	594248.58	104.02	. 357	. 0668742	4829	61 0738.59	99.60
. 308	. 0427012	5039	594432.56	103.93	. 358	. 0673568	4824	610918.15	99.
. 309	. 0432049	5035	594616.45	103.84	- 359	. 0678390	4820	61 10 57.61	99.42
1.310	I. 043 7081	5030	594800.25	103.76	1. 360	I. 0683209	4816	611236.99	99.34
. 311	. 0442109	5026	594943.96	103.67	. 361	. 0688022	4812	611416.29	99.25
. 312	. 0447133	5021	595127.58	103.58	. 362	. 0692832	4808	611555.49	. 16
.313	. 0452152	5017	5953 II.11	103.49	. 363	. 0697637	4803	611734.61	99.08
. 314	. 0457167	5013	5954 54.55	103.40	. 364	. 0702439	4799	611913.64	98.99
1.315	1.0462178	5008	595637.91	103.31	1. 365	1. 0707236	4795	612052.59	
. 316	. 0467184	5004	595821.17	103.22	. 366	. 0712028	4791	612231.45	82
. 317	. 0472186	5000	600004.34	103.1	- 367	. 071 6817	4786	612410.22	73
. 318	. 0477184	4995	60 or 47.43	103.04	- 368	. 0721601	4782	$\begin{array}{llll}61 & 25 & 48.90\end{array}$	98.64
. 319	. 0482177	4991	600330.42	102.95	. 369	. 0726382	4778	612727.50	
1.320	1.0487166	4987	600513.33	102.86	1. 370	1.0731158	4774	61 2906.01	8.47
. 321	. 0492151	4983	60 o6 56.14	102.77	. 371	. 0735929	4770	613044.44	98.38
. 322	. 049 7131	4978	600838.87	102.6	. 372	. 0740697	4766	613222.78	98.30
. 323	. 0502107	4974	601021.51	102.59	-373	. 0745460	4761	6134 or. 03	98.21
. 324	. 0507079	4970	601204.06	102.50	- 374	. 0750220	4757	613539.20	98.12
I. 325	1.0512046	4965	60 I3 46.52	102	I. 375	1. 0754975	4753	613717.28	98.04
. 326	. 0517009	4961	$6015 \quad 28.89$	102.	. 376	. 0759725	4749	613855.27	97.95
. 327	. 0521968	4957	601711.17	102.24	. 37	. 0764472	4745	614033.18	97.86
. 3	. 0526923	4952	601853.37	102.15	. 378	. 0769215	4740	6142 II .00	97.78
. 329	. 0531873	4948	602035.47	102.06	-379	. 0773953	4736	61 4348.73	
1.330	1.0536819	4944	602217.49	101	I. 380	1. 0778687	4732	61 4526.38	97.61
. 33 I	. 0541760	4939	602359.4 I	101.8	. 381	. 0783417	4728	614703.94	97.52
- 3	. 0546698	493	602541.25	101. 79	. 382	. 0788143	4724	614841.42	97.43
-33	.0551631	493	602723.00	101. 71	-383	. 0792865	4720	615018.81	$97 \cdot 35$
- 3	. 055	4927	$60 \quad 2904.67$	101. 62	-384	. 0797582	4715	615156.12	97
1.335	1.0561484	4922	603046.24	IOI. 53	I. 385	1.0802295	47 II	61 5333.34	97.18
. 33	. 0566404	4918	603227.72	101. 4	. 386	. 0807005	4707	6155 10.47	97.09
- 337	. 0571320	4914	603409.12	101. 35	-387	.081 1710	4703	615647.52	97.01
. 338	. 0576231	4909	603550.43	101. 26	-388	.081 6411	469	615824.48	96.92
. 339	. 0581139	4905	603731.65	IoI. 18	-389	. 0821107	4695	6200 or. 36	96.83
1.340	1.0586042		6039 12.78	101.09	I. 390	1.082 5800	4691	62 or 38.15	96.75
. 341	. 0590940	4897	604053.83	101.00	-391	. 0830488	4686	620314.86	96.66
. 342	. 0595835	4892	604234.78	100.91	. 392	. 8835173	4682	620451.48	96.58
- 343	. 0600725	4888	604415.65	100	- 393	. 0839853	4678	620628.01	96.49
- 344	. 060 5611	48	6045 56.43	100.	- 394	. 0844529	4674	620804.46	96.41
I. 345	1.061 0493	4880	604737.12	100.65	I. 395	1.0849201	4670	620940.83	96.32
. 346	.061 5370	4875	6049 17.73	100.56	. 396	. 0853868	4666	62 II 17.11	96.24
. 347	. 0620243	4871	605058.24	100.47	. 397	. 0858532	4662	621253.30	96.15
. 348	. 0625112	4867	605238.67	100.38	. 398	. 0863192	4657	621429.41	96.07
- 349	. 0629977	4863	6054 19.01	100.30	-399	. 0867847	4653	621605.44	95.98
1. 350	1.063 4837	4858	605559.27	100.21	I. 400	1.0872498	4649	621741.37	95.90
u	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(e^{40}\right)-90^{\circ}$	w sech u		$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	w sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	w sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1. 400	1.087249	4	62 I7 41.37	95.90	1. 450	I. 1099869	4447	6335 51.24	91.72
. 401	. 0877145	4645	62 I9 I7.23	95.8I	.45I	. IIO 4314	4443	$63 \quad 3722.92$	91.64
. 402	. 088 I788	464 I	$62 \quad 2053.00$	95.73	. 452	. IIO 8755	4439	6338 54.52	91.56
. 403	. 0886427	4637	$\begin{array}{llll}62 & 22 & 28.68\end{array}$	95.64	. 453	. III 3192	4435	634026.03	91.47
. 404	.0891062	4633	622404.28	95.56	. 454	. III 7624	4431	63 41 57.46	91.39
I. 405	I. 0895693	4629	622539.80	95.47	I. 455	I. II2 2053	4427	$63 \quad 43 \quad 28.82$	91.3I
. 406	. 0900320	4625	$62 \quad 2715.23$	95.39	. 456	. II2 6478	4423	634500.08	91.23
. 407	. 0904942	4620	622850.58	95.30	. 457	. II3 0899	4419	6346 31.27	91. 15
. 408	. 0909561	4616	623025.84	95.22	. 458	.113 5316	4415	634802.38	91.07
. 409	. 0914175	4612	6232 O1. 02	95.14	. 459	. II3 9729	44 II	634933.40	90.98
1.410	I.091 8785	4608	6233 36.II	95.05	I. 460	I.II4 4138	4407	63 51 04.35	0.90
.41I	. 0923391	4604	6235 II. 12	94.97	. 46 I	. II4 8543	4403	635235.2 I	90.82
. 412	. 0927993	4600	623646.04	94.88	. 462	. II5 2944	4399	635405.99	90.74
. 413	. 0932591	4596	623820.88	94.80	. 463	. 1157341	4395	635536.68	90.66
. 414	. 0937185	4592	623955.64	94.71	. 464	. II6 I734	4391	635707.30	90.58
1.415	1.0941775	4588	624130.31	94.63	I. 465	I. 1166124	4387	$63 \quad 58 \quad 37.83$	90.49
.416	. 0946361	4584	624304.90	94.55	. 466	. II7 0509	4383	640008.29	90.41
. 417	. 0950942	4580	624439.40	$94 \cdot 46$. 467	. II7 4890	4379	64 O1 38.66	90.33
. 418	. 0955520	4576	624613.82	94.38	. 468	. II7 9268	4375	640308.95	90.25
.419	. 0960094	4571	624748.16	94.29	. 469	. II8 364I	4372	6404 39.16	90.17
I. 420	1.096 4663	45	624922.41	94.21	I. 470	I. 118801 r	4368	640609.29	. 09
. 42 I	. 0969228	4563	625056.58	94.13	. 471	. II9 2377	4364	640739.34	OI
. 422	. 0973790	4559	625230.66	94.04	. 472	. 1196738	4360	640909.31	89.93
. 423	. 0978347	4555	625404.66	93.96	. 473	. 1201096	4356	64 10 39.19	89.85
. 424	. 0982900	4551	625538.58	93.88	. 474	. 1205450	4352	64 12 09.00	89.76
I. 425	1. 0987449	4547	625712.41	93.79	I. 475	I. 1209800	4348	$64 \quad 13 \quad 38.72$	89.68
. 426	. 0991994	4543	625846.16	93.71	.476	. 1214146	4344	641508.37	89.60
. 42	. 0996536	4539	630019.83	93.62	. 477	. 1218488	4340	641637.93	89.52
. 428	. 1001073	4535	63 or 53.41	93.54	. 478	. 1222826	4336	6418 07.41	89.44
. 429	. 1005606	4531	6303 26.91	93.46	. 479	. 122 716I	4332	64 I9 36.8I	89.36
I. 430	I. IOI Or34	4527	630500.33	93.37	I. 480	I. 123 I491	4328	64 21 06. 13	89.28
. 43 I	. IOI 4659	4523	630633.66	93.29	. 48 I	. 1235818	4325	$64 \quad 2235.37$	89.20
. 432	. IOI 9180	4519	630806.91	93.21	. 482	. 124 OI40	432 I	$64 \quad 2404.53$	89.12
. 433	. 1023697	4515	630940.08	93.13	. 483	. 1244459	4317	642533.61	89.04
. 434	. 1028210	45 II	63 II I3.16	93.04	. 484	. 1248774	4313	6427 02.6I	88.06
I. 435	1. 1032719	4507	63 12 46.16	92.96	I. 485	I. 1253085	4309	$64 \quad 2831.53$	8.88
. 436	. 1037223	4503	63 I4 19.08	92.88	. 486	. 1257392	4305	643000.37	88.80
. 43	. 1041724	4499	63 I5 51.91	92.79	. 487	. 1261695	4301	64 31 29.13	88.72
. 438	. 1046221	4495	63 I7 24.66	92.71	. 488	. 1265994	4297	643257.81	88.64
. 439	. 1050714	449 I	63 I8 57.33	92.63	. 489	. 1270289	4293	643426.41	88.56
1.440	I. 1055202	4487	$63 \quad 20 \quad 29.92$	92.54	I. 490	I. 127458 I	4290	$6435 \quad 54.93$	88.48
. 441	. 1059687	4483	$63 \quad 2202.42$	92.46	. 491	. 1278869	4286	$6437 \quad 23.37$	88.40
. 442	. 1064168	4479	$\begin{array}{lllll}63 & 23 & 34.84\end{array}$	92.38	. 492	. 1283152	4282	6438 51.72	88.32
. 443	. 1068644	4475	6325 07.18	92.30	. 493	. 1287432	4278	644020.00	88.24
. 444	. 107 3117	4471	$63 \quad 2639.44$	92.21	. 494	. 1291708	4274	64 4I 48.20	88.16
I. 445	I. 1077586	4467	6328 II. 61	92.13	I. 495	I. 1295980	4270	644316.32	88.08
. 446	. 1082050	4463	632943.70	92.05	. 496	. I30 0249	4266	644444.36	88.00
. 447	. 10865 II	4459	63 31 15.71	91.97	-497	. I30 45I3	4263	$64 \quad 4612.32$	87.92
. 448	. 1090968	4455	$63 \quad 3247.63$	91.88	. 498	. I30 8774	4259	644740.20	87.84
. 449	. 109542 I	4451	633419.48	91.80	. 499	. I3I 303I	4255	6449 08.01	87.76
1.450	I. 1099869	4447	633551.24	91.72	1.500	I.I3I 7283	4251	$64 \quad 5035.73$	87.68
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	hu	$2 \boldsymbol{\operatorname { t a n }}^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$\operatorname{an}^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	sech

SMITHSONIAN TABLES

The Gudermannian.

u	gd u	$\omega \mathrm{F}$	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 500	I.I3I 7283	425 I	$64 \quad 50 \quad 35.73$	87.68	I. 550	I. 1525078	4062	660201.8 I	83.78
. 501	.132 I532	4247	$64 \quad 52 \quad 03.37$	87.60	. 551	. 1529139	4058	$\begin{array}{llll}66 & 03 & 25 \cdot 55\end{array}$	83.71
. 502	. 132 5778	4243	$6453 \quad 30.93$	87.52	. 552	. 153 3195	4055	660449.22	83.63
. 503	. 1330019	4239	645458.42	87.44	. 553	- 1537248	4051	6606 I2.8I	83.55
. 504	. I33 4257	4236	645625.82	87.37	- 554	. 1541297	4047	660736.33	83.48
I. 505	I. I33 8490	4232	645753.15	87.29	I. 555	I. I54 5342	4043	660859.77	83.40
. 506	. I34 2720	4228	645920.40	87.21	. 556	. I54 9384	4040	66 Io 23.14	83.33
. 507	. I34 6946	4224	$650047 \cdot 56$	87.13	- 557	. 155342 I	4036	66 II 46.42	83.25
. 508	. 1351168	4220	6502 I4.65	87.05	- 558	. I55 7456	4032	66 I3 09.63	83.17
. 509	. 1355387	4216	650341.66	86.97	- 559	. 156 I486	4029	66 I4 32.77	83.10
1.510	I. 1359601	4213	$\begin{array}{llll}65 & 05 & 08.59\end{array}$	86.89	I. 560	I. 1565513	025	66 I5 55.83	83.02
. 511	. 13638 I 2	4209	650635.44	86.81	. 56 I	. 1569536	4021	66 I7 18.81	82.95
. 512	. 1368019	4205	650802.22	86.73	. 562	. 1573556	4018	66 I8 41.72	82.87
. 513	. 137 2222	4201	650928.91	85.66	. 563	.157 7571	4014	662004.55	82.79
. 514	. 137642 I	4197	65 10 55.53	86.58	. 564	. 1581583	4010	66 21 27.3 I	82.72
I.515	I. 1380617	4	651222.07	86.50	I. 565	I. 1585592	007	662249.99	82.64
. 516	. 1384808	41	65 I3 48.52	86.42	. 566	. 1589597	4003	$66 \quad 2412.59$	82.57
. 517	. 1388896	4186	65 I5 14.91	86.3	. 567	. 1593598	3999	$66 \quad 25 \quad 35.12$	82.49
. 518	. 1393180	4182	651641.21	86. 26	. 568	. 1597595	3996	$66 \quad 26 \quad 57 \cdot 57$	82.42
. 519	. I39 7360	4178	65 I8 07.43	86. 18	. 569	. 1601589	3992	662819.95	82.34
I. 520	I. I40 I537	4175	65 19 33.58	86.	1.570	I. 1605579	3988	662942.25	82.26
. 521	. 1405709	4171	$65 \quad 20 \quad 59.64$	86.03	. 571	. 1609566	3985	663104.48	82.19
. 522	. 1409878	4167	$\begin{array}{llll}65 & 22 & 25.63\end{array}$	85.95	. 572	. 1613548	398I	663226.63	82.11
. 523	. I4I 4043	4163	$65 \quad 2351.54$	85.87	. 573	.161 7527	3977	663348.71	82.04
. 524	.14I 8205	4159	$65 \quad 2517.38$	85.79	. 574	.162 1503	3974	6635 10.71	81.96
I. 5	I. 142	415	$65 \quad 2643.13$	85.72	I. 575	1.162 5475	0	663632.63	81. 89
. 526	. 1426516	415	$65 \quad 28$ 08.81	85.64	. 576	. 1629443	3966	$6637 \quad 54.48$	81.8I
. 5	. I43 0666	4148	652934.41	85.5	. 577	. 1633408	3963	663916.26	81.74
. 528	. I43 48I2	4144	653059.93	85.48	. 578	. 1637369	3959	664037.96	8ı. 66
. 529	. I438954	4141	$65 \quad 32 \quad 25.37$	85.40	- 579	. I64 I326	3955	664159.58	8I. 59
1.530	I. I44	4137	$\begin{array}{llll}65 & 33 & 50.74\end{array}$	85.33	1.580	I. 164 5279	3952	6643 2I.I3	8 I .5 I
. 531	. I44 7228	4 I 33	653516.02	85.25	. 581	. 164 9230	3948	6644 42.6I	8 I .44
. 532	. 145 I359	4129	653641.23	85.17	. 582	.1653176	3945	6646 04.01	8ı. 36
. 533	. 1455486	4125	$\begin{array}{lllll}65 & 38 & 06.37\end{array}$	85.09	. 583	.1657119	3941	$6647 \quad 25 \cdot 33$	8I. 29
. 534	. 1459610	4122	653931.42	85.02	. 584	. 1661058	3937	664846.58	8I. 21
I. 535	1.146 3730	4118	654056.40		I. 585	I. 1664993	934	665007.76	8I. 14
. 536	. I46 7846	4 II 4	6542 21.30	84.86	. 586	. 1668925	3930	66 51 28.86	8ı.06
. 537	. 1471958	4110	654346.12	84.78	. 587	. 1672854	3926	665249.89	80.99
. 538	. 1476067	4107	654510.87	84.71	. 588	. 1676778	3923	665410.84	80.92
. 539	. 148 OI72	4103	$654635 \cdot 54$	84.63	. 589	. 1680699	3919	665531.72	80.84
I. 540	I. I48 4273	4099	6548 00.13	84.55	I. 590	I. 1684617	3916	$6656 \quad 52.52$	80.77
. 54 I	. 1488370	4095	654924.64	84.48	. 591	. 168853 I	3912	$66 \quad 5813.25$	80.69
. 542	. I49 2464	4092	$65 \quad 5049.08$	84.40	. 592	. 169 244I	3908	665933.91	80.62
. 543	. I49 6554	4088		84.32	- 593	. 1696348	3905	670054.49	80.54
. 544	. I50 0640	4084	655337.72	84.25	- 594	. 1700251	3901	670215.00	80.47
I. 545	I.I50 4722	4081	65 '55 OI. 93	84.17	I. 595	I.I70 4150	3898	$6703 \quad 35.43$	80.40
. 546	. 1508801	4077	655626.06	84.09	. 596	. 1708046	3894	670455.79	80.32
. 547	- I5I 2876	4073	6557 50.11	84.01	- 597	. 1711938	3891	670616.07	80.25
. 548	. I5I 6947	4069	6559 14.08	83.94	. 598	-I7I 5827	3887	670736.28	80.17
. 549	. 152 IOI5	4066	660037.98	83.86	- 599	. 1719712	3883	670856.42	80.10
I .550	I. 1525078	4062	6602 or. 8 I	83.78	1.600	I. I72 3594	3880	671016.48	80.03
u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-90^{\circ}$	ω s	u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime \prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$
1. 600	I. I72 3594	3880	$67^{\circ} 10^{\prime} 16.48$	80.03	1.650	1.191 3170	3704	$68^{\circ} 15^{\prime} 26^{\prime \prime} 76$	76.41
. 601	.172 7472	3876	67 II 36.47	79.95	. 651	. 191 6872	3701	68 16 43.13	76.34
. 602	. 1731346	3873	67 I2 56.39	79.88	. 652	. 192057 I	3697	68 I7 59.44	76.27
. 603	. 173 5217	3869	67 I4 16.23	79.81	. 653	. 1924267	3694	68 19 15.67	76.20
. 604	. 1739084	3865	67 I5 36.00	79.73	. 654	. 1927960	3691	682031.83	76.12
1.605	I. 1742948	3862	67 16 55.69	79.66	1.655	I. 1931648	3687	68 21 47.92	76.05
. 606	. 1746808	3858	67 18 15.31	79.58	. 656	. 1935334	3684	$68 \quad 2303.93$	75.98
. 607	. 1750665	3855	67 19 34.86	79.51	. 657	. 1939016	3680	$68 \quad 2419.88$	75.91
. 608	. 1754518	385 I	$67 \quad 2054 \cdot 34$	79.44	. 658	. 1942695	3677	682535.76	75.84
. 609	. I75 8367	3848	6722 I3.74	79.36	. 659	. 1946370	3674	6826 5I. 57	75.77
1.610	I. 1762213	3844	672333.07	79.29	1. 660	I. 1950042	3670	$68 \quad 28 \quad 07.30$	75.70
.6II	. 1766056	3841	672452.32	79.22	. 661	. 1953710	3667	$68 \quad 2922.97$	75.63
. 612	. 1769895	3837	6726 I1.50	79.15	. 662	. 1957375	3663	683038.56	75.56
.613	. 1773730	3834	672730.61	79.07	. 663	. 1961037	3660	683154.09	75.49
.6I4	. 1777562	3830	672849.65	79.00	. 664	. 1964695	36.56	683309.54	75.43
1.6I5	I. 1781390	3826	673008.61	78.93	1. 665	I. 196 8349	3653	$6834 \quad 24.93$	75.36
. 616	.178 5215	3823	673127.50	78.85	. 666	. 1972001	3650	683540.24	75.29
. 617	. 1789036	3819	673246.32	78.78	. 667	. 1975649	3646	683655.49	75.22
. 618	. 1792853	3816	673405.06	78.71	. 668	. 1979293	3643	$68 \quad 3810.66$	75.15
. 619	. 1796667	3812	$6735 \quad 23.73$	78.63	. 669	. 1982935	3639	683925.77	75.08
1.620	I. 180 0478	3809	673642.33	78.56	1.670	I. 198 6572	3636	684040.80	75.01
. 621	. 1804285	3805	673800.86	78.49	. 671	. 1990207	3633	684155.77	74.94
. 622	. 1808089	3802	6739 19.31	78.42	. 672	. 1993838	3629	684310.66	74.87
. 623	. 1811889	3798	674037.69	78.34	. 673	. 1997465	3626	684425.49	74.80
. 624	. 1815685	3795	67 4I 56.00	78.27	. 674	. 2001090	3623	684540.24	74.72
1. 625	I. 181 9478	3791	674314.24	78.20	1.675	I. 20047 II	3619	684654.93	74.65
. 626	. 1823268	3788	674432.40	78.13	. 676	. 2008328	3616	684809.55	74.58
. 627	. 1827054	3784	$6745 \quad 50.49$	78.06	. 677	. 2011942	3612	684924.09	$74 \cdot 5 \mathrm{I}$
. 628	. 1830836	3781	674708.51	77.98	. 678	. 2015553	3609	685038.57	74.44
. 629	. 1834615	3777	674826.46	77.91	. 679	. 2019160	3606	68 5I 52.98	$74 \cdot 37$
1.630	I. 1838390	3774	674944.33	77.84	1.680	I. 2022764	3602	685307.32	$74 \cdot 30$
. 631	. 1842162	3770	675102.13	77.77	.68I	. 2026365	3599	6854 21.58	74.23
. 632	. 184593 I	3767	675219.85	77.69	. 682	. 2029962	3596	685535.78	74.17
. 633	. 1849696	3763	675337.52	77.62	. 683	. 2033556	3592	685649.92	74.10
. 634	. 1853457	3760	675455.11	77.55	. 684	. 2037147	3589	685803.98	74.03
1. 635	I. 1857215	3756	675612.62	77.48	1. 685	1.2040734	3586	6859 I7.97	73.96
. 636	. 1860970	3753	675730.07	77.41	. 686	. 2044318	3582	690031.89	73.89
. 637	. 186472 I	3749	$67 \quad 58 \quad 47.44$	77.34	. 687	. 2047899	3579	69 OI 45.75	73.82
. 638	. 1868469	3746	680004.74	77.26	. 688	. 2051476	3576	690259.53	73.75
. 639	. 1872213	3742	68 OI 21.97	77.19	. 689	. 2055050	3572	690413.25	73.68
1. 640	1.187 5953	3739	680239.12	77.12	1.690	1. 2058620	3569	690526.90	73.61
. 641	. 1879691	3735	680356.21	77.05	. 691	. 2062187	3566	690640.48	73.54
. 642	. 1883424	3732	680513.22	76.98	. 692	. 206 5751	3562	690753.99	73.48
. 643	. 1887155	3729	680630.16	76.91	. 693	. 2069312	3559	690907.43	73.41
. 644	. 189088 I	3725	680747.03	76.83	. 694	. 2072869	3556	69 IO 20.80	73.34
1.645	I. 1894605	3722	$\begin{array}{llll}68 & 09 & 03.83\end{array}$	76.76	1.695	I. 2076423	3552	69 II 34.1I	73.27
. 646	. 1898325	3718	68 10 20.56	76.69	. 696	. 2079974	3549	69 I2 47.34	73.20
. 647	. 1902041	3715	68 II 37.22	76.62	. 697	. 208352 I	3546	691400.51	73.13
. 648	. 1905754	3711	68 I2 53.80	76.55	. 698	. 2087065	3542	69 15 13.61	73.07
. 649	. 1909463	3708	68 I4 10.32	76.48	. 699	. 2090605	3539	691626.64	73.00
1.650	1.191 3170	3704	681526.76	76.41	1.700	I. 2094143	3536	691739.60	72.93
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
				72.					" ${ }^{1}$
1.700	1.2094143	3536	69 I7 39.60	72.93	1.750	1.2266847	3374	70 I7 O1. 89	69.59
. 701	. 2097677	3532	69 I8 52.50	72.86	.751	. 2270219	3370	70 I8 II. 44	69.52
. 702	. 2101208	3529	$6920 \quad 05.32$	72.79	. 752	. 2273588	3367	701920.93	69.45
. 703	. 2104735	3526	69 21 18.08	72.72	. 753	. 2276954	3364	$70 \quad 2030.35$	69.39
. 704	. 2108259	3522	692230.77	72.66	. 754	. 2280316	2361	70 21 39.71	69.32
1.705	1.2111780	3519	692343.39	72.59	1.755	I. 2283676	3358	702249.00	69.26
. 706	. 2115297	3516	692455.95	72.52	. 756	. 2287032	3355	$70 \quad 23: 58.23$	69.19
. 707	.211 8812	3513	692608.43	72.45	. 757	. 2290385	3351	$\begin{array}{lllll}70 & 25 & 07.39\end{array}$	69.13
. 708	. 2122.323	3509	$6927 \quad 20.85$	72.38	. 758	. 2293735	3348	$70 \quad 2616.48$	69.06
. 709	. 2125830	3506	692833.20	72.32	. 759	. 2297082	3345	$70 \quad 2725.51$	69.00
1.710	I.212 9335	3503	692945.49	72.25	1.760	1.2300425	3342	$70 \quad 2834.48$	68.93
. 711	. 2132836	3499	693057.70	72.18	. 761	. 2303765	3339	$70 \quad 2943 \cdot 38$	68.87
. 712	. 2136334	3496	$6932 \quad 09.85$	72.11	. 762	. 2307103	3336	$70 \quad 3052.22$	68.80
. 713	. 2139828	3493	6933 21.93	72.05	. 763	.231 0437	3333	$70 \quad 3200.99$	68.74
. 714	.214 3319	3490	693433.94	71.98	. 764	. 2313768	3329	$70 \quad 33 \quad 09.69$	68.67
1.715	1.2146807	3486	693545.89	71.91	1.765	1.231 7096	3326	$\begin{array}{llll}70 & 34 & 18.33\end{array}$	68.61
. 716	. 2150292	3483	6936 57.76	71.84	. 766	. 2320420	3323	$7035 \quad 26.91$	68.54
. 717	. 2153774	3480	$6938 \quad 09.57$	71.78	. 767	.2323742	3320	$70 \quad 3635.42$	68.48
. 718	. 2157252	3477	693921.32	71.71	. 768	.2327060	3317	$\begin{array}{lllll}70 & 37 & 43.87\end{array}$	68.42
. 719	.2160727	3473	694032.99	71.64	. 769	.2330376	33 I 4	703852.25	68.35
1.720	1. 2164198	3470	69 4I 44.60	71.58	1.770	I. 2333688	33II	704000.57	68.29
. 721	. 2167667	3467	6942 56.14	71.51	. 771	. 2336997	3307	70 41 08.83	68.22
. 722	. 217 I132	3464	694407.62	71.44	. 772	. 2340303	3304	$7042 \quad 17.02$	68.16
. 723	. 2174594	3460	$6945 \quad 19.02$	71.37	. 773	. 2343606	3301	$70 \quad 43$ 25.14	68.09
. 724	. 2178053	3457	694630.37	71.31	. 774	. 2346905	3298	704433.20	68.03
1.725	I. 218 I508	3454	694741.64	71.23	I. 775	I. 2350202	3295	704541.20	67.96
. 726	. 2184960	3451	694852.85	71.16	. 776	. 2353495	3292	704649.13	67.90
. 727	. 2188409	3447	695003.99	71.10	. 777	.2356786	3289	704757.00	67.84
. 728	. 2191855	3444	695115.06	71.03	. 778	.2360073	3286	$\begin{array}{llll}70 & 49 & 04.80\end{array}$	67.77
. 729	. 2195297	344 I	695226.06	70.96	. 779	.2363357	3283	$70 \quad 5012.54$	67.71
1.730	I. 2198737	3438	$6953 \quad 37.90$	70.90	1.780	1.236 6638	3279	70 51 20.22	67.64
. 73 I	. 2202173	3434	695447.88	70.83	.781	. 2369916	3276	$70 \quad 52 \quad 27.83$	67.58
. 732	. 2205605	3431	695558.68	70.76	. 782	. 237 3191	3273	$7053 \quad 35.38$	67.52
. 733	. 2209035	3428	695709.42	70.70	. 783	. 2376463	3270	705442.87	67.45
. 734	. 2212461	3425	6958 20.10	70.63	. 784	. 237 973I	3267	705550.29	67.39
1.735	I.221 5885	3422	695930.71	70.56	1. 785	I. 2382997	3264	$70 \quad 5657.65$	67.33
. 736	. 2219304	3418	70004 I .25	70.50	. 786	.2386259	3261	$70 \quad 58 \quad 04.94$	67.25
. 737	. 2222721	3415	70 OI 51.72	70.43	. 787	. 2389519	3258	705912.17	67.20
. 738	. 222 6135	3412	700302.13	70.37	. 788	. 2392775	3255	710019.34	67.13
. 739	. 2229545	3409	700412.47	70.30	. 789	. 2396028	3252	71 OI 26.44	67.07
1.740	I. 2232952	3405	700522.75	70.23	1.790	I. 2399279	3249	710233.48	67.01
. 741	. 2236356	3402	700632.96	70.18	. 791	. 2402526	3246	710340.46	66.94
. 742	. 2239757	3399	700743.10	70.11	. 792	. 2405770	3243	710447.37	66.88
. 743	. 2243154	3396	70 08 53.18	70.05	. 793	. 240 90II	3239	710542.22	66.82
. 744	. 2246548	3393	70 10 03.19	69.98	. 794	. 2412249	3236	7107 OI .01	66.76
1.745	I. 2249940	3390	70 II 13.14	69.91	I. 795	1.2415483	3233	710807.73	66.69
. 746	. 2253328	3386	701223.02	69.85	. 796	. 2418715	3230	710914.39	66.63
. 747	.2256712	3383	$\begin{array}{lllll}70 & 13 & 32.84\end{array}$	69.78	. 797	. 2421944	3227	711020.99	66.57
. 748	.2260094	3380	70 14 42.59	69.72	. 798	. 2425170	3224	71 II 27.52	66.50
. 749	. 2263472	3377	70 I5 52.27	69.65	. 799	.2428392	3221	$71 \quad 1233.99$	66.44
1.750	1. 2266847	3374	7017 O1. 89	69.59	1.800	1.2431612	3218	711340.40	66.38
u	$2 \tan ^{-1}\left(e^{\mathrm{u}}\right)-\frac{\pi}{2}$	hu	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.800	I. 243' 1612	3218	711340.40	66.38	I. 850	I. 2588759	00		
. 80	. 2434828	3215	711446.75	65.31	. 851	. 2191826	3066	720845.05	63.24
. 802	.2438042	3212	711553.03	66.25	. 852	. 2594890	3063	720948.26	63:18
. 803	. 2441252	320	711659.25	66.19	. 853	. 2597952	3060	72 10 51.41	63.12
. 804	.2444460	3206	7 I I8 05.4 I	66.13	. 854	. 260 IOI I	3057	72 II 54.50	63.06
1. 805	1. 2447664	03	71 I9 II. 50		I. 855	I. 2604066	3054	721257.53	63.00
. 806	. 2450865	3200	712017.53	66.0	. 856	. 260 7199	3051	72 14 00.50	62.94
. 8	. 2454064	3197	712123.50	65.9	. 857	.261 0169	30.48	72 15 03.41	
. 808	.2457259	3194	712229.41	65.88	. 858	. 2613216	3046	72 16 06.26	62.82
. 809	. 246045 I	3191	712335.26	65.8 I	. 859	. 2616260	3043	72 I7 09.05	62.76
1.810	I. 2463640	3	712441.04	65.75	I. 86	1.261 9302	.40	721811.78	. 70
.8II	. 2466827	3185	712546.76	65.69	. 861	. 2622340	3037	72 I9 14.45	62.64
.812	. 2470010	3182	712652.42	65.63	. 862	. 2625375	3034	$72 \quad 2017.06$	62.58
.8I3	. 2473190	3179	712758.01	65.56	. 863	. 2628408	3031	72 21 19.61	62.52
. 814	. 2476367	3176	712903.54	65.50	. 864	.2631438	3028	7222 22.10	62.46
1.815	1.247 9541	3173	71.3009 .02		1.865	1.26344	3025	$\begin{array}{lll}72 & 23 & 24.54\end{array}$	2.40
.816	. 2482712	3170	713114.42	65.38	. 866	. 2637488	3022	722426.91	62.34
. 8	.2485880	3167	713219.77	65.32	. 867	.2640509	3020	$\begin{array}{lllll}72 & 25 & 29.22\end{array}$	28
. 818	.2489046	3164	713325.06	65.25	. 868	. 2643527	3017	$\begin{array}{llllll}72 & 26 & 31.47\end{array}$	62.22
. 819	. 2422208	3161	713430.28	65.19	. 869	.2646543	3014	722733.67	62.16
1.820	I. 249536		713535		1.870	I. 264955	011	$\begin{array}{llll}72 & 28 & 35.80\end{array}$	2. 11
. 82 I	. 2498523	3155	713640.54	65.07	. 871	. 2652565	3008	$\begin{array}{lllll}72 & 29 & 37.88\end{array}$	62.05
. 822	. 2501676	3 I 52	713745.58	65.01	. 872	. 2655571	3005	$72 \quad 3039.90$	6I. 99
. 823	. 2504826	3149	713850.56	64.95	. 873	. 2658575	3002	72 31 41.85	61.93
. 824	.2507973	3146	71.3955 .47	64	. 874	.2661576	2999	$72 \quad 3243.75$	61.87
I. 825	I.25I I	3143	714100.32	64.82	1.875	I. 266457	2997	$723345 \cdot 59$	
. 82	.251 4259	3140	714205.11	64.76	. 876	. 2667569	2994	723447.37	61.75
. 82	. 2517397	3137	714309.84	64.7	. 87	. 2670562	2991	$\begin{array}{llll}72 & 35 & 49.09\end{array}$	61. 69
. 82	.2520532	3134	714414.51	64.64	. 878	. 2673551	2988	$\begin{array}{lllll}72 & 36 & 50.75\end{array}$	
. 829	.2523664	3I3I	7145 I9.12	64.58	. 879	. 2676538	2985	723752.36	6 I .57
1.830	I. 2526794	31	714623.67		1.880	I. 267 9521	2982	$\begin{array}{lllll}72 & 38 & 53.90\end{array}$	61.52
.83I	. 2529920	3125	714728.15	64.45	. 881	. 2682502	2980	$\begin{array}{lllllllllll}72 & 39 & 55\end{array}$	6 I .46
. 832	.2533043	31	714832.57	64.39	. 882	. 2685480	2977	7240	6 I .40
. 833	.2536164	3116	714936.94	64.33	. 883	. 2688456	2974	72 41 58.19	6 I .34
. 834	. 253 9281	3116	715041.24	64.27	. 884	. 269 I428	2971	724259.50	61.28
1.83	I. 2542396	3	715145.48		I. 885	I. 2694398	2908	724400.75	22
	. 2545507	3110	715249.66	64.15	. 886	. 2697364	2965	724501.94	61.16
. 8	. 254 86I6	3107	715353.77	64.09	. 887	. 2700328	2962	724603.08	11
. 838	. 255 I72I	3104	715457.83	64.03	. 888	.2703289	2960	724704.15	05
. 839	. 2554824	3101	715601.83	63.97	. 889	. 2706248	2957	724805.17	99
1. 840	1. 2557923	3098	715705.76	63.91	I. 89	I. 2709203	2954	724906.13	3
. 841	.2561020	3095	715809.64	63.84	. 891	. 2712156	2951	725007.03	
. 842	. 2564114	3092	715913.45	63.78	. 892	. 2715106	2948	7251107.88	
. 843	.2567205	3089	720017.21	63.72	. 893	. 2718053	29.46	725208.66	
. 844	.2570293	3086	72 OI 20.90	63.66	. 894	.2720997	2943	725309.39	60.70
1.845	1.2573378	3084	72024.53	63.60	I. 895	1. 2723938	2940	725410.06	
. 846	. 2576460	3081	7203 28.10	63.54	. 896	. 2726877	2937	725510.67	58
. 847	. 2579539	3078	720431.61	63.48	. 897	. 272 9812	2934	7256 II. 23	
. 848	. 2582615	3075	720535.06	63.42	. 898	. 2732745	2932	725711.72	60.47
. 849	.2585688	3072	720638.45	$63 \cdot 36$. 899	.2735675	2929	725812.16	60.41
1.850	I. 2588759	3069	720741.78	$63 \cdot 30$	1.900	I. 2738603	2926	725912.54	60.35
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{0}\right)-90^{\circ}$	ω sech	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\text { }}$	od u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.900	I. 2738603	2926	$72 \quad 59 \quad 12.54$	60.35	1.950	1.288 145I	2789	734819.01	57.53
. 901	. 2741527	2923	730012.86	60.29	.95I	. 2884239	2786	7349 16.51	57.47
. 902	. 2744449	2920	73 O1 13.13	60.24	. 952	. 2887024	2784	735013.95	57.42
. 903	. 2747368	2918	730213.33	60.18	. 953	. 2889806	2781	73 51 II. 34	57.36
. 904	. 2750284	2915	730313.48	60.12	. 954	. 2892586	2778	735208.68	57.3I
1.905	1.2753197	2912	730413.58	60.06	1.955	1. 2895363	2776	735305.96	57.25
. 906	. 2756108	2909	730513.61	60.01	. 956	. 2898137	2773	735403.18	57.20
. 907	. 2759016	2906	730613.59	59.95	-957	. 2900909	2770	735500.35	57.14
. 908	. 2761921	2904	730713.51	59.89	. 958	. 2903678	2768	735557.46	57.09
. 909	. 2764823	2901	730813.37	59.83	. 959	. 2906444	2765	7356 54.52	57.03
1.910	1. 2767722	2898	730913.18	59.78	1.960	1. 2909208	2762	735751.53	56.98
.91I	. 2770619	2895	731012.92	59.72	. 961	. 2911969	2760	735848.48	56.92
. 912	. 2773513	2893	73 I1 12.62	59.66	. 962	.291 4727	2757	735945.38	56.87
.913	. 2776404	2890	731212.25	59.61	. 963	.291 7483	2754	740042.22	56.8 I
. 914	. 2779292	2887	731311.83	59.55	. 964	. 2920236	2752	74 OI 39.00	56.76
1.915	1.2782178	2884	731411.35	59.49	1.965	1. 2922987	2749	740235.73	56.70
. 916	. 2785061	2881	731510.81	59.43	. 966	. 2925734	2746	740332.41	56.65
. 917	. 2787941	2879	731610.22	59.38	. 967	. 2928480	2744	740429.03	56.60
. 918	. 2790818	2876	731709.56	59.32	. 968	. 2931222	2741	740525.60	56.54
. 919	. 2793693	2873	731808.86	59.26	. 969	. 2933962	2739	740622.12	56.49
1.920	I. 2796565	2870	731908.09	59.21	1.970	1.2936699	2736	740718.58	56.43
.921	. 2799434	2868	732007.27	59.15	.971	. 2939434	2733	740814.98	56.38
. 922	. 2802300	2865	732106.39	59.09	. 972	. 2942166	2731	7409 I1.33	56.32
. 923	. 2805164	2862	$\begin{array}{llll}73 & 22 & 05.46\end{array}$	59.04	. 973	. 2944895	2728	74 10 07.63	56.27
. 924	. 2808024	2859	$\begin{array}{ll}73 & 2304.47\end{array}$	58.98	. 974	. 2947622	2725	74 II 03.87	56.22
1.925.	1.281 0883	2857	732403.42	58.92	1.975	1. 2950346	2723	741200.06	56.16
, 95	.281 3738	2854	732502.32	58.87	. 976	. 2953068	2720	741256.20	56.11
. 927	. 2816590	2851	7326 от.16	58.8 I	. 977	. 2955786	2718	741352.28	56.05
. 928	. 2819440	2849	732659.94	58.76	. 978	. 2958503	2715	741448.30	56.00
. 929	. 2822288	2846	732758.67	58.70	. 979	. 2961216	2712	741544.28	55.95
1.930	I. 2825132	2843	732857.34	58.64	1.980	1. 2963927	2710	741640.20	55.89
. 931	. 2827974	2840	732955.95	58.59	. 981	. 2966636	2707	741736.06	
-9310	. 2830813	2838	733054.51	58.53	. 982	. 2969342	2705	741831.87	55.78
-933	. 2833649	2835	733153.01	58.47	. 983	. 2972045	2702	$74 \quad 1927.63$	55.73
-934	. 2836482	2832	733251.46	58.42	.984	. 2974745	2699	472023.34	55.68
I. 935	1. 283 9313	2829	733349.85	58.36	I. 985	I. 2977443	2697	742118.99	55.62
. 936	. 2842141	2827	733448.18	58.31	. 986	. 2980139	2694	742214.58	55.57
. 937	. 2844967	2824	733546.46	58.25	. 987	. 2982832	2692	7423 10.13	55.52
. 938	. 2847789	2821	733644.68	58.19	. 988	. 2985522	2689	742405.62	55.46
. 939	. 2850609	2819	733742.85	58.14	.989	. 2988210	2686	7425 OI. 05	55.41
1.940	1. 2853427	2816	733840.96	58.08	I. 990	1.2990895	2684	742556.44	55.36
. 941	. 2856241	2813	733939.01	58.03	.991	. 2993577	268 I	742651.77	55.30
. 942	. 2859053	2811	734037.01	57.97	. 992	. 2996257	2679	742747.04	55.25
. 943	. 2861862	2808	734134.95	57.92	. 993	. 2998934	2676	$74 \quad 2842.27$	55.20
-944	. 2864669	2805	734232.84	57.8	-994	-300 1609	2673	742937.44	55.14
1.945	1.2867473	2802	734330.68	57.80	1.995	1. 300428 I	2671	743032.55	55.09
. 946	. 2870274	2800	734428.45	57.75	. 996	. 3006951	2668	743127.62	55.04
. 947	. 2873072	2797	734526.17	57.69	. 997	-300 9618	2666	743222.63	54.98
-948	.2875868 .287861	2794	734623.84	57.64 57.58	-998	-3012282	2663	$\begin{array}{llllllllll}74 & 33 & 17.59\end{array}$	54.93
. 949	. 2878661	2792	734721.45	57.58	. 999	-301 4944	2661	743412.49	54.88
1.950	1.2881451	2789	734819.01	57.53	2.000	1.3017603	2658	743507.34	54.83
4	$\left\|2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}\right\|$	wsech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$			$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(\mathrm{ea}^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.000									"
,	1.301		743507.34		2.05	1.3147349	2533	$75 \quad 1943.53$	52.24
. 001	. 3020260	2655	743602.14	54.77	.05I	. 3149880	2530	$75 \quad 2035.75$	52.19
. 002	. 3022914	2653	743656.89	54.72	. 052	-315 2409	2528	75. 21 27.91	52.14
. 003	. 3025566	2650	7437 51.58	54.67	. 053	-3I5 4936	2525	752220.03	52.09
. 004	. 3028215	2648	743846.22	54.61	. 054	. 3157460	2523	$75 \quad 2312.09$	52.04
2.005	I. 303086 I	2645	743940.81	54.56	2.055	I. 3159982	2520	7524 04.II	51.99
. 006	. 3033505	2643	$744035 \cdot 35$	54.5I	. 056	. 3162501	2518	75.2456 .07	51.94
. 007	. 3036147	2640	744129.83	54.46	. 057	- 3165018	2516	752547.98	51.89
. 008	. 3038786	2638	$74 \quad 4224.26$	54.40	. 058	. 3167532	2513	$\begin{array}{lllllllllll}75 & 26 & 39.85\end{array}$	51.84
. 009	- 304 I422	2635	744318.64	$54 \cdot 35$. 059	-3I7 0044	25 II	752731.66	51.79
2.010	I. 3044056	2633	$\begin{array}{llll}74 & 44 & 12.97\end{array}$	$54 \cdot 30$	2.060	I.3I7 2554	2508	$\begin{array}{lll}75 & 28 & 23.42\end{array}$	51.74
. 011	. 3046687	2630	$\begin{array}{lllllll}74 & 45 & 07.24\end{array}$	54.25	.06I	. 317 5061	2506	$75 \quad 29$ I5.14	51.69
. 012	. 3049316	2627	7446 O1. 46	54. 19	. 062	. 3177566	2503	753006.80	51.64
. 013	. 3051942	2625	744655.63	54.14	. 063	- 3180068	2501	753058.41	51.59
. 014	. 3054566	2622	744749.74	54.09	. 064	- 3182568	2499	75 31 49.98	51.54
2.015	1. 3057187	2620	$74 \quad 4843.81$	54.04	2.065	I. 3185065	2496	753241.49	51. 49
. 016	. 3059805	2617	$74 \quad 4937.82$	53.99	. 066	. 3187560	2494	753332.95	51.44
. OI7	. 3062421	2615	$74 \quad 5031.78$	53.93	. 067	. 3190053	2491	$\begin{array}{llll}75 & 34 & 24.37\end{array}$	51.39
. 018	. 3065035	2612	745125.69	53.88	. 068	- 3192543	2489	$75 \quad 3515.73$	51.34
. 019	. 3067646	2610	745219.54	53.83	. 069	. 319503 I	2487	$75 \quad 3607.04$	51.29
2.020	I. 3070254	2607	$\begin{array}{llll}74 & 53 & 13.35\end{array}$	53.78	2.070	1.319 7516	2484	753658.31	51.24
.02I	. 3072860	2605	$74 \quad 54$ 07.10	53.73	. 071	-319 9999	2482	75.37 49.52	51. 19
. 022	- 3075464	2602	745500.80	53.67	. 072	- 3202480	2479	$75 \quad 3840.69$	51.14
. 023	. 3078065	2600	745554.45	53.62	. 073	. 3204958	2477	753931.80	51.09
. 024	. 3080663	2597	745648.05	53.57	. 074	. 3207433	2475	754022.87	51.04
2.025	I. 3083259	2595	745741.59	53.52	2.075	I. 3209907	2472	754113.89	50.99
. 026	. 3085853	2592	$74 \quad 5835.08$	53.47	. 076	. 3212378	2470	$75 \quad 4204.85$	50.94
. 027	. 3088443	2590	$74 \quad 5928.52$	53.42	. 077	.321 4846	2467	754255.77	50.89
. 028	. 3091032	2587	750021.91	53.36	. 078	-321 7312	2465	754346.64	50.84
. 029	. 3093618	2585	75 OI 15.25	53.31	. 079	-3219776	2463	754437.46	50.79
2.030	1.3096201	2582	750208.54	53.26	2.080	1.3222238	2460	754528.23	50.75
. 031	. 3098782	2580	750301.78	53.21	.081	. 3224697	2458	754618.95	50.70
. 032	. 310 I361	2577	750354.96	53.16	. 082	. 3227153	2455	754709.62	50.65
. 033	. 3103936	2575	750448.09	53.11	. 083	. 3229608	2453	754800.24	50.60
. 034	. 3106510	2572	750541.17	53.06	. 084	. 3232059	2451	754850.82	50.55
2.035	1.310 908I	2570	750634.20	53.00	2.085	I. 3234509	2448	754941.34	50.50
. 036	.311 1649	2567	7507 27.18	52.95	. 086	. 3236956	2446	755031.82	50.45
. 037	. 3 II 4215	2565	7508 20.11	52.90	. 087	. 323 9401	2444	75 51 22.25	50.40
. 038	.311 6779	2562	750912.99	52.85	. 088	. 3241843	2441	$75 \quad 5212.62$	50.35
. 039	-3II 9340	2560	751005.81	52.80	. 089	. 3244283	2439	755302.95	50.30
2.040	1.3121898	2557	75 10 58.59	52.75	2.090	I. 3246721	2436	755353.23	50.26
. 041	-312 4455	2555	75 II 51.31	52.70	.09I	. 324 9156	2434	755443.46	50.21
. 042	. 3127008	2552	751243.98	52.65	. 092	. 3251589	2432	755533.65	50.16
. 043	-3129559	2550	75 13 36.60	52.60	. 093	. 3254020	2429	$75 \quad 5623.78$	50.11
. 044	-3I3 2108	2547	75 14 29.17	52.55	. 094	. 3256448	2427	$75 \quad 5713.86$	50.06
2.045	I. 3134654	2545	751521.69	52.49	2.095	I. 3258874	2425	$75 \quad 5803.90$	50.01
. 046	. 3137198	2543	751614.16	52.44	. 096	. 3261297	2422	755853.89	49.96
. 047	-3I3 9739	2540	7517006.58	52.39	. 097	- 3263718	2420	755943.83	49.92
. 048	- 3142278	2538	$75 \quad 1788.95$	52.34	. 098	. 326 6I37	2418	760033.72	49.87
. 049	-3I4 48I5	2535	751851.27	52.29	. 099	. 3268554	2415	76 OI 23.56	49.82
2.050	I.314 7349	2533	$75 \quad 1943 \cdot 53$	52.24	2.100	1. 3270968	2413	760213.36	49.77
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
				49.77					"
2.100	1. 32700	2413	760213.36	49.77	2.150	I. 3388732	2298	764242.42	47.41
. 101	. 3273380	2411	760303.11	49.72	. 151	. 339 I029	2296	7643 29.8I	$47 \cdot 36$
. 102	- 3275789	2408	760352.80	49.67	. 152	- 3393325	2294	7644 I7.15	47.32
. 103	. 327 8196	2406	760442.45	49.63	. 153	. 339 56I7	2292	764504.44	47.27
. 104	. 328 060I	2404	760532.06	49.58	. 154	- 3397908	2290	764551.69	47.23
2.105	I. 3283003	2401	760621.6 I	49.53	2.155	1. 3400197	2287	764638.89	47.18
. 106	. 3285403	2399	7607 II.II	49.48	. 156	- 3402483	2285	764726.05	47.13
. 107	. 3287801	2397	760800.57	49.43	. 157	. 3404767	2283	764813.16	47.09
. 108	. 3290197	2394	$76 \quad 0849.98$	49.39	. 158	. 3407049	2281	764900.23	47.04
. 109	. 3292590	2392	760939.34	49.34	. 159	. 3409328	2278	764947.25	47.00
2. 110	1. 3294980	2390	76 10 28.66	49.29	2.160	1.341 1605	2276	$76 \quad 5034.22$	46.95
. III	. 3297369	2387	76 II 17.92	49.24	. 161	-341 388I	2274	765121.15	46.90
. II2	. 3299755	2385	761207.14	49.19	. 162	. 341 6I53	2272	$76 \quad 5208.03$	46.86
. II3	- 3302139	2383	761256.31	49.15	. 163	. 3418424	2270	$76 \quad 5254.87$	46.8I
. II4	. 3304520	2380	76 I3 45.43	49.10	. 164	. 3420693	2267	765341.66	46.77
2.115	I. 3306900	237	76 I4 34.5I	49.05	2.165	I. 3422959	65	$76 \quad 5428.40$	46.72
. I16	. 3309277	2376	76 I5 23.54	49.00	. 166	. 3425223	2263	765515.10	46.68
. 117	. 331165.1	2373	76 I6 12.52	48.96	. 167	. 3427485	2261	7656 O1.76	46.63
. II8	. 3314023	2371	7617701.45	48.91	. 168	. 3429744	2259	765648.36	46.59
. I I9	.33I 6393	2369	76 I7 50.33	48.86	. 169	-343 2002	2256	765734.93	46.54
2.120	I.331 876I	2367	76 I8 39.17	48.8I	2.170	I. 3434257	2254	765821.45	46.50
. 121	. 3321127	2364	761927.96	48.77	. 171	. 3436510	2252	$76 \quad 5907.92$	46.45
. 122	. 3323490	2362	$76 \quad 2016.70$	48.72	. 172	-343 876I	2250	$76 \quad 59 \quad 54 \cdot 35$	46.41
. 123	. 3325850	2360	762105.40	48.67	. 173	. 344 IoIo	2248	770040.73	46.36
. 124	- 3328209	2357	762154.04	48.62	. 174	. 3443256	2245	77 O1 27.07	46.31
2.125	I. 3330565	2355	762242.64	4858	2.175	1. 3445501	2243	770213.36	46.27
. 125	. 3332919	2353	7623131.20	48.53	.176	- 3447743	2241	770259.61	46.22
. 127	. 333527 I	2350	762419.70	48.48	. 177	. 3449983	2239	770345.81	46.18
. 128	. 3337620	2348	762508.16	48.44	. 178	- 3452220	2237	770431.96	46.13
. 129	. 3339967	2346	762556.57	48.39	. 179	. 3454456	2234	$77 \quad 0518.08$	46.09
2.I30	I. 3342312	2344	$76 \quad 2644.94$	48.34	2.180	I. 3456689	2232	$77 \quad 06104.14$	46.04
.13I	. 3344654	2341	$76 \quad 2733.26$	48.29	. 18 I	- 345892 I	2230	770650.17	46.00
. 132	. 3346995	2339	702821.53	48.25	. 182	. 346 I150	2228	77 07 36.14	45.95
. I33	- 3349333	2337	$76 \quad 2909.75$	48.20	. 183	. 3463377	2226	770822.08	45.91
. I34	. 3351668	2335	762957.93	48.15	. 184	. 3465601	2224	770907.96	45.87
2.135	I. 3354002	2332	763046.06	48.11	2.185	1. 3467824	222I	770953.81	45.82
. 136	. 3356333	2330	763134.14	48.06	. 186	. 3470044	2219	77 10 39.60	45.78
. 137	. 3358662	2328	763222.18	48.01	. 187	. 3472262	2217	77 II 25.36	45.73
. 138	. 3360988	2325	753310.17	47.97	. 188	- 3474478	2215	771211.07	45.69
. 139	. 336 33I3	2323	7633 58.1I	47.92	. 189	. 3476692	2213	771256.73	45.64
2.140	I. 3365635	232I	763446.01	47.87	2.190	1. 3478904	2 II	$\begin{array}{llll}77 & 13 & 42.35\end{array}$	45.60
. 141	. 3367955	2319	763533.86	47.83	. 191	. 348 III4	2208	77 14 27.93	45.55
. 142	. 3370272	2316	.76 36121.66	47.78	. 192	- 3483321	2206	77 If 13.46	45.5 I
. I43	. 3372588	2314	763709.42	47.73	. 193	- 3485526	2204	771558.95	45.46
. I44	- 3374901	2312	$763757 \cdot 13$	47.69	. 194	. 3487729	2202	$77 \quad 1644.39$	45.42
2.145	1.3377212	2310	763844.79	47.64	2. 195	I. 3489930	2200	$\begin{array}{llll}77 & 17 & 29.79\end{array}$	45.38
. I46	. 3379520	2307	763932.41	47.59	. 196	- 3492129	2198	77 I8 15.14	45.33
. 147	. 3381826	2305	764019.98	47.55	-197	- 3494326	2196	77 I9 00.45	45.29
. 148	- 3384131	2303	764107.51	47.50	. 198	- 3496520	2193	77 I9 45.72	45.24
. I49	. 3386432	2301	764154.99	47.46	. 199	- 3498713	2191	$77 \quad 2030.94$	45.20
2.150	1.3388732	2298	764242.42	47.41	2.200	I. 3500903	2189	77 21 16.11	45.16
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	hu	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech u

Smithsonian Tables

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
				""16				20 ${ }^{\circ}{ }^{\prime \prime}$	"
2.200	1. 3500903	2189	772116.11	45.16	2.250	1. 3607733	2085	775759.64	43.00
. 201	. 3503091	2187	7722 O1. 25	45. I I	. 251	- 360 9817	2083	775842.62	42.96
. 202	. 3505277	2185	772246.34	45.07	. 252	-361 1899	2081	775925.56	42.92
. 203	. 3507461	2183	$77 \quad 2331.38$	45.02	. 253	-361 3978	2079	780008.46	42.88
. 204	. 3509643	2181	772416.38	44.98	. 254	. 3616056	2077	780051.32	42.83
2.205	1.351 1822	2179	7725 OI. 34	44.94	2.255	1.361 8I32	2075	78 or 34.13	42.79
. 205	. 3514000	2176	772546.25	44.89	. 256	-362 0205	2073	7802 16.90	42.75
. 207	.351 6175	2174	772631.12	44.85	. 257	- 3622277	2071	780259.63	42.71
. 208	. 3518348	2172	772715.95	44.80	. 258	. 3624347	2069	$\begin{array}{lllll}78 & 03 & 42.32\end{array}$	42.67
. 209	-352 0519	2170	772800.73	44.76	. 259	. 3626414	2067	780424.97	42.63
2.210	1.3522688	2168	$77 \quad 2845.47$	44.72	2.260	1. 3628480	2065	$\begin{array}{llll}78 & 05 & 07.57\end{array}$	42.58
. 211	. 3524855	2166	772930.16	44.67	. 261	. 3630543	2063	780550.13	42.54
. 212	. 3527020	2164	$77 \quad 3014.82$	44.63	. 262	. 3632605	2060	$\begin{array}{llll}78 & 06 & 32.66\end{array}$	42.50
. 213	. 3529183	2162	773059.42	44.59	.263	- 3634664	2058	$\begin{array}{cccc}78 & 07 & 15.14 \\ 78 & 07 & 57\end{array}$	42.46
. 214	. 353 I343	2159	77 31 43.99	44.54	. 264	. 3636722	2056	$78 \quad 0757.57$	42.42
2.215	1.3533502	2157	$\begin{array}{llll}77 & 32 & 28.51\end{array}$	44.50	2.265	1. 3638777	2054	$\begin{array}{llll}78 & 08 & 39.97\end{array}$	42.38
. 216	. 3535658	2155	$77 \quad 3312.99$	44.46	. 266	. 364083 I	2052	780922.33	42.33
. 217	. 353 7812	2153	$77 \quad 33157.42$	44.41	. 267	- 3642882	2050	78 10 04.64	42.29
. 218	. 3539964	2151	773441.81	44.37	. 268	. 3644931	2048	78 10 46.91	42.25
. 219	- 3542 II4	2149	773526.16	44.33	. 269	. 3646979	2046	78 II 29.14	42.21
2.220	I. 3544262	2147	773610.46	44.28	2.270	I. 3649024	2044	78 I2 II. 33	42.17
. 221	. 3546408	2145	773654.72	44.24	. 271	. 3651068	2042	$\begin{array}{llllll}78 & 12 & 53.48\end{array}$	42.13
. 222	. 3548552	2143	$77 \quad 3738.94$	44.20	. 272	- 3653109	2040	78 I3 35.59	42.09
. 223	. 3550693	2141	$77 \quad 38$ 23.1I	44.15	. 273	. 3655149	2038	78 I4 17.66	42.05
. 224	. 3552833	2138	$77 \quad 39 \quad 07.24$	44. I I	. 274	. 3657186	2036	78 I4 59.68	42.00
2.225	1. 3554970	2136	773951.33	44.07	2.275	I. 3659221	2034	781541.66	41.96
. 226	- 3557106	2134	774035.38	44.02	.276	. 3661255	2032	78 16 16 23.61	41. 92 41.88
. 227	- 3559239	2132	774119.38	43.98	. 277	- 3663286	2030	78 I7 05.51	41. 88
. 228	. 356 I 370	2130	$\begin{array}{lllll}77 & 42 & 03.34\end{array}$	43.94	. 278	. 365 5316	2028	$\begin{array}{llll}78 & 17 & 47.37\end{array}$	4 I .84
. 229	- 3563499	2128	774247.25	43.89	. 279	. 3667343	2026	78 I8 29.19	41.80
2.230	I. 3565626	2126	7743 31.13	43.85	2.280	1. 3669369	2024	78 19 10.97	41.76
. 231	. 3567751	2124	774414.96	43.81	.281	. 367 I392	2023	78 i9 52.71	41.72
. 232	- 3569874	2122	774458.74	43.77	. 282	-367. 3414	2021	$78 \quad 2034.40$	41.68
. 233	. 3572095	2120	774542.49	43.72	.283	. 3675433	2019	782116.06	4 I .64
. 234	-357 4II4	2118	$77 \quad 46$ 26.19	43.68	. 284	. 367 745I	2017	78 21 57.68	41.60
2.235	I. 3576230	2 I 16	$\begin{array}{llll}77 & 47 & 09.85\end{array}$	43.64	2.285	I. 3679466	2015	$\begin{array}{lll}78 & 22 & 39.25\end{array}$	4I. 55
. 236	. 3578345	2114	$77 \quad 4753.47$	43.60	. 286	. 3681480	2013	$\begin{array}{lllll}78 & 23 & 20.78 \\ -8 & 24 & 02 .\end{array}$	4 I .5 I
. 237	. 3580457	2 III	$77 \quad 4837.04$	$43 \cdot 5.5$. 287	. 3683492	2011	$\begin{array}{llll}78 & 24 & 02.28 \\ 78 & 24 & 43.73\end{array}$	4 I .47
. 238	- 3582568	2109	774920.57	43.51	. 288	. 3685501	2009	$\begin{array}{lllllllllllllllll}78 & 24 & 43.73\end{array}$	41.43
. 239	. 3584676	2107	775004.06	43.47	. 289	. 3687509	2007	$78 \quad 25 \quad 25.14$	4 I .39
2.240	I. 3586783	2105	775047.51	43.43	2.290	. 3689515	2005	$\begin{array}{lll}78 & 26 & 06.51 \\ 78 & 26 & 47.85\end{array}$	$4 \mathrm{I} \cdot 35$
. 241	. 3588887	2103	775130.91	43.38	. 291	. 3691519	2003	$\begin{array}{lll}78 & 26 & 47.85\end{array}$	4 I .3 I
. 242	. 3590989	2101	$77 \quad 5214.27$	43.34	. 292	- 369352 I	2001	$\begin{array}{llll}78 & 27 & 29.14 \\ 78 & 28 & 10.30\end{array}$	41.27
. 243	- 3593089	2099	$775257 \cdot 59$	$43 \cdot 30$. 293	. 3695520	1999	$\begin{array}{llll}78 & 28 & 10.39 \\ 78 & 28 & 51.60\end{array}$	4 I .23
. 244	- 3595187	2097	775340.87	43.26	. 294	. 3697518	1997	782851.60	41.19
2.245	1.359 7283	2095	775424.10	43.21	2.295	1. 3699514	1995	$\begin{array}{lll}78 & 29 & 32.77\end{array}$	41.15
. 246	. 3599377	2093	$77 \quad 5507.29$	43.17	. 296	. 3701508	1993	$\begin{array}{lllllllllll}78 & 30 & 13.89\end{array}$	41.11
. 247	. 360 I469	2091	775550.44	43.13	. 297	- 3703500	1991	$\begin{array}{llllllllll}78 & 30 & 54.98 \\ 78 & 31 & 36.03\end{array}$	4 I .07
. 248	. 3603559	2089	775633.55	43.09	. 298	-370 5490	1989	$\begin{array}{lll}78 & 31 & 36.03 \\ 78 & 32 & 17.04\end{array}$	41.03 40.99
. 249	. 3605647	2087	775716.62	43.04	. 299	-370 7479	1987	$78 \quad 32$ 17.04	40.99
2.250	1.360 7733	2085	775759.64	43.00	2.300	1.3709465	1985	783258.01	40.95
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$
2.300	I.370 9465	198	$78^{\circ} 32^{\prime} 58.101$	40.95	2.350	I. 380633 I	1800	06' 16.03	38.99
. 301	. 371 I 449	1983	783338.94	40.91	. 351	. 3808221	1888	790655.00	38.95
. 302	. 3713431	1981	$78 \quad 3419.82$	40.87	. 352	.381 0io8	1886	790733.93	38.91
. 303	-371 5412	1979	783500.67	40.83	-353	.381 1994	1885	790812.82	38.87
. 304	. 3717390	1977	783541.48	40.79	- 354	. 3813877	1883	790851.67	38.84
2.305	I.371 9367	1975	783622.25	40.75	2.355	I.38I 5759	188I	790930.49	38.80
. 306	. 372 1341	1974	783702.98	40.71	. 356	.381 7639	1879	79 10 09.27	38.76
. 307	. 3723314	1972	$\begin{array}{lllllllllll}78 & 37 & 43.66\end{array}$	40.66	- 357	-381 9517	1877	79 IO 48.01	38.72
. 308	. 3725284	1970	$78 \quad 38 \quad 24.31$	40.63	- 358	. 3821394	1875	79 II 26.71	38.08
. 309	. 3727253	1968	783904.92	40.59	-359	. 3823268	1874	79 12 05.37	38.64
2.310	I. 3729220	1966	783945.49	40.55	2.360	I. 382514 I	1872	79 I2 44.00	38.61
.3II	. 373 I185	1964	784026.02	40.51	.36I	. 3827012	1870	79 I3 22.59	38.57
-312	- 373 3148	1962	784106.51	40.47	. 362	. 382 888I	1868	79 I4 OI.I4	38.53
. 313	. 3735109	1960	784146.96	40.43	- 363	. 3830748	1866	79 I4 39.65	38.49
-314	. 3737068	1958	784227.37	40.39	. 364	. 383 26I3	1864	79 I5 18.12	38.46
2.315	I. 3739025	1956	$78 \quad 4307.74$	40.35	2.365	I. 3834476	1863	791556.56	38.42
. 316	- 3740980	1954	784348.07	40.31	. 366	.3836338	1861	79 16 34.96	38.38
. 317	. 3742934	1952	784428.36	40.27	. 367	. 383 8198	1859	79 I7 13.32	38.34
. 318	. 3744885	1950	784508.61	40.23	. 368	. 3840056	1857	79 17 51.64	38.30
. 319	-374 6835	1949	784548.82	40.19	. 369	- 384 I912	1855	79 I8 29.93	38.27
2.320	1.3748782	1947	784618.99	40.15	2.370	1.384 3766	1853	79 19 08.18	38.23
. 321	. 3750728	1945	784700.13	40.11	-37I	. 3845619	1852	79 I9 46.39	38.19
- 322	. 3752672	1943	784749.22	40.07	-372	- 3847470	1850	$79 \quad 2024.56$	38.15
. 323	. 3754614	1941	784829.28	40.04	- 373	. 3849318	1848	79 21 02.70	38.12
- 324	. 3756554	1939	$78 \quad 4909.29$	40.00	- 374	. 385 II65	1846	792140.80	38.08
2.325	I. 3758492	1937	784949.27	39.96	2.375	I. 3853011	1844	792218.86	38.04
. 326	. 3760428	1935	785029.21	39.92	. 376	. 3854854	1843	79.2256 .88	38.00
. 327	- 3762362	1933	78 51 09.10	39.88	- 377	. 3856696	1841	$\begin{array}{llllll}79 & 23 & 34.87\end{array}$	37.97
. 328	. 3764295	1931	78 51 48.96	39.84	- 378	. 3858536	1839	792412.81	37.93
. 329	. 3766225	1930	785228.78	39.80	- 379	. 3860374	1837	792450.73	37.89
2.330	I. 3768154	1928	$\begin{array}{llll}78 & 53 & 08.56\end{array}$	39.76	2.380	I. 3862210	1835	792528.60	37.86
. 331	. 3770081	1926	785348.30	39.72	.381	. 3864044	1833	$79 \quad 2606.44$	37.82
. 332	- 3772006	1924	785428.01	39.68	. 382	. 3865877	1832	792644.24	37.78
- 333	. 3773929	1922	785507.67	39.64	-383	. 3867708	1830	792722.00	37.74
. 334	. 3775850	1920	785547.29	39.61	- 384	. 3869537	1828	792759.73	37.71
2.335	1.377 7769	1918	$\begin{array}{llll}78 & 56 & 26.88\end{array}$	39.57	2.385	1.3871364	1826	$79 \quad 2837.41$	37.67
. 336	. 3779686	1916	785706.43	39.53	. 386	. 3873189	1824	792915.07	37.63
- 337	-378 1601	1914	785745.94	39.49	. 387	. 3875013	1823	$79 \quad 2952.68$	37.60
. 338	-378 3515	1913	$78 \quad 58 \quad 25.40$	39.45	. 388	. 3876834	182 I	793030.26	37.56
- 339	- 3785427	I9II	785904.84	39.41	. 389	. 3878655	1819	793107.80	37.52
2.340	I. 3787336	1909	785944.23	39.37	2.390	I. 3880473	1817	79 31 45.30	37.49
-341	- 3789244	1907	790023.58	39.33	. 391	. 3882289	1816	$\begin{array}{llll}79 & 32 & 22.77\end{array}$	37.45
- 342	- 3791150	1905	79 OI 02.89	39.30	- 392	. 3884104	I8I4	$\begin{array}{llll}79 & 33 & 00.20\end{array}$	$37 \cdot 41$
. 343	. 3793054	1903	79 O1 42.17	39.26	- 393	. 3885917	1812	$\begin{array}{lllllllll}79 & 33 & 59\end{array}$	$37 \cdot 37$
- 344	- 3794957	1901	790221.41	39.22	- 394	. 3887728	1810	793414.95	$37 \cdot 34$
2.345	I. 3796857	1899	790300.61	39.18	2.395	I. 3889537	I808	793452.27	$37 \cdot 30$
- 346	- 3798756	1898	$\begin{array}{lllllllllllll}79 & 03 & 39.77\end{array}$	39. I4	. 396	- 389 I345	1807	$\begin{array}{lllllllllllllllllll}79 & 35 & 29.55\end{array}$	37.26
- 347	-380 0652	1896	790418.89	39.10	- 397	- 3893150	1805	793606.80	37.23
-348	- 3802547	1894	790457.97	39.06	- 398	-389 4954	1803	793644.01	37.19
- 349	- 3804440	1892	790537.02	39.03	- 399	- 3896757	1801	7937 2I. 18	37.15
2.350	I.380633I	1890	790616.03	38.99	2.400	I. 3898557	1800	793758.32	37.12
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	$\omega \mathrm{s}^{\text {ch }} \mathrm{u}$	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.400	1.3898557	1800	$79^{\circ} 37{ }^{\prime \prime} 58.32$	37.12	2.4				4
. 401	. 3900356	1798	$\begin{array}{llll}79 & 38 & 35.42\end{array}$	37.08	2.451				
. 402	. 3902153	1796	$\begin{array}{lllll}79 & 39 & \mathbf{1 2 . 4 8}\end{array}$	37.05	. 452	- 3989779	1710	800919.91	$35 \cdot 30$ 35.27
. 403	- 3903948	I794	793949.51	37.01	. 453	. 399 I488	1708	800955.16	35.23
. 404	- 390 574I	1792	794026.50	36.97	. 454	. 3993195	1706	80 10 30.37	35.20
2.405	I. 3907533	1791	79 41 03.45	36.94	2.455	I. 399490 I	I705	80 II 05.55	35.16
. 406	. 3909323	1789	794140.37	36.90	. 456	. 3996605	1703	80 II 40.70	35.13
. 407	-391 IIII	1787	794217.25	36.86	. 457	. 3998307	1701	8012 I 5.8 I	35.09
. 408	. 3912897	1785	7942 54.10	36.83	. 458	. 4000007	1700	80 I2 50.88	35.06
. 409	. 391468 I	1784	794330.91	36.79	. 459	. 4001706	1698	801325.92	35.02
2.410	I.391 6464	1782		36.75	2.460	I. 4003403	I696	80 I4 00.93	34.99
.41I	-391 8245	1780	794444.42	36.72	. 461	. 4005099	1695	80 I4 35.90	34.95
. 412	. 3920025	1778	7945 21.12	36.68	. 462	. 4006793	1693	801510.84	34.92
.413	. 3921802	1777	$7945 \quad 57.78$	36.65	. 463	. 4008485	1691	80 15 45.74	34.89
.414	- 3923578	I775	794634.41	36.61	. 464	. 4010175	1690	80 16 20.61	34.85
2.415	1. 3925352	1773	7947 II.00	36.57	2.465	I. 4011864	1688	80 16 55.45	34.82
. 416	. 3927124	1771	794747.56	36.54	. 466	. 401 3551	1686	80 I7 30.25	34.78
. 417	. 3928895	1770	794824.08	36.50	. 467	. 4015237	1685	80 18 05.01	34.75
. 418	. 3930664	1768	794900.57	36.47	. 468	. 4016921	1683	80 I8 39.74	34.71
. 419	- 393 243I	1766	794937.02	36.43	. 469	. 4018603	168I	80 I9 14.44	34.68
2.420	1. 3934196	1764	79 50 13.43	36.39	2.470	I. 4020283	1680	801949.10	34.65
. 42 I	. 3935960	1763	795049.80	36.36	. 47 I	. 4021962	1678	$80 \quad 2023.73$	34.61
. 422	- 3937722	1761	79 51 26.15	36.32	. 472	. 4023639	1676	$80 \quad 2058.33$	34.58
. 423	- 3939482	1759	795202.45	36.29	. 473	. 4025315	1675	80 21 32.89	34.54
. 424	. 3941240	1758	$79 \quad 5238.72$	36.25	-474	. 4026989	1673	802207.41	34.51
2.425	1. 3942997	1756	$\begin{array}{llll}79 & 53 & 14.96\end{array}$	36.22	2.475	I. 402866 I	1672	802241.91	34.48
. 426	. 3944752	1754	7953 51.15	36.18	. 476	. 4030332	1670	802316.36	34.44
. 427	. 3946505	1752	795427.32	36.14	. 477	. 4032001	1668	$80 \quad 2350.79$	34.41
. 428	- 3948257	1751	$\begin{array}{llllllll}79 & 55 & 03.44\end{array}$	36. II	. 478	. 4033668	1666	802425.18	$34 \cdot 37$
. 429	- 3950006	1749	$79 \quad 5539.54$	36.07	-479	. 4035334	1665	802459.54	$34 \cdot 34$
2.430	1.3951754	1747	$79 \quad 5615.59$	36.04	2.480	I. 4036998	1663	802533.86	34.3I
. 431	. 3953501	1745	795651.61	36.00	.48I	. 4038660	1662	8026 08.15	34.27
. 432	. 3955245	1744	795727.60	35.97	. 482	. 404 0321	1660	802642.40	34.24
. 433	. 3956988	1742	$79 \quad 58 \quad 03.55$	35.93	. 483	. 4041980	1658	8027 I6.62	34.20
. 434	. 3958729	1740	$79 \quad 5839.46$	35.90	. 484	. 4043637	1657	802750.81	34.17
2.435	1.3960469	1739	795915.34	35.86	2.485	I. 4045293	1655	$\begin{array}{llll}80 & 28 & 24.97\end{array}$	34.14
. 436	. 3962207	1737	7959 51.19	35.83	. 486	. 4046947	1653	$80 \quad 2859.09$	34.10
. 437	- 3963943	1735	$80 \quad 0026.99$	35.79	. 487	. 4048600	1652	80	34.07
. 438	- 3965677	1733	80 OI 02.77	35.76	. 488	. 405 025I	1650	803007.23	34.04
. 439	- 3967410	1732	80 or 38.51	35.72	. 489	.4051900	1648	803041.25	34.00
2.440	I. 396914 I	1730	800214.2 I	35.69	2.490	I. 4053548	1647	803115.23	33.97
. 441	. 3970870	1728	800249.88	35.65	. 491	. 4055194	1645	803149.19	33.94
. 442	- 3972597	1727	800325.51	35.62	. 492	. 4056838	1644	803223.10	33.90
. 443	. 3974323	1725	8004 OI.II	35.58	. 493	. 405848 I	1642	80	33.87
. 444	- 3976047	I723	800436.67	35.54	. 494	. 406 OI22	1640	803330.84	33.84
2.445	1. 3977770	1722	800512.20	35.51	2.495	1.405 1762	1639	803404.66	33.80
. 446	- 3979490	1720	80	35.48	. 496	. 4063400	1637	80	33.77
. 447	. 3981209	1718	8006123.15	35.44	. 497	. 4055036	1636	80	33.74
.448	- 3982927	1716	80	35.41	. 498	.406667 I	1634	80	33.70
. 449	- 3984642	1715	800733.96	35.37	. 499	.4068304	1632	803619.60	33.67
2.450	1. 3986356	1713	800809.31	$35 \cdot 34$	2.500	I. 4069936	1631	803653.26	33.64
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(\mathrm{e}^{0}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	sech	$2 \tan ^{-1}(\mathrm{eu})-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$
2.500	I. 4069936	163I	$80^{\circ} 36^{\prime} 53.126$	33.64	2.550	22		04'14.22	22
. 501	. 407 I 566	1629	80 3726.88	33.60	.551	.415 1043	1551	81 0446.22	31.98
. 502	. 4073194	1627	803800.46	33.57	- 552	. 4152593	1549	81 0518.19	31.95
. 503	. 407482 I	1626	$\begin{array}{lllll}80 & 38 & 34.01\end{array}$	33.54	. 553	. 4154142	I 548	81 05 50.13	31.92
- 504	. 4076446	1624	80 3907.54	$33 \cdot 50$	- 554	.415 5688	1546	81 0622.03	31.89
2.505	1. 4078069	1623	803941.02	$33 \cdot 47$	2.555	1.415 7234	1545	81 0653.9 I	31.85
. 506	. 407969 I	1621	$80 \quad 4014.47$	33.44	. 556	. 4158778	1543	81 0725.75	31.83
. 507	. 408 I3II	1619	80 4047.90	33.40	. 557	.416 0320	I54I	81 0757.56	31.80
. 508	. 4082930	1618	804121.28	$33 \cdot 37$. 558	.416 I860	I 540	81 0829.34	31.76
. 509	. 4084547	1616	804154.64	$33 \cdot 34$. 559	. 4163400	1538	8I 0901.09	31.73
2.510	1. 4086163	15	804227.96	33.31	2.560	1.416 4937	1537	81 0932.80	31.70
.511	. 4087777	1613	8043 O1. 25	33.27	. 561	. 4166473	1535	8i Io 04.49	31.67
. 512	. 4089389	1612	804334.5 I	33.24	. 562	. 4168008	1534	81 10 36.14	31.64
. 513	. 4091000	1610	804407.73	33.21	. 563	. 4169541	1532	81 II 07.77	31.61
. 514	. 4092609	1608	804440.92	33.17	. 564	. 4171073	1531	8I II 39.36	31.58
2.515	I. 4094216	1	$80 \quad 4514.08$	33.14	2.565	1.4172603	1529	81 1210.92	3I. 54
. 516	. 4095822	1605	804547.20	33.11	. 566	. 4174131	1528	81 1242.45	31.51
. 517	. 4097427	1504	804620.30	33.08	. 567	.4175659	1526	81 13 13.95	31.48
. 518	. 4099029	1602	804653.36	33.04	. 568	. 4177184	1525	81 13 45.4 I	31.45
. 519	.410053 I	1600	$80 \quad 47 \quad 26.38$	33.01	. 569	.4178708	1523	81 14 16.85	31.42
2.520	1.410 2230	99	804759.38	32.98	2.570	I. 418023 I	1522	81 14 48.25	31. 39
. 521	. 4103828	I 597	80 4832.34	32.95	. 571	. 4181752	1520	81 15 19.63	31.36
. 522	. 4105425	1595	$80 \quad 4905.27$	32.91	. 572	. 4183271	1519	8i I5 50.97	3 I .33
. 523	.410 7020	1594	80	32.88	. 573	.4184789	1517	81 16 22.28	31.30
. 524	. 4108613	1593	80 50 II. 03	32.85	. 574	.4186306	1516	8ı 1653.56	3 I .27
2.525	1.4110205	1591	805043.86	32.82	2.575	I.418 7821	1514	81 17 24.81	31.23
. 526	. 4111795	1589	805116.66	32.78	. 576	. 4189334	1513	81 17 56.03	31.20
. 527	- 4 II 3384	1588	8o 51 49.43	32.75	. 577	-419 0847	1511	81 181827.22	3 I .17
. 528	.4II 4971	1586	805222.17	32.72	. 578	. 4192357	1510	81 I8 58.38	3I.I4
. 529	.4II 6556	1585	805254.87	32.69	. 579	. 4193866	1508	81 19 29.50	3 I .1 I
2.530	I.4II 8140	1583	$80 \quad 53 \quad 27.54$	32.65	2.580	I.419 5374	1.507	81 2000.60	31.08
. 53 I	.4II 9722	1582	805400.18	32.62	. 58 I	. 4196880	1505	81 2031.67	3 I .05
. 532	.4121303	1580	80	32.59	. 582	. 4198384	1504	81 21 02.70	31.02
. 533	. 4122882	1578	$80 \quad 5505.36$	32.56	. 583	. 4199888	1502	81 2133.70	30.99
. 534	. 4124460	1577	805537.90	32.53	. 584	. 420 1389	1501	81 2204.68	30.96
2.535	1.412 6036	1575	805610.41	32.49	2.585	I. 4202889	1499	81 2235.62	30.93
. 536	. 4127611	1574	805642.89	32.46	. 586	. 4204388	1498	81 2306.53	30.90
. 537	. 4129184	1572	805715.33	32.43	. 587	. 4205885	1496	81 2337.4 I	30.87
. 538	.413 0755	1571	805747.75	32.40	. 588	. 420738 I	1495	81 2408.26	30.84
. 539	. 4132325	1569	805820.13	32.37	. 589	. 4208875	1493	81 2439.09	30.81
2.540	1.4133893	1568	$\begin{array}{lllll}80 & 58 & 52.48\end{array}$	32.33	2.590	1.421 0368	1492	8I 2509.88	30.77
. 54 I	. 4135460	1566	805924.80	32.30	. 591	. 4211859	1491	81 2540.63	30.74
. 542	. 4137025	1564	80 5957.08	32.27	. 592	. 4213349	1489	81 26 II. 36	30.71
.543	. 4138589	1563	81 0029.34	32.24	. 593	. 4214837	1488	81 2642.06	30.68
. 544	.414 OI5I	1561	81 OI OI. 56	32.21	. 594	. 4216324	1486	81 2712.73	30.55
2.545	1.414 1712	1560	81 OI 33.75	32.17	2.595	1.421 7809	1485	81 $2743 \cdot 37$	30.52
. 546	. 4143271	1558	81 0205.91	32.14	. 596	. 4219293	1483	812813.98	30.59
. 547	. 4144829	1557	81 0238.03	32.11	. 597	. 4220776	1482	81 2844.55	30.56
. 548	. 4146385	1555	81 03 10.13	32.08	. 598	. 4222257	1480	81 29 I5.10	30.53
. 549	. 4147939	1554	81 0342.19	32.05	. 599	.4223736	1479	81 2945.62	30.50
2.550	1.414 9492	1552	81 0414.22	32.02	2.600	1.4225214	1477	81 30 16.11	30.47
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

Smithsonian tables

The Gudermannian.

u	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.600	1.4225214		81 30° 16"II	30.47					29.00
. 601	. 4226691		8r 3046.56						. 00
. 602	. 422 8166	1474	813		,			81 5531.62	28.97
. 603	.4229640	1473	81 3147.39	30.38	. 653	. 430 I495	1402	56	
. 604	. 423 III2	1471	81 32 I7.75	30.35	. 654	. 4302896	1400	8I 5658.41	28.89
2.605	1. 4232583	1470	81 3248.09	30.32	2.655	I. 4304296	I 399	81 5727.28	28.86
. 606	. 4234052	1469	$\begin{array}{llll}81 & 33 & 18.40\end{array}$	30.29	. 656	. 4305694	I 398	81 5756.12	28.83
. 607	. 4235520	1467	81 3348.67	30.26	. 657	. 430709 I	I396	81 $58 \quad 24.94$	28.80
. 608	. 4236986	1466	81 3418.92	30.23	. 658	. 4308487	1395	81 5853.72	28.77
. 609	. 4238451	1464	81 3449.15	30.20	. 659	. 430 988I	1394	81 5922.48	28.74
2.610	1.4239915	1463	81 3519.32	30.17	2.660	I.43I I274	1392	81 5951.21	28.72
. 611	. 4241377	1461	81 3549.48	30.14	. 661	. 4312665	1391	820019.91	28.69
. 612	. 4242837	1460	8i 3619.61	30.11	. 662	. 4314055	1389	820048.58	28.66
.613	. 4244297	1458	8I 3649.7 I	30.08	. 663	. 4315444	1388	82 OI I7.23	28.63
. 614	. 4245754	1457	81 3719.77	30.05	. 664	-431 683I	I387	82 or 45.84	28.60
2.615	1.4247211	1456	8 I 3749.8 I	30.02	2.665	I.431 8217	I385	820214.43	28.57
. 616	. 4248665	1454	81 3819.82	29.99	. 666	. 4319602	1384	820242.99	28.55
. 617	. 425 OII9	1453	81 3849.80	29.96	. 667	. 4320985	I383	8203 II. 52	28.52
.618	. 4251571	1451	81 3919.75	29.93	. 668	. 4322367	1381	820340.02	28.49
. 619	. 425302 I	1450	81 3949.67	29.90	. 669	. 4323747	1380	820408.50	28.46
2.620	1.4254470	8	81 4019.56	29.87	2.670	I. 4325127	1378	820436.95	28.43
. 621	. 4255918	1447	81 4049.42	29.85	. 671	. 4326504	1377	820505.36	28.40
. 622	. 4257364	1446	81 4I 19.25	29.82	. 672	. 432 7881	1376	820533.75	28.38
. 623	. 4258809	1444	8I 4I 49.05	29.79	. 673	. 4329256	1374	820602.12	28.35
. 624	. 4260252	1443	81 4218.82	29.76	. 674	. 4330629	I373	820630.45	28.32
2.625	1. 4261694	144I	81 4248.56	29.73	2.675	1. 4332002	1372	820658.76	28.29
. 626	. 426 3135	1440	814318.28	29.70	. 676	. 4333373	1370	820727.03	28.26
. 627	. 4264574	1438	81 4347.96	29.67	. 677	. 4334742	1369	820755.28	28.24
. 628	. 4266012	1437	81 44 I7.6I	29.64	. 678	. 433 6110	I368	820823.51	28.21
. 629	. 4267448	1436	81 4447.24	29.61	. 679	. 4337477	I366	820851.70	28.18
2.630	I. 4268883	1434	81 45 16.83	29.58	2.680	I. 4338843	1365	820919.86	28.15
. 631	. 427 03I6	1433	81 4546.40	29.55	.68I	. 4340207	1363	820948.00	28.12
. 632	. 427 I748	1431	81 4615.94	29.52	. 682	. 434 I570	1362	82 10 16.11	28.10
. 633	. 4273179	1430	8 I 4645.44	29.49	. 683	. 434 293I	1361	82 10 44.20	28.07
. 634	. 4274608	1428	81 47 I4.92	29.46	. 684	. 4344291	1359	82 II I2.25	28.04
2.635	1.4276036		81 4744.37	29.43	2.685	1. 4345650	1358	82 II 40.28	28.01
. 636	. 4277462	1426	81 48 I3.79	29.41	. 685	. 4347008	I 357	82 12 08.28	27.99
. 637	. 4278887	1424	81 4843.18	29.38	. 687	. 4348364	1355	82 I2 36.25	27.96
. 638	. 4280310	1423	81 49 I2.55.	29.35	. 688	. 4349719	1354	821304.19	27.93
. 639	. 428 I732	1421	81 49 41.88	29.32	. 689	. 4351072	1353	82 13 32.11	27.90
2.640	1.4283153	1420	81 50 II. 18	29.29	2.690	1.4352424	1351	82 I3 59.99	27.87
. 641	. 4284572	1419	81 5040.46	29.26	. 691	. 4353775	I350	82 I 427.86	27.85
. 642	. 4285990	1417	81 5109.70	29.23	. 692	. 4355124	1349	821455.69	27.82
. 643	. 4287407	1416	81 5I 38.92	29.20	. 693	. 4356472	1347	8215123.49	27.79
. 644	. 4288822	1414	81 52 08.1I	29.17	. 694	. 435 7819	I346	82 I5 51.27	27.77
2.645	1. 4290236	1413	81 5237.27	29.14	2.695	1. 4359164	I345	821619.02	27.74
. 646	. 4291648	1412	81 5306.40	29.12	. 696	. 4360508	1343	821646.75	27.71
. 647	. 4293059	1410	81 5335.50	29.09	. 697	. 436 I851	1342	821714.44	27.68
. 648	. 4294468	1409	81 54.04 .57	29.06	. 698	. 4363192	I34I	$821742: 11$	27.65
. 649	. 4295876	1407	81 5433.62	29.03	. 699	. 4364532	I339	$82 \quad 1809.75$	27.63
2.650	1. 4297283	1406	81 $55 \quad 02.63$	29.00	2.700	1.4365871	1338	$\begin{array}{lllll}82 & 18 & 37.36\end{array}$	27.60
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	h	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech	u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	ω sech	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega F_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega F_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$
2.700	1.436 587 I	1338	$82^{\circ} 188^{\prime} 37.36$	27.60	2.750	I. 443 II44	1273	$82^{\circ} 4 \mathrm{I}^{\prime} 03.70$	26.26
. 701	.4367209	1337	$82 \begin{array}{llll}8 & 19 & 4.95\end{array}$	27.57	.75I	. 4432416	1272	824129.95	26.24
. 702	. 4368545	1335	82 19 32.51	27.54	. 752	. 4433688	127 I	824156.18	26.21
. 703	. 4369879	1334	822000.04	27.52	. 753	. 4434958	1270	824222.38	26. 19
. 704	. 437 I213	1333	$82 \quad 2027.54$	27.49	. 754	. 4436227	1268	824248.55	26.16
2.705	I. 4372545	1331	822055.02	27.46	2.755	I. 4437495	1267	824314.70	26.14
. 706	. 4373876	1330	82 21 22.47	27.44	. 756	. 4438761	1266	824340.82	26.11
. 707	. 4375205	1329	82 21 49.89	27.41	. 757	. 4440026	1265	824406.92	26.08
. 708	. 4376533	1327	822217.29	27.38	. 758	. 4441290	1263	824432.99	26.06
. 709	. 4377860	1326	822244.66	27.35	. 759	. 4442553	1262	824459.03	26.03
2.710	I. 4379186	1325	$82 \quad 2312.00$	27.33	2.760	I. 44438 I 4	I26I	824525.05	26.01
. 711	. 4380510	1324	822339.31	27.30	. 761	. 4445074	1260	824551.04	25.98
. 712	. 438 I833	1322	822406.60	27.27	. 762	. 4446333	1258	824617.01	25.95
. 713	. 438 3154	1321	822433.85	27.25	. 763	. 444759 I	1257	824642.95	25.93
. 714	. 4384475	1320	8225 OI. 09	27.22	. 764	. 4448847	1256	824708.87	25.90
2.715	I. 4385794	1318	8225128.29	27.19	2.765	1 L .4450102	1255	824734.76	25.88
. 716	. 438 7III	1317	$82 \quad 25 \quad 55.47$	27.17	. 766	. 4451356	1253	824800.62	25.85
. 717	. 4388428	1316	822622.63	27.14	. 767	.4452609	1252	824826.46	25.83
. 718	. 4389743	1314	822649.75	27.11	. 768	. 4453860	I25I	824852.27	25.80
. 719	. 4391057	1313	822716.85	27.08	. 769	. 445 511I	1250	82.49 18.06	25.77
2.720	I. 4332369	1312	822743.92	27.06	2.770	1. 4456360	1248	824943.82	25.75
. 72 I	. 4393680	1310	822810.96	27.03	. 771	. 4457607	1247	825009.56	25.72
. 722	. 4394990	1309	$\begin{array}{lllll}82 & 28 & 37.98\end{array}$	27.00	. 772	. 4458854	1246	825035.27	25.70
. 723	. 4396299	1308	$82 \begin{array}{llllllll}82 & 29 & 04.97\end{array}$	26.98	. 773	. 446 10099	1245	825100.95	25.67
. 724	. 4397606	1307	822931.94	26.95	. 774	. 446 I343	1243	825126.61	25.65
2.725	1. 43988912	1305	$82 \quad 2958.87$	26.92	2.775	I. 4462586	1242	825152.25	25.62
. 726	. 440 0216	1304	823025.79	26.90	. 776	. 4463827	I24I	825217.86	25.60
. 727	. 440 I 520	1303	823052.67	26.87	. 777	. 4465068	1240	825243.44	25.57
. 728	. 4402822	1301	823119.53	26.84	. 778	. 4466307	1238	825309.00	25.55
. 729	. 440 4123	1300	82 3I 46.36	26.82	. 779	. 4467545	1237	825334.53	25.52
2.730	I. 4405422	1299	823213.16	26.79	2.780	I. 4468781	1236	825400.04	25.49
. 731	. 4406720	1298	823239.94	26.76	. 781	.4470017	1235	82. 5425.52	25.47
. 732	. 440 8017	1296	823306.69	26.74	. 782	. 4471251	1234	825450.98	25.44
. 733	. 44093 I 3	1295	823333.42	26.71	. 783	. 4472484	1232	825516.41	25.42
. 734	.441 0607	1294	823400.11	26.68	. 784	.4473716	1231	825541.81	25.39
2.735	I.44I 1900	1292	823425.78	26.66	2.785	I. 4474946	1230	825607.19	25.37
. 736	. 441 3192	1291	823453.43	26.63	. 786	. 447 6I75	1229	825632.55	25.34
. 737	-441 4483	1290	$\begin{array}{llll}82 & 35 & 20.05\end{array}$	26.61	. 787	. 4477403	1227	825657.88	25.32
. 738	. 4415772	1289	823546.64	26.58	. 788	. 4478630	1226	8257 23.19	25.29
. 739	.441 7060	1287	823613.21	26.55	.789	. 4479856	1225	825748.47	25.27
2.740	I.441. 8347	1286	823639.75	26.53	2.790	1. 4481080	1224	825813.72	25.24
. 741	. 4419632	1285	$\begin{array}{lllll}82 & 37 & 06.26\end{array}$	26.50	.791	. 4482303	1223	825838.95	25.22
. 742	. 4420916	1283	823732.75	26.47	. 792	. 4483525	I22I	825904.16	25.19
.743	. 4422199	1282	$\begin{array}{lllll}82 & 37 & 59.21\end{array}$	26.45	. 793	. 4484746	1220	825929.34	25.17
. 744	. 442348 I	1281	$\begin{array}{lllll}82 & 38 & 25.64\end{array}$	26.42	. 794	. 4485966	1219	825954.49	25.14
2.745	I. 442476 I	1280	$\begin{array}{llll}82 & 38 & 52.05\end{array}$	26.40	2.795	I. 4487184	1218	830019.62	25.12
.746	- 4426040	1278	$\begin{array}{llll}82 & 39 & 18.43\end{array}$	26.37	. 796	. 4488401	1217	830044.73	25.09
. 747	. 4427318	1277	$\begin{array}{llll}82 & 39 & 44.79\end{array}$	26.34	. 797	-448 9617	1215	83 OI 09.81	25.07
. 748	. 4428594	1276	8240 II. I2	26.32	. 798	. 4490832	1214	83 OI 34.86	25.04
. 749	.4429870	1275	824037.42	26.29	. 799	. 4492045	1213	83 or 59.90	25.02
2.750	I. 443 II44	1273	824103.70	26.26	2.800	1. 4493258	1212	830224.90	24.99
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	$\mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.800	I. 4493258	1212	$83^{\circ} 022^{\prime \prime} 24.90$		850			- "	
. 801	. 4494469	I2II	830249.88	24.97	.85'I	4553517	1152		
. 802	. 4495679	1209	$\begin{array}{lllll}83 & 03 & 14.84\end{array}$	24.94	. 852	. 4554668	II5I	832331.58	
. 803	. 4496888	1208	8303139.77	24.92	. 853	. 455 5819	II50	832355.31	23.71
. 804	. 4498095	1207	830404.68	24.89	. 854	. 4556968	II48	$83 \quad 24$ I9.01	23.69
2.805	I. 4499301	1206	$\begin{array}{llll}83 & 04 & 29.56\end{array}$	24.87	2.855	I. $4558 \mathrm{II5}$	1147	832442.69	23.67
. 806	. 4500507	1205	830454.42	24.85	. 856	. 4559262	1146	$83 \quad 2506.34$	23.64
. 807	. 450 1710	1203	830519.25	24.82	. 857	. 4560408	I 145	832529.97	23.62
. 808	. 4502913	1202	830544.06	24.80	. 858	. 4561552	II44	832553.58	23.59
. 809	. 450 4II5	I201	830608.84	24.77	. 859	. 4562696	II43	8326 17.16	23.57
2.810	I. 4505315	1200	830633.60	24.75	2.860	I. 4563838	1142	$\begin{array}{lll}83 & 2640.72\end{array}$	23.55
.8II	. 4506514	1199	830658.33	24.72	. 86 I	. 4564979	1140	832704.25	23.52
. 812	. 4507712	I I98	830723.04	24.70	. 862	. 456 6II9	1139	$8327 \quad 27.77$	23.50
. 813	. 4508909	I:196	830747.73	24.67	. 863	. 4567258	II38	832751.26	23.48
. 814	. 4510105	1195	$\begin{array}{lllllll}83 & 08 & 12.39\end{array}$	24.65	. 864	. 4568395	II37	8328 14.72	23.45
2.815	1.451 1299	1194	83 08 37.03	24.62	2.865	I. 4569532	1136	$83 \quad 2838.16$	23.43
.816	. 4512492	1193	830901.64	24.60	. 866	. 4570667	II35	8329 0.1. 58	23.41
. 817	.451 3684	1191	$\begin{array}{llllllllllll}83 & 09 & 26.23\end{array}$	24.58	. 867	. 457 1801	II34	832924.98	23.38
.818	. 4514875	1190	830950.79	24.55	. 868	. 4572935	1133	832948.35	23.36
. 819	. 4516065	I 189	83 IO 15.33	24.53	. 869	. 4574067	II3I	8330 II. 70	23.34
2.820	I.451 7253	1188	83 10 39.84	24.50	2.870	I. 4575198	II30	$83 \quad 30 \quad 35.03$	23.32
. 821	. 451844 I	1187	83 II 04.33	24.48	. 871	. 4576327	1129	833058.33	23.29
. 822	-451 9627	II86	83 II 28.80	24.45	. 872	. 4577456	1128	83 31 21.6I	23.27
. 823	. 452 0812	II84	83 II 53.24	24.43	. 873	. 4578584	1.127	83 31 44.87	23.25
. 824	. 4521995	I 183	831217.66	24.41	. 874	. 4579710	1126	833208.11	23.22
2.825	1.452 3178	1182	831242.05	24.38	2.875	1. 4580835	1125	833231.32	23.20
. 826	. 4524359	I I8I	83 13 06.42	24.36	. 876	. 4581959	1124	833254.50	23.18
. 827	. 4525540	1180	83 13 30.76	24.33	. 877	. 4583083	1123	8333317.67	23.15
. 828	. 4526719	1178	83 I3 55.08	24.31	. 878	. 4584204	II2I	833340.81	23.13
. 829	. 4527897	1177	83 I4 19.38	24.28	. 879	. 4585325	I 120	833403.93	23.11
2.830	I. 4529073	1176	83 I4 43.65	24.26	2.880	I. 4586445	III9	833427.03	23.08
. 83 I	. 4530249	II75	83 I5 07.90	24.24	. 881	. 4587564	1118	833450.10	23.06
. 832	. 4531423	II74	83 15 32.12	24.21	. 882	. 458 8681	1117	8335 I3.15	23.04
. 833	. 4532597	II73	83 15 56.32	24.19	. 883	. 4589798	1116	833536.18	23.02
. 834	. 4533769	II7I	$\begin{array}{llll}83 & 16 & 20.50\end{array}$	24. 16	. 884	. 459 09I3	III5	8335 59.18	22.99
2.835	I. 4534940	II70	$83 \quad 1644.65$	24.14	2.885	I. 4592027	III4	833622.16	22.97
. 836	. 453 6109	1169	83 I7 08.78	24.12	. 886	. 4593140	ILI3	833645.12	22.95
. 837	. 4537278	1168	83 I7 32.88	24.09	. 887	. 4594252	IIII	833708.06	22.92
. 838	. 4538445	1167	83 I7 56.96	24.07	. 888	. 4595363	IIIO	833730.97	22.90
. 839	. 453 9612	II66	83 I8 21.02	24.04	. 889	. 4596473	1109	833753.86	22.88
2.840	I. 4540777	I'165	83 I8 45.05	24.02	2.890	I. 459758 I	1108	$83 \quad 3816.73$	22.86
. 841	. 454 194I	1163	83 19 09.06	24.00	. 891	. 4598689	1107	$\begin{array}{lllll}83 & 38 & 39.57\end{array}$	22.83
.842	. 4543104	1162	83 I9 33.04	23.97	. 892	. 4599795	1106	833902.40	22.81
. 843	- 4544265	1161	83 I9 57.01	23.95	. 893	. 4600901	1105	8339 25.19	22.79
. 844	. 4545426	1160	$83 \quad 2020.94$	23.93	. 894	. 4602005	1104	833947.97	22.77
2.845	I. 4546585	I I59	$83 \quad 2044.85$	23.90	2.895	I. 4603108	1103	$83 \quad 4010.73$	22.74
. 846	- 4547743	1158	83 21 08.74	23.88	. 896	. 4604210	I IOI	834033.46	22.72
. 847	. 4548900	1156	832132.61	23.85	. 897	. 46053 II	1100	834056.17	22.70
. 848	. 4550056	1155	83 21 56.45	23.83	. 898	. 4606411	1099	834118.85	22.68
. 849	. 455 1211	II54	$83 \quad 2220.27$	23.8 I	. 899	. 4607510	1098	834141.52	22.65
2.850	I. 4552365	I153	$83 \quad 2244.07$	23.78	2.900	I. 4608607	1097	834204.16	22.63
u	$2 \tan ^{-1}\left(e^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.900	1.		$83^{\circ} 42^{\prime} 04.16$	22.63				- $00^{\prime} 28.00$	
.90I	. 4609704	1096	834226.78	22.61	.95I	. 4663167	1043	840049.53	51
. 902	. 4610800	1095	834249.37	22.59	. 952	.4664209	1042	84 OI II.03	21. 49
. 903	.46I 1894	1094	8343 II. 95	22.56	. 953	. 466525 I	IO4I	84 or 32.51	21.47
. 904	. 4612987	1093	8343 34.50	22.54	. 954	. 466 6291	1040	84 OI 53.97	21.45
2.905	I. 4614080	1092	834357.03	22.52	2.955	1.4667330	1039	840215.40	2 I .43
. 906	.461 5171	1091	834419.54	22.50	. 956	. 4668368	1038	840236.82	21.40
. 907	.461 626I	1090	834442.02	22.47	. 957	. 4669406	1037	840258.21	21. 38
. 908	.461 7350	1088	$83 \quad 4504.48$	22.45	. 958	. 4670442	1036	840319.58	21. 36
. 909	. 4618438	1087	834526.92	22.43	. 959	. 4671477	1035	840340.93	21.34
2.910	1.4619525	1086	834549.34	22.41	2.960	I. 4672511	1034	840402.27	21.32
.91I	. 4620610	1085	8346 II. 73	22.38	.961	. 4673544	1033	840423.57	21.30
. 912	. 462 I695	1084	8346 34. II	22.36	. 962	.4674576	1032	840444.86	21.28
. 913	. 4622779	1083	834656.46	22.34	. 963	.4675607	1031	840506.13	21.26
. 914	. 462 386I	1082	834718.79	22.32	. 964	. 4676637	1029	$84 \quad 05 \quad 27.37$	21.23
2.915	1. 4624942	1081	834741.09	22.30	2.965	1. 4677666	1028	840548.60	21.21
. 916	.4626023	1080	834803.38	22.27	. 966	. 4678694	1027	840609.80	21.19
.917	.4627102	1079	$\begin{array}{lllll}83 & 48 & 25.64 \\ 83 & 4 & 47.88\end{array}$	22.25	. 967	. 4679721	1026	840630.98	21.17
.918	. 4628180	1078	834847.88	22.23	. 968	. 4680747	1025	840652.14	21.15
. 919	. 4629257	1077	8349 IO. 10	22.21	. 969	.468 I772	1024	8407 I3.29	21.13
2.920	1.4630334	1076	834932.29	22.18	2.970	1. 4682796	1023	840734.40	21.11
. 921	.4631409	1074	834954.47	22.16	. 971	. 4683819	1022	840755.50	21.09
. 922	. 4632483	1073	835016.62	22.14	. 972	. 468 484I	1021	840816.58	21.07
.923	. 4633555	1072	835038.75	22.12	. 973	. 468 586I	1020	840837.64	21.05
. 924	. 4634627	1071	83 5I 00.86	22.10	. 974	. 468 6881	1019	840858.67	21.02
2.925	1. 4635698	1070	835122.94	22.07	2.975	I. 4687900	IOI8	8409 I9.69	21.00
. 926	. 4636768	1069	835145.00	22.05	. 976	. 4688918	1017	840940.68	20.98
. 927	.4637836	1068	835207.05	22.03	. 977	. 4689935	1016	84 10 01. 65	20.96
. 928	. 4638904	1067	835229.07	22.01	. 978	. 4690950	1015	841022.60	20.94
. 929	. 4639970	1066	835251.06	21. 99	. 979	. 469 1965	1014	84 10 43.53	20.92
2.930	1.4641036	1065	835313.04	21.97	2.980	1.4692979	1013	84 II 04.44	20.90
.93I	. 4642100	1064	8353134.99	21.94	.98I	. 4693992	IOI2	84 II 25.33	20.88
. 932	. 4643163	1063	835356.93	21.92	. 982	. 4695003	IOII	841146.20	20.86
. 933	. 4644226	1062	835418.84	21.90	. 983	. 4696014	1010	841207.05	20.84
. 934	. 4645287	1061	835440.73	21.88	. 984	. 4697024	1009	841227.88	20.82
2.935	1.464 6347	1060	8355502.59	21.86	2.985	I. 4698033	1008	841248.68	20.80
. 936	. 4647406	1059	8355124.44	21.83	. 986	. 4699040	1007	84 I3 09.47	20.78
. 937	. 4648464	1058	835546.26	21.8 I	. 987	. 4700047	1006	84 I3 30.23	20.75
. 938	. 464952 I	1056	835608.07	21.79	. 988	. 4701053	1005	841350.98	20.73
. 939	. 4650577	1055	835629.85	21.77	.989	. 4702057	1004	84 I4 II.70	20.71
2.940	1.465 1632	1054	835651.60	21.75	2.990	1.4703061	1003	841432.40	20.69
. 941	. 4652686	1053	835713.34	21.73	.991	. 4704064	1002	841453.09	20.67
.942	. 4653739	1052	835735.06	21.70	. 992	. 4705065	1001	84 I5 13.75	20.65
-943	. 4654790	1051	$\begin{array}{lllll}83 & 57 & 56.75 \\ 83 & 58 & 18.4\end{array}$	21.68	. 993	. 4706066	1000	841534.39	20.63
. 944	. 465 5841	1050	835818.42	21. 66	. 994	. 4707066	999	841555.01	20.61
	1.465 6891	1049	835840.07	21.64	2.995	I. 4708065	998	841615.61	20.59
. 946	. 4657939	1048	835901.70	21.62	. 996	. 4709062	997	841636.19	20.57
. 947	. 4658087	1047	$\begin{array}{llll}83 & 59 & 23.31 \\ 83 & 59 & 44.90\end{array}$	21.60 21.58	. 997	-471 0059	996	84 16 56.75	20.55
. 948	. 4660033	1046	$\begin{array}{lll}83 & 59 & 44.90 \\ 84 & 00 & 06.46\end{array}$	21.58	. 998	. 4711055	995	841717.29	20.53
. 949	. 4661079	1045	840006.46	21.55	. 999	. 4712050	994	8417 37.8I	20.51
2.950	I. 4662123	1044	840028.00	21.53	3.000	1.4713043	993	841758.30	20.49
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
3.00	1.4713043	9933	$84^{\circ} 17^{\prime} 58.30$	204.88	3.50	I.510 4199	6034	$86^{\circ} 32^{\prime} 26^{\prime \prime} .47$	
. OI	. 4722927	9835	842122.17	202.85	. 51	.511 0203	5974	863430.31	
. 02	. 4732713	9737	842444.01	200.84	. 52	. 5116147	5915	863632.92	122.00
. 03	. 4742401	964 I	842803.86	198.85	. 53	. 5122033	5856	863834.31	120.79
. 04	. 4751994	9545	84 31 2I. 72	196.88	. 54	.5127859	5798	$864034 \cdot 50$	119.59
3.05	1.476 1492	9451	843437.63	194.93	3.55	I. 5133628	5740	864233.49	I 18.40
. 06	. 4770896	9357	843751.59	193.00	. 56	. 5139340	5683	864431.30	117.22
. 07	.4780206	9264	844103.64	191.09	. 57	. 5144995	5627	$8546 \quad 27.94$	116.06
. 08	. 4789425	9173	844413.78	189.20	. 58	. 5150594	5571	$86 \quad 4823.43$	114.91
. 09	. 479 855I	9082	844722.04	187.32	. 59	.515 6I37	5516	865017.76	113.66
3.10	I. 4807588	8992	845028.43	185.47	3.60	I. 5161625	5461	8652 10.96	112.63
. II	.481 6535	9903	845332.97	183.63	. 65	. 5167058	5406	865403.03	III. 52
. 12	. 4825393	88 I 4	845635.69	181.81	. 62	. 5172438	5353	865553.99	I 10.41
. 13	. 4834164	8727	845936.59	180.00	. 63	. 5177764	5300	865743.85	109.3I
. 14	. 4842847	8640	850235.70	178.22	. 64	. 5183037	5247	865932.62	108.22
3.15	1.485 1445	8555	850533.04	176.45	3.65	1. 5188258	5195	87 O1 20.30	107. 15
. 16	. 4859957	8470	850828.61	174.70	. 66	. 5193427	5143	870306.92	106.08
. 17	. 4868385	8386	85 II 22.45	172.97	. 67	. 5198544	5092	870452.47	105.03
. 18	.4876729	8303	85 I4 14.56	171.26	. 68	. 52036 II	5041	870636.98	103.99
. 19	.488 4991	822 I	851704.97	169.56	. 69	. 5208627	4991	870820.45	102.95
3.20	1.489 3170	8139	85 19 53.69	167.88	3.70	1.521 3593	4942	871002.89	101.93
. 21	. 4901269	8058	85	166.21	. 71	. 5218511	4893	87 II 44.31	100.92
. 22	. 4909287	7978	85	164.56	. 72	. 5223379	4844	87 I3 24.73	99.91
. 23	. 4917226	7899	$85 \quad 2809.86$	162.93	. 73	. 5228199	4796	87 I5 04.14	98.92
. 24	. 4925085	7821	853051.99	161.32	. 74	. 5232971	4748	871642.57	97.94
3.25	I. 4932867	7743	$\begin{array}{lllll}85 & 33 & 32.50\end{array}$	159.71	3.75	1.5237695	4701	871820.02	96.96
. 26	. 4940572	7667	8536 II. 42	158.13	. 76	. 5242373	4654	871956.50	96.00
. 27	. 4948200	7590	$85 \quad 3848.77$	156.56	. 77	. 5247004	4608	872132.03	95.05
. 28	. 4955753	7515	854124.55	I55.01	. 78	. 5251589	4562	872306.60	94.10
. 29	. 4963231	7441	854358.79	153.47	. 79	. 5256128	4517	872440.23	93.17
$3 \cdot 30$	1.4970634	7367	854631.50	151.95	3.80	1.5260622	4472	$\begin{array}{llll}87 & 2612.93\end{array}$	92.24
. 31	. 4977964	7294	854902.69	150.44	. 8 I	. 5265072	4428	872744.71	91.32
. 32	. 4985221	7221	855132.38	148.95	. 82	. 5269478	4384	872915.58	90.42
. 33	. 4992407	7150	855400.59	147.47	. 83	. 5273839	4340	873045.55	89.52
. 34	. 499 952I	7079	$85 \quad 5627.32$	146.00	. 84	. 527 8157	4297	873214.62	88.63
3.35	I. 5006564	7008	855852.60	144.56	3.85	1.5282433	4254	873342.80	87.75
. 36	. 5013537	6939	86 O1 16.44	143. 12	. 86	. 5286666	4212	873510.11	86.87
- 37	. 502 0441	6870	$\begin{array}{lllll}86 & 03 & 38.84\end{array}$	141.70	. 87	. 5290856	4170	873636.55	86.01
. 38	. 5027277	6802	$86 \quad 0559.84$	140.29	. 88	. 5295005	4128	873802.13	85.15
. 39	. 5034045	6734	$86 \quad 0819.44$	138.90	. 89	. 529 9113	4087	873926.86	84.31
3.40	I. 5040746	6667	86 10 37.65	137.52	3.90	1.5303180	4047	874050.75	83.47
. 41	. 5047380	6601	86 12 54.48	136.16	. 91	. 5307207	4007	8742 13.81	82.64
.42	. 5053948	6536	86 I5 09.96	134.80	. 92	. 5311193	3967	874336.03	8 I .82
. 43	. 5060451	6471	86 I7 24.10	133.47	. 93	. 5315140	3927	874457.45	8 I .00
. 44	. 5066889	6406	86 I9 36.90	132.14	. 94	. 5319048	3888	874618.05	80.20
3.45	I. 5073264	6343	86 21 48.38	130.83	3.95	1.5322917	3850	874737.85	79.40
. 46	. 5079575	6280	$85 \quad 23 \quad 58.56$	129.53	. 96	. 5326747	38II	874856.85	78.61
. 47	. 5085823	6217	$\begin{array}{llll}85 & 26 & 07.44\end{array}$	128.24	. 97	. 5330539	3773	875015.07	77.83
. 48	. 5092010	6156	8628 I5.05	126.97	. 98	. 5334294	3736	875132.52	77.06
. 49	. 509 8135	6095	863021.39	125.71	. 99	. 533 80II	3699	875249.19	76.29
$3 \cdot 50$	1.510 4199	6034	$86 \quad 32 \quad 26.47$	124.46	4.00	1.5341691	3662	875405.10	75.53
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

Smithsonian tables

u	gdu	$\omega F_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$	u	$\mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$
4.00	1. 5341691	3662	875405.10	75.53	4.50	1.5485792	2222	$8843 \quad 37.40$	45.82
. 01	. 5345335	3626	875520.26	74.78	. 51	. 5488003	2199	884422.99	45.37
. 02	. 5348943	3590	875634.67	74.04	. 52	- 549 O191	2178	884508.13	44.92
. 03	. 5352514	3554	875748.33	73.30	. 53	. 5492358	2I56	$88 \quad 45 \quad 52.82$	44.47
. 04	. 5356050	3518	8759 O1. 27	72.57	. 54	. 5494503	2134	884637.07	44.03
4.05	I. 535955 I	3483	880013.48	71.85	$4 \cdot 55$	1. 5496627	2 II3	884720.88	$43 \cdot 59$
. 06	. 5363017	3449	88 OI 24.97	71.14	. 56	. 5498730	2092	884804.25	43.15
. 07	. 5366449	3415	88 02 35.76	70.43	. 57	. 550 08II	2071	884847.19	42.73
. 08	. 5369846	3381	$\begin{array}{llllllllll}88 & 03 & 45.83\end{array}$	69.73	. 58	. 5502873	205I	884929.70	42.30
. 09	. 5373210	3347	880455.22	69.03	. 59	. 5504913	2030	8850 II. 79	41.88
4.10	I. 5376540	3314	880603.91	68.35	4.60	1. 5506933	2010	885053.46	41.46
. II	. 5379837	328 I	8807 II.91	67.67	. 61	. 5508933	1990	885134.72	4 I .05
. 12	. 5383102	3248	880819.25	67.00	. 62	.551 0914	1970	885215.56	40.64
. I3	. 5386333	3216	880925.91	65.33	. 63	. 5512874	1951	885256.00	40.24
. 14	. 5389533	3184	88 10 31.91	65.67	. 64	-55I 48I5	193I	885336.04	39.84
4.15	I. 5392701	3152	88 II 37.25	65.02	4.65	I.551 6737	1912	885415.68	39.44
. 16	. 5395837	312 I	881241.94	64.37	. 66	-5518640	1893	$88 \quad 5454.92$	39.05
. 17	. 5398943	3090	88 I3 45.99	63.73	. 67	. 5520523	1874	$88 \quad 5533.77$	38.66
. 18	. 5402017	3059	88 I4 49.40	63.10	. 68	. 5522388	1856		38.28
. 19	. 540 506I	3029	88 I5 52.19	62.47	. 69	. 5524235	1837	885650.33	37.89
4.20	I. 5408074	2998	88 16 54.34	6 x .85	$4 \cdot 70$	1.552 6063	19	$88 \quad 5728.03$	$37 \cdot 52$
. 2 I	. 5411058	2969	88 I7 55.88	61.23	. 71	. 5527873	1801	$88 \quad 58 \quad 05.36$	37.14
. 22	. 5414012	2939	88 18 56.81	60.62	. 72	. 5529664	1783	885842.32	36.77
. 23	. 5416936	2910	881957.13	60.02	. 73	- 5531438	1765	8859 18.91	36.41
. 24	. 54 I 983 I	288I	$88 \quad 2056.85$	59.42	-74	. 5533195	1748	8859 55.14	36.05
4.25	1. 5422698	2852	88 21 55.98	${ }^{58} 8.83$	4.75	I. 5534934	1730	890031.01	35.69
. 26	. 5425536	2824	8812254.52	58.25	. 76	. 5536655	1713	89 O1 06.52	35.33
. 27	. 5428346	2796	882352.48	57.67	-77	. 5538360	1696	89 о1 41. 68	34.98
. 28	. 5431128	2768	882449.86	57.09	. 78	. 5540047	1679	890216.48	34.63
. 29	. 5433882	2741	882546.67	56.53	. 79	. 5541718	1662	890250.94	34.29
$4 \cdot 30$	1. 5436609	2713	$88 \quad 26.42 .91$	55.96	4.80	1.554 3372	1646	890325.06	33.95
. 31	. 5439308	2686	8812738.60	55.41	.8I	. 5545010	1630	890358.84	33.61
. 32	. 544 198i	2660	80	54.86	. 82	. 5546631	1613	890432.28	33.28
. 33	. 5444628	2633	882928.31	54.3 I	. 83	. 5548236	1597	890505.39	32.94
- 34	. 5447247	2607	$88 \quad 3022.35$	53.77	. 84	- 5549825	1581	890538.17	32.62
4.35	I. 544984 I	2581	883115.85	53.24	4.85	I.555 I399	1566	890610.63	32.29
. 36	. 5452409	2555	$88 \quad 3208.82$	52.71	. 86	. 5552957	1550	890642.76	31.97
. 37	. 545 49521	2530	8833101.27	52.18	. 87	. 5554499	1535	890714.57	31.65
. 38	. 5457469	2505	88	51.66	. 88	. 5556026	1519	890746.07	31.34
. 39	. 545996 I	2480	$883444 \cdot 59$	51.15	. 89	. 5557538	1504	890817.25	31.03
4.40	1.5462429	2455	$\begin{array}{llll}88 & 35 & 35.49 \\ 88 & 36 & \end{array}$	50.64	4.90	1.5559034	1489	890848.12	30.72
. 41	. 5464872	243 I	$\begin{array}{lllll}88 & 36 & 25.88 \\ 88 & 37 & \end{array}$	50.14	. 91	. 5560516	1474	890918.69	30.41
. 42	. 5467290	2407	88 37 1.5 .76 88 38	49.64	- 92	. 5561983	1460	890948.95	30.11
. 43	. 5469585	2383	$\begin{array}{llllllllllllll}88 & 38 & 05.15\end{array}$	49.14	. 93	. 5563436	1445	89 10 18.91	29.81
. 44	. 5472055	2359	8838 54.05	48.65	. 94	. 5564874	1431	891048.57	29.51
4.45	1.5474403	2335	$\begin{array}{llll}88 & 39 & 42.46\end{array}$	48.17	4.95	1. 5566297	1417	89 II 17.93	29.22
. 46	. 5476726	2312	884030.40	47.69	. 96	. 5567707	1403	89 II 47.01	28.93
. 47	. $547 \mathrm{CO27}$	2289	884117.85	47.22	. 97	. 5569103	1389	89 12 15.79	28.64
. 48	-548 1305	2266	884204.83	46.75	. 98	. 5570484	1375	89 I2 44.29	28.36
. 49	. 5483560	2244	$88 \quad 42$ 51. 35	46.28	. 99	. 5571852	1361	891312.51	28.07
4.50	1.5485792	2222	$88 \quad 43 \quad 37.40$	45.82	5.00	1.5573206	1348	891340.44	27.79
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$
5.00	I. 5573206	1348	$89^{\circ} 133^{\prime} 40.14$	27.79	5.50	1. 5626228	817	893154.10	
. 11	- 5574547.	1334	891408.10	27.52	. 51	. $56270+2$	809	893210.87	16.69
. 02	. 5575875°	1321	891435.48	27.24	. 52	. 5627847	801	893227.48	16.53
. 03	-5577189	1308	891502.58	26.97	. 53	. 5628644	793	893243.92	16.36
. 04	. 5578490	1295	891529.42	26.71	. 54	. 5629433	785	893300.20	16.20
5.05	1. 5579778	1282	891556.00	26.44	5.55	1.5630215	777	893316.32	16.04
. 06	. 5581054	1269	891622.30	26.18	. 56	. 5630988	770	893332.27	15.88
. 07	. 5582317	1256	891648.35	25.92	. 57	. 5631754	762	893348.07	15.72
. 08	. 5583567	1244	891714.14	25.66	. 58	. 5632512	755	893403.71	15.56
. 09	. 5584804	1232	891739.67	25.40	. 59	. 5633263	747	893419.20	15.41
5.10	1. 5586030	1219	891804.94	25.15	5.60	1. 5634006	740	$893434 \cdot 53$	15.25
. 11	-558 7243	1207	891829.97	24.90	. 61	. 5634742	732	893449.7 I	15.10
. 12	. 5588444	1195	89 18 54.74	24.65	. 62	. 563547 I	725	893504.73	14.95
. 13	. 5589633	1183	891919.27	24.41	. 63	. 5636192	718	893519.61	14.80
. 14	. 559 08II	1172	891943.56	24.16	. 64	. 5636906	711	893534.34	14.66
5.15	1.559 1976	1160	892007.60	23.92	5.65	1.5637613	703	893548.93	14.51
. 16	- 559 313I	1148	892031.40	23.69	. 66	. 5638313	697	893603.36	14.37
-17	- 5594273	1137	892054.97	23.45	. 67	. 5639006	690	893617.66	14.22
. 18	. 5595404	1126	892118.31	23.22	. 68	. 5639692	683	893631.81	14.08
. 19	. 5596524	1114	89 2I 41.41	22.99	. 69	. 5640372	676	893645.82	13.94
5.20	1.5597633	1103	892204.28	22.76	5.70	1.5641044	669	893659.70	13.80
. 2	. 559873 I	1092	892226.92	22.53	. 71	. 5641710	663	893713.43	13.67
. 22	. 5599818	1081	892249.34	22.31	. 72	. 5642369	656	893727.03	I3.53
. 23	. 5600894	1071	8923 II. 53	22.08	. 73	. 5643022	649	893740.49	13.40
. 24	. 5601959	1060	8923 33.51I	21.86	. 74	. 5643668	643	893753.82	13.26
5.25	1.5603014	1049	892355.26	21.65	5.75	1. 5644308	637	893807.01	13.13
. 26	. 5604058	1039	892416.80	21.43	. 76	. 564494 I	630	893820.08	13.00
. 27	. 5605092	1029	8924 38.13	2 I .	. 77	. 5645568	624	893833.01	12.87
. 28	. 5606116	1018	892459.24	21.01	. 78	. 5646189	618	893845.82	12.74
. 29	. 5607129	1008	8925 20.14	20.80	. 79	. 5646804	612	893858.50	12.61
$5 \cdot 30$	1.5608132	998	892540.84	20.59	5.80	1.5647412	606	893911.05	12.49
-3.1	. 5609126	988	8926 O1. 33	20.39	. 8 I	. 5648015	599	893923.48	12.37
. 32	. 5610109	979	8926 21.61	20.18	. 82	. 564861 I	504	893935.78	12.24
- 33	. 5611083	969	892641.69	19.98	. 83	. 5649202	588	893947.96	12.12
. 34	. 5612047	959	8927 OI. 58	19.78	. 84	. 5649787	582	894000.02	12.00
$5 \cdot 35$	1.5613001	950	892721.26	19.59	5.85	1. 5650365	576	8940 II. 96	11.88
. 36	. 5613946	940	892740.75	19.39	. 86	. 5650939	570	$8940 \quad 23.78$	I 1.76
. 37	.56I 488 I	931	892800.05	19.20	. 87	. 5651506	565	894035.48	11.65
. 38	.561 5807	922	892819.15	19.01	. 88	. 5652068	559	894047.07	11.53
. 39	.561 6724	912	892838.06	18.82	. 89	. 5652624	553	894058.54	H. 41
5.40	1.561 7632	903	892856.79	18.63	5.90	1. 5653175	548	894109.90	11.30
.41	. 561853 I	894	892915.33	18.45	.91	. 5653720	542	894121.15	11. 19
. 42	. 5619421	885	892933.68	18.26	. 92	. 5654259	537	894132.28	11.08
. 43	. 5620302	877	8929 5II. 85	18.08	. 93	. 5654794	532	894143.30	10.97
. 44	. 5621174	868	893009.85	17.90	. 94	. 5655323	526	894 II 54.2 I	10.86
5.45	1.5622038	859	893027.66	17.72	5.95		521		
. 46	. 5622893	85 I	893045.29	17.55	. 96	. 5656365	516	894215.71	10.64
. 47	.5623739	842	893102.75	17.37	. 97	. 5656879	511	894226.30	10.54
. 48	.5624577	834	893120.04	17.20	. 98	. 5657387	506	894236.79	10.43
. 49	. 5625407	826	893137.15	17.03	. 99	. 5657890	501	894247.17	10.33
5.50	1.5626228	817	893154.10	16.86	6.00	1.5658388	496	894257.44	10.23
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	${ }_{\text {wech u }}$	u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-\frac{\pi}{2}$	${ }^{\omega} \operatorname{sech} u$	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	w sech u

Smithsonian tables

TABLE VII

THE ANTI=GUDERMANNIAN

m expressed in minutes in terms of the Gudermannian, gd u expressed in degrees and minutes. I minute $=0.00029088821$ radians,
$0.0002908882 \mathrm{Im}=\log _{\mathrm{e}} \tan \left(\frac{\mathrm{I}}{4} \pi+\frac{\mathrm{I}}{2} \operatorname{gdu}\right)=\mathrm{u}$ radians.
In this table the second decimal place is sometimes erroneous by a unit.

The Anti-Gudermannian.

gd u	0°	I°	2°	3°	4°	5°	6°	7°	8°	9°	10°	gdu
O^{\prime}	0'.00	60.00	120.02	$\overline{180.08}$	240.19	$\overline{300.38}$	360.66	421.05	48 I .57	542.23	603.07	o^{\prime}
1	1.00	61.00	121.02	181.08	241.20	301.38	361.66	422.06	482.58	543.25	604.08	1
2	2.00	62.00	122.03	182.08	242.20	302.39	362.67	423.06	483.59	544.26	605.10	2
3	3.00	63.00	123.03	183.09	243.20	303.39	363.67	424.07	484.60	545.27	606.12	
4	4.00	64.00	124.03	184.09	244.20	304.40	364.68	425.08	485.61	546.28	607.13	4
5	5.00	65.00	125.03	185.09	245.21	3105.40	365.69	426.09	486.62	547.30	608.15	5
6	6.00	66.00	126.03	186.09	246.21	306.40	366.69	427.09	487.63	548.31	609.16	6
7	7.00	67.00	127.03	187.09	247.21	307.41	367.70	428.10	488.64	549.32	6ro. 18	7
8	8.00	68.00	128.03	188.09	248.21	308.41	368.70	429.11	489.65	550.34	6ir.19	8
9	9.00	69.0	129.03	189.09	249.	309.42	369.71	430.12	490.66	551.35	612.21	9
10	10.00	70	130.03	190.10	250.	310.42	370.72	431.13	491.67	552.36	613.23	10
II	11.00	71.0	131.03	I91. 10	251.22	311.42	371.72	432.13	492.68	553.37		II
12	12.	72.00	132.03	192. 10	252.23	312.43	372.73	433. 14	493.69	554.39		12
${ }^{1} 3$	13.00	73.00	133.03	193.10	253.23	313.43	373.74	434. 5	494.70	555.40	616.27	I3
14	14.00	74.01	134.031	194. 10	254.23	314.44	374.74	435. 16	495.71	556.41	617.29	I4
15	15.00	75.01	135.03	195.10	255.23	315.44	375.75	436.17	496.72	557.43	618.31	15
16	16.00	76.01	136.03	196. 11	256.24	316.45	B76.75	437.17	497.73	558.44	619.32	16
17	17.00	77.01	137.04	197.11	257.24	317.45	377.76	438.18	498.74	559.45	620.34	17
18.	18.0	78.01	138.04	198. II	258.24	318.45	378.76	439.19	499.75	560.47	621.36	18
19	19.00	79.01	139.04	199. II	259.25	319.46	379.77	440.20	500.76	561.48	622.37	19
20	20.00	80.01	140.04	200.11	260.25	320.46	380.78	441	501.77	562.49	623.39	20
21	21.00	8 Br .01	141.04	201. II	261.25	321.47	381.78	442.21	502.78	563.51	624.40	2 I
22	22.00	82.01	142.04	202.12	262.25	322.47	382.79	4	503.79	564.52	625.42	22
23	23.00	83.01	143.04	203.12	263.26	323.48	383.79	444.23	504.80	505.53	626.44	23
24	24.00	84.01	144.04	204. 12	264.26	324.48	384.80	445.24	505.81	566.55	627.45	24
25	25.00	85.01	145.04	205.12	265.26	325.48	385.81	446.25	506.83	567.56	628.47	25
26	26.00	86.0I	146.04	206. 12	266.27	326.49	386.8I	447.26		568.57	629.49	26
28	27.00	87.01	147.04	207.13	267.27	327.49	387.82	448.26	508.85	569.59	630.50	27
28	28.00	88.01	148.05	208.13	268.27	328.50	388.83	449.27	509.86	570.60	631.52	28
29	29.00	89.01	149.05	209.13	269.27	329.50	389.83	450.28	5110.87	571.62	6312.54	29
30	30.00	90.01	150.05	210.13	270.	330.51	390.84	451.29	511.88	572.63	633.56	30
31	31	9 I .01	151.05	211.131	271.28	331.517	391.85	452.30	512.89	573.64	634.57	31
32	32	92.01	152.05	212.13	272.28	332.52	392.85	453.31	513.90	574.66	635.59	32
33	33.00	93.01	153.05	213.14	273.29	333.52	393.86	454.32	514.91	575.67	636.61	33
134	34.00	94.01	154.05	2I4. 14	274.29	334.53	354.86	455.33	515.93	576.69	637.62	34
35	35.00	95.01	155.05	215.14	275.29	335.53	395.87	456.33	516.94	577.70	638.64	35
36	36.00	96.01	156.05	216.14	276.30	336.54	395.88	457.34	517.95	578.71	639.66	36
37	37.00	97.01	157.05	217.14	277.30	337.54	397.88	458.35	518.96	579.73	640.68	37
38	38.00	98.01	158.06	218.15	278.30	338.55	398.89	459.36	519.97	580.74	641.69	38
39	39.00	99.01	I59.06	219.15	279.31	339.55	399.90	460.37	520.98	581.76	642.71	39
40	40.00	10	160.06	220.15	280.31	340.56	400.91	461.38	521.99	582.77	643.73	40
4 I	41.00	IOI. OI	161.06	221.15	281.31	341.56	401.9I	462.39	523.01	583.79	644.75	4 I
42	42.00	102.01	162.06	222.15	282.32	342.57	402.92	463.40	524.02	58.80	645.76	42
43	43.00	103.02	163.06	223.16	283.32	343.57	403.93	464.4 I	525.03	585.81	646.78	43
44	44.00	104.02	I64.06	224.16	284.32	344.58	404.93	465.41	526.04	586.83		44
45	45.	105.02	165.06	225.16	285.33	345.58	405.94	466.42	527.05	587.84	648.821	45
46	46.00	106.02	166.06	226.16	286.33	346.59	406.95	467.43	528.06	588.86	649.84	46
47	47.00	107.02	167.07	227.16	287.33	347.59	407.95	468.44	529.08	589.87	650.85	47
48	48.00	108.02	168.07	228. 17	288.34	348.60	408.96	469.45	530.09	590.89	651.87	48
49	49.00	109.02	169.07	229.17	1289.34	349.60	409.97	470.46	531.10	591.90	652.89	49
50	50.00	110.02	170.07	230.17	290.34	350.61	410.97	47 I .47	532:1	592.92	653.91	50
51	51.00	ITI. 02	171.07	231.17	291.35	351.6 I	411.98	472.48	533.12	593.93	654.93	51
52	52.00	112.02	172.07	232.18	292.35	352.62	412.99	473.49	534.14	594.95	655.94	52
53	53.00	113.02	173.07	233.18	293.35	353.62	414.00	474.50	535.15	595.96	656.96	53
54	54.00	114.02	174.07	234.18	294.36	354.63	415.00	475.51	536.16	596.98	657.98	54
55	55.00	115.02	175.07	235.	295.36	355.63	416.01	476.52	537.17	597.99	659.00	55
56	56.00	116.02	176.08	236.18	296.37	356.64	417.02	477.53	538.18	599.01	660.02	56
57	57.00	117.02	177.08	237.19	297.37	357.64	418.03	478.54	539.20	600.02	661.04	57
58	58.00	118.02	178.08	238.19	298.37	358.65	419.03	479.55 480.56	540.21	601.04 602.05	662.05 663.07	58
59 60	59.00 60.00	119.02 120.02	179.08 180.08	239.19 240.19	299.38 300.38	359.65 360.66	420.04	480.56	541.22 542.23	602.05 603.07	663.07 664.09	59

The Anti-Gudermannian.

gd u	$1 \mathrm{I}^{\circ}$	12°	13°	14°	15°	16	17°	$18{ }^{\circ}$	-	20°	du
${ }^{\prime}$	$664 \prime .09$	725.32	786.78	848.49	910.46	972.73	$1035 \cdot 30$	1098.22	1161.49	1225.14	0^{\prime}
I	665	726.34	787.81		9II. 50		1036.35	1099.27	I 162.54	1226.20	
2	666.13	727.37	788.83	850.55	912.53	974.8 I	1037.40	1100.32	1163.60	1227.27	2
3	667.15	728.39	789.86		913.57	975.85	1038.44	IIOI. 37	II64.66	I228.33	3
4	668.17	729.41	790.89	852.61	914.60	976.89	1039.49	1102.42	I 165.72	1229.40	4
5	669.19	730.43	791.91	853.64	915.64	977.93	1040.53	I'IO3.47	I 166.78	1230.46	5
6		73	792	85	916.67	978.97	1041.58	1104.53	1167.83	123I. 53	6
7		732.48	793.97		917.71	980.01	1042.63	r105.58	1168.89	1232.59	7
8	672.	733.5	794.99	856.73	918.75	981.05	1043.67		I 169.95	1233.66	8
9	673.2	734	796.02		gl9.	982.09	1044.72	I 107.68	1171.01	1234.72	9
IO	674.	735	797.04		920.82	983.13	1045.77	I 108.74	1172.07	1235.79	10
II							1046.8 I	1109.79	I173.13	1236.85	II
12	676.3	737.59	799.10	860.8	922.89	985.22	1047.86	IIIIO. 84	II74.19	1237.92	12
13		738.62	800.13	861.89	923.93	986. 26	1048	IIII. 89	I175.24	1238.98	I3
14	678.3	739.64	80 I .15	852.92	924.96		1049.95	III 12.95	1176.30	1240.05	14
I'5	679.38	740	802. 18		926.00	988.34	1051.00	1114.00	II77.36	I24I. II	I5
16	68	74			927.03		1052.05	III5.05	1178.42	1242. 18	16
17	681.4	7422.71	804.24	856.02	928.07	990.42	IO53.09	III6. I'	I I79.48	1243.25	17
I8	682.44	743.73	805.26	857.05	929.11	991	IO54. I4	I I'I7	II80.54	1244.31	18
19	683.46	744.76	806.29	868.08	93	992.5 I	1055	III8.21	1181.60	1245.38	19
20	684.48	745.78	807.32	869.11	93 I .1	993.55	1056.24	I I I 19.27	1182.66	1246.44	20
21	685	746.8 I	808.35	870.14	932.22		1057.28	I 120.32	1183.72		2 I
22	686.5	747.83	809.37	871.18	933.26			112	1184.78		22
23	687.5	748.85	8 IO .40	872.21	934.29	996	1059	I 122.4		1249.64	23
24	688.56	749.8	811.43	873.24	935.33	997.72		II 213.48	I I86.90	1250.71	24
25	689.58	750	812.46	874.27	936.37	998.76	106I. 48	I 124.53	1187.96	1251.78	25
26		75							1189.02		26
27	691.62	752.9	814	876.3	938.44	1000.8		II	1190.08	1253.91	27
28	692.64	753.97	8 I 5.54	877.37	939.48	IOOI .8	1064.62	II2	119	1254.98	28
29		755	816.57	878.40	940.52	100		I 128.75	1192.20	1256.05	29
30				879.4	94.56	1003.97	1066.72	1129.81	1193.26	1257.12	30
3 I		757.05		880.4	942.59	I005.02		I'I30.86		1258.18	3 I
32			819.66	881. 50	943.63	1005	1068.8 I	II3I.92	I195.39	I259.25	32
33		759.09	820.69	882.5	944.67	1007.10	1069.86	1132.97	I 196.45	1260.32	33
34	698.76	760.12	821.71	883.57	945.71	1008. I5	1070.91	I 34.0	I197.51	1261.39	34
35	699.78	761.14	822.74	884.60	946.74	I009. I9	1071.96	I I 35.08	1198.57	1262.45	35
36	700.80	762.17		885.64	947.78	IOTO. 23	1073.01	II36.14	II99.63	1263.52	36
37	701.82	763.19	824.80	886.67	948.82	IOII. 28	1074.06	1137.19	1200.69	1264.59	37
38	702.85	764.22		887.70	949.86	IOI2. 32	1075	1138.25	1201.75		38
39	703.87	765.24	826.85	888.74	950.9	1013.36	1076. 16	1139.30	1202.82	1266.73	39
40	704.89	766.27	827.89	889.77	951.94	IOI4.4T	1077.21	1140.36	1203.88	1267.80	40
4			828.92	890.80	952.98	IOI 5.45	1078.26	II4I.4I	1204.94	1268.87	4 I
42	706.93	768.32	829.95	891.84	954.01	IOI6. 50	1079.31	II 42.47	1206.00	1269.93	42
43	707.95	769.34	830.98	892.87	955.05	IOI7. 5	1080.36	I 143.52	1207.06	1271.00	43
44	708.97	770.37	832.00	893.91	956.09	IOI8. 58	108I. 41	I I 44.58	1208. I3	1272.07	44
45	709	771.39	833.03	894.9	957.13	1019.63	1082.46	I 145.64	1209. 19	1273.14	45
46	711.02			895.97	958.17	1020.67	1083.51	II 46.69	I210. 25	1274.21	46
47	712.04	773.44	835.09	897.01	959.21	1021.72	1084.56	I I 47.75	1211.3I	1275.28	47
48	713.06	774.47	836.12	898.04	960.25	1022.76	1085.61	II48.80	1212.38	1276.35	48
49	714.08		837.15	899.0	961.29	1023.81	1086.66	I I 49.86	1213.44	1277.42	49
50	715	776.52	838.18	900. II	962.33	1024.85	1087.71	1150.92	1214.50	1278.49	50
51	716.12	777.54	839.21		963.37	1025.90		1151.97	1215.57	1279.56	51
'52	717. I'5	778.57	840.24	902.18	964.41	1026.94	1089.81	1153.03	1216.63	1280.63	52
53	718.17	779.59	841.27	903.22	955.45	1027.99	1090.86	I 154.09	1217.69	1281.70	53
54^{\prime}	719.19	780.62	842.30	904.25	966.49	1029.03	109'I . 91	II55.14	1218.76	1282.77	54
55	720.21	781.65	843.33	905.28	957.53	1030.08	I092.96	1156.20	1219.82	1283.84	55
56	721.23	782.67	844.36	906.32	968.57	1031. 12	IO94.01	II 57.26	1220.88	1284.91	56
57	722.26	783.70	845.39	907.35	969.6 I	1032.17	1095.06	I I'58.32	1221.95	1285.98	57
58	723.28	784.73	846.42	908.39	970.65	1033.21	1096. 11	1159.37	1223.01	1287.05	58
59	724.30	785.75	847.45	909.43	971.69	1034.26	1097.16	1160.43	1224.07	I288. I3	59
60	$725 \cdot 32$	786.78	848.49	910.46	972.73	IO35.	1098.22	I 161	1225.14	1289.20	60

SMITHSONIAN TABLES

The Anti-Gudermannian.

gd u	$2 \mathrm{I}^{\circ}$	22°	23°	24	25°	26	27	28°	29	30°	gd u
O^{\prime}	1289'. 20	I353.69	1418.63	1484.06	I549.99	1616.47	1683.52	$\underline{1751.16}$	1819.44	1888.38	O'
1	1290	I354	I4I9.72		1551. 10	16 I 7.58	1684.64	1752.29		1889.53	
2	1.291. 34	I 355.84	1420.80	1486.25	1'552.20	1618.70	1685.76	1753.43	1821.72	1890.69	2
3	1292.41	1356.92	I421.89		1553	凹619.8I		1754.56	I822.87	1891.84	3
4	1293.48	I358.	1422.98	1488.44	I 554.4 I	I620.92	1688.01	1755.69	1824.01	1893.00	4
5	I294. 55	I359.08	1424.06		I'5155.5.1	1622.04	1689.13	1756.83	1825.16	1894. 15	5
6	1295.63	1360. 16	I4425. 15	I490.63	I556.62	1623.15		1757.96	1826.30		6
7	1296.70	1361.24	1426.24	I491. 72	1553.72	1624.26	1691.38	1759.09			7
8	1297.77	1362.32	$1427 \cdot 32$	1492.82	1558.83			1760.23	1828.59	1897.62	8
9				I493.							9
10	1299.91	1364.48	I429.50	I495.01	1561.04	1627.61		I762.50	1830.88		10
II	I3	1365.56	1430.59	149	1562	1628.72	1695.87	1763.63	1832.02	1901.09	I I
12	1302	1366.64	1431.68		I.563.215	1629.84		1764.77	1833.17	1902.25	12
I3	I'303. I3	1367.72	1432.76	1498.30	I'564.35	1630.95	1698. 12	1765.90	1834.32	1903.40	I3
14	1304.20	I 368.80	1433.85	1499.40		1632.06	1699.25	1767.04	1835.46	1904. 56	I4
15	1305.28	İ369.88	I'434.94	I 500.49	I.566.56	1633.18	I700.37	I768.17	I836.6I	1905.72	I 5
I6	I306.35	I370	1436.03	I'50		1634.29	I701.50	1769.31		1906.88	16
I	I 307.42	I372.04	I437. 12	1502.69		1635.4 I	1702.62	1770.44	1838.90	1908.03	17
18	${ }^{1}$ I 308.50	1373.12	I 4388.21	1503.78	1569.88	1636.52	1703.75	1771.58	I840.05	1909. 19	18
19	I309.57	1374.20	1439.29	1504.88	1570.99	1637.64	1704.87	1772.71	1841.19	1910. 35	19
20	I3I0.6	T375.28	I440.38	I'505.98	I572.09		I706.00	1773.85	1842.34	1911.5I	20
21	131	I376.	I44I	1507.08	1573.20	1639.87	1707.12	1774.98	I843.49	1912.67	2 I
22	I312	I 377.44	1442.56	I508. 17	I574.31	1640.99	I'708.25	I'776. 12	I844.64	1913.83	22
23	I313	I 378.52	1443.65	I509.27	I575.4I	I642. 10	I709.'37	1777.26		1914.98	23
24	I3I4.	1379.61	I444.74	1510.37	I.576.52	1643.22	1710.50	I778.39	I846.93	1916. I4	24
25	I316.01	1380.69	I445.83	I5II.47	1577.63	$1644 \cdot 34$	1711.63	I779.53	1848.08	1917.30	25
26	I317.08	I381.77	1446.92	15 I 2.57	1578.73	I 645.45	I712.75	I780.67	I849.23	1918.46	26
27	I3I8.16	I'382.85	I448.01	1513.67	1579.84	1646.57	I713.88	I'78i. 8 I	1850.37	1919.62	27
28	1319.23	1383.93	I449. 10	1514.76	1580.95	1647.69	1715.01	1782.94	1851.52	1920.78	28
29	I320.3I	1385.02	1450.19	I515.86	1582.06	1648.80	I716. I4	1784.08	1852.67	1921.94	29
30	I32I. 38	I386. 10	1451.28	1516.96	1583. 17	I649.92	I7I7.26	I785.22	1853.82	1923.10	30
3 I	1322.45	1387.18	1452.37	I5I8.06	1584.27	1651.04	I'718.39	1786.36		1924.26	3 I
32	I3223.53	I'388.26	I 453.46	I519. 16	I 585.38	1652.16	1719.52	I787.50	1856.121	1925.43'	32
33	I324.60	1389.35	I454. 55	I520.26	I 586.49	1653.27	I'720.65	I788.63	1857.27	I926.59	33
34	I1325.68	I 390.43	1455.64	1521.36	1587.60	$1654 \cdot 39$.1721.77	1789.77	1858.42	I927.75	34
35	I326.75	I391.5I	1456.73	1522.46	I 588.71	1655.5 I	1722.90	I790.91	1859.57	1928.91	35
36	1327.83	I 392.59	1457.83	I523.56	I 589.82	I656.63	1724.03	I'792.05	1860.72	1930.07	36
37	I 328.90	I393.68	I458.92	I'524.66	I590.92	1657.75	1725.16	I'793. I9	1861.87	1931.23	37
38	I'329.98	I 394.76	1460.01	I 525.76	I592.03	1658.87	I726.29	1794.33	1863.02	19332.40	38
39	1331.06	1395.84	1461. 10	I 526.86	I:593. I4		1727.42	I795.47	1864.17	1933.56	39
40	I332.13	I306.93	1462 . 19	1527.96	I 594.25	I66I. IO	I728.54	1796.6I	1865.32	1934.72	40
4 I	Il333.2I	I 398.01	1463.28	15129.06		1662.22	I729.67		I866.47	1935.88	4 I
42	1334.29	I 399 . IO	$1464 \cdot 38$	15330.16	I 596.47	1663	1730.80	1798.89	1867.62	1937.05	42
43	I 3335.37	1400. 18	1465.47	1531.26		1664.46	1731.93	1800.03	1868.77	1938.21	43
44	I 336.44	I401. 25	1466.56	I532.36	I598.69	1665.58	1733.06	I801. I7	1869.92	1939.37	44
45	I 337.52	1402.35	1467.65	1533.46	I 599.80	1666.70	【734.19	I802.3I	1871.08	1940.54	45
4	13138.60		1468.75	1534.56	1600.9I	1667.82	1735.32	1803.45		1941.70	46
47	I 339.67	1404.512	1469.84	I535.66	1602.02	1668.94	1736.45	I804. 59	1873.38	1942.85	47
48	I340.75	1405.60	1470.93	1536.77	1603.13	1670.06	1737.58	I805.73	1874.53	1944.03	48
49	I341.83	1406.69	1472.02	1537.87	1604.24	167i. 18	1738.71	I806.87	1875.69	1945.19	49
50	I342.91	1407.77	1473 . 12	I538.97	1605.35	1672.30	1739.84	1808.01	1876.84	1946.36	50
5 I	I343.98	1408.86	I474.2I	I'540.07	1606.46	1673.42	1740.98	1809.15	1877.99	1947.52	5 I
52	I 345.06	I409.94	1475.30	I541. I7	1607.58	1674.54	I742.11	I8IO. 30	1879.14	1948.69	52
53	I 346.14	I4II.03	I476.40	1542.27	1608.69	1675.66	1743.24	I8II.44'	1880.30	1949.85	53
54	I347.22	1412.11	1477.49	$1543 \cdot 38$	1609.80	1676.79	I744.37	I812.58	1881.45	1951.02	54
55	I348.29	1413.20	1478.59	I544.48	1610.91	1677.91	1745.50	I8I'3.72	1882.60	1952.18	55
56	1349.37	I4I4.28	1479.68	I545. 58	16I2.02	1679.03	1746.63	1814.86	1883.76	1953.35	56
57	1350.45	I4I5.37	1480.77	I546.69	16I3.13	1680. 15	1747.76	1816.01	1884.91	1954.51	57
58	1351.53	I416.46	1481.87	1547.79	1614.25	1681.27	1748.90	1817.15	1886.07	1955.68	58
59	1352.6I	1417.54	1482.96	I548.89	16I5.36	1682.39	1750.03	1818.29	1887.221	1956.85	59
60	I 353.69	1418.63	1484.06	I 549.99	1616.47	1683.52	1751.16	1819.44	1888.38	1958.01	6

od u	31°	32	33°	34°	35°	36°	37°	8	39°	40°	ad
o'	1958'.	2028.38	2099.53	2171.48	2244.29	2317.99	2392.63	2468.26	2544.93	2622.	o'
			2100.72								
2	1960	2030.74	2101.	2173.89		2320.46	2395.14				
3	1961.	2031	2 IO 3	2175	2247.95	2321.70	2396.39	2472.07			3
4	1962.68	2033.10	2104	2176.31	2249.17	2322.93	2397.64	2473.34			
5	1963.85	2034.28	210	2177.51	2250.39	2324.17		2474.61	2551.37		
6			2106						2552.66		6
7	1966.1	2036.64	2107.88	2179.93	2252.84	2326.65	2401.40	2477.15	2553.95		
8	1967.35	2037.82	2109.07	2181.14	2254.06	2327.89			2555.23		
9		2039	2110.27			2329.1	2403.91		2556.52		
Io	1969	2040	2111.46	2183.55		2330	2405.	2480.97			10
II	19		2112.66	1184.76	2257.73	2331	2406	2482.24	2559. 10		II
			2113			23	2407	2483.51			12
13	197		2115	2187.18		23	2408	2484.78			13
14	1974	2044.91	2116	12188.39	2261.40	2335.32	2410	12486.06		2641 . 00	14
r'5	1975	2046	2117	2189.60	2262.63	2336.56	2411	2487.33	2564.27	2642.31	15
16			21				2412				16
17	1977.	2048.46	2119.83	2192.02		2339	2413.9	2489.88			7
18	1979	2049.64	2121.03	2193.2	226	2340.	2415.21	2491.15	2568. 14		8
19	1980	2050.		21	226	2341.	2415.47	2492.43	2569.43		19
20	1981.3		21	2195		2342.	2417.73	2493.70	2570.73		0
21	1982.5		2124.62	2196.86	2269.98	23	2418.99		2572.02		21
22	1983	205	2125.81	2198		23					22
23	1984	20		2199					25		23
24	1986.07	2056	21	2200.50					257		24
25	1987.24	205	2129.41	2201.7	227	2348	2424.02		2577.	43	25
26	1988.	205	2130.61	2202.92	2276.11	2350.21	2425	2501.35	2578.49	2656.74	26
27	1989.59	2060	2131.80	2204.14	2277 - 34	2351. 46	2426.54	2502.63	2579.78	2658.05	27
28	1990.7	12061	2133.0	2205.35		2352.70	2427.80	2503.91	2581.08		28
29	1991.93		2134.20			2353.95	2429.06		25		29
30	1993		2135.40	2207		2355.	2430.32	2506.46			30
3			2136.60	12208.99	2282.25			2507.74			31
32	199	2066	2137	10	2283.				2586.26		32
33	199	2067		22II. 4	228	235		2510.30		266	33
34	199	2068	2140.20			236					
35	199	2069	2141	2213	2287.17	236			5	2668.58	36
36	2000	2070	2142.	221		2362.66	2437.	2514	2591.45	2669.89	36
37	2001	2072.16	2143.8	2216.27	228	2363.	2439.15	2515	2592.75	2671.21	37
5	2002	2073.35	2145	2217.	22	236	2440	2516.69	2594.05		38
39	2003	2074.54	2146.20		1229	23	244	2517.97	2595.35		39
40	20	207	2147.4	2219.92	2293.32	2367.6	24	2519.25	2596.65	2675.16	40
4 I	20	2076	2148.6			2368.89		25	2597.95		4 I
4		2078	2149.8I					1252	2599.24		42
43	2008		2151.0	22	2297			252			43
	2009	2080	2 I 52.21 L	2224.79	2298.24		2447	252	2601.84	2688.44	44
45	2OIO	2081. 67	2153.41		2299.48		2449	251	2603.14	2681.76	45
46	2011	2082.86	215		2300	2375	2450.52	2526.95			46
47	2013.07	2084.04	2155	222	2301	2377.3	2451.79	2528.23	2605.75	2684.40	47
48	2014	208		222	2303		2453.05	12529.51	2607	2685.72	48
49	201	2086.42	2158.2	2230.87	230		245	25	2608.35	66	49
'50	2016.60	2087.61	2159.4	2232.09	230	2380.1	$2455 \cdot 5$	2532.08	2609.65	668	50
5	:2017.78	2088.80	2160.63		2306.88		2456.85	2533.36	2610.95	2689.69	51
52	2018.96	2089.99	2161.84	2234.53	2308.11	2382.62	2458.12	2534.65	2612.26	2691.01	5
53	2020.13	2091.19	2163.04	223	2309	2383.87	2459.39	2535.93	2613.56	2692.33	53
5	2021.3I	2092 . 38	2164.25	12236.97	2315	2385.12	2466.65	2537.22	2614.86	2693	5
55	2022.4	$2093 \cdot 57$	2165.45	2238.19	23	2386.37	2461.92	2538.50	2616.17	2694	55
56	2023	2094.76	2166.66		1231		2463.19	2539		2696.30	56
	2024.85	2095.95	2167	2240.63	2314.	2388.8	24	2541.	2618	26.3	57
	2026.03	2097	2	2241.85	12315	239		25		2698.95	58
	2022	2098.3	2170	2243.07	2316.75	2391		2543.		2700.27	59
60	20	2099	217	224	2317	239				2701	

The Anti-Gudermannian.

gd u	$4 \mathrm{I}^{\circ}$	42°	43°	44°	45°	46	47°	48°	49°	50°	du
${ }^{\prime}$	$2701{ }^{\prime} .60$	2781.71	2863 . 10	2945.8 I	3029.94	3II5.55	3202.71	3291.53	$\overline{3382.08}$	3474.47	o'
1	270	2783.06	2864.46	2947.2I	303I. 35	3 II 6.99	3204.18	3293.02	3383.61	3476.03	I
2	2704.25	2784.40	2865.83	2948.60	3032.77	3118.43	3205.65	3294.52	3385.13	3477.59	2
3	2705.57	2785.75	2567.20	2949.99	3034. I8	3 II 19.87	3207.12	3296.01	3386.66	3479.14	3
4	2706.90	2787.09	2868.57	2951.38	3035.60	3 I 2 I .3 I	3208.58	3297.51	3388.18	3480.70	4
5	2708.23	2788.44	2869.94	2952.77	3037.02	3122.75	3210.05	3299.01	3389.71	3482.26	5
6	2709	2789.79	2871.31	2954.16	3038.43	3124. I9	32II. 52	3300.5 I	3391.24	3483.82	6
7	2710.88	2791. I4	2872.68	2955.56	3039.85	3125.63	3212.99	3302.00	3392.77		
8	2712	2792.49	2874.05	2956.95	3041.27	3127.08	3214.46	33303.50	3394.29	3486.94	8
9	2713	2793.84	2875.42	2958.34	3042.68		3215.93	3305.00	3395.82	3488.50	9
10	2714.86	2795.19	2876.79	2959.74	3044. IO	3129.96	3217.40	3306.50	3397 . 35	3490.06	10
II	2716.1	2796.54	2878. 16	296I. I3	3045.52	3I3I.4I	3218.87	3308.00	3398.88	3491.62	II
12	2717.52	2797.89	2879.53	2962.53	3046.94	3'132.85	3220.34	3309.50	3400.41	3493.18	12
13	2718.85	2799.24	2880.90	2963.92	3048.36	3 I 34.30	3221.82	3311.00	3401.94	3494.74	13
14	2720.18	2800.59	2882.28	2965.32	3049.78	3 I 35.75	3223.29	3312.50	3403.47	3496.3I	I4
15.	2721.5I	2801.94	2883.65	2966.71	3051.20	3137.19	3224.76	3314.00	3405.00	3497.87	I5
16	2722.8	2803.29	2885.02	296	3052.62	3138.64	3226.23	3315.50	3406.54	3499.43	16
17	2724.17	2804.64	2886.39	296	3054.04	3 I 40.08	3227.71	33177.00	3408.07	3501.00	17
I8	2725.50	2805.99	2887.77	2970.90	3055.46	3 I 41.5	3229. 18	3318.51	3409.60	3502.56	I8
19	2726.83	2807.34	2889.14	2972.30	3056.88	3142.98	3230.66	3320.01	3411.14	3504.13	19
20	2728.17	2808.70	2890.52	2973.70	3058.3 I	3144.42	3232 . I3	3321. 52	3412.67	3505.70	20
21	2729.50	2810.05	2891.89	2975.09	3059.73	3145.87	3233.6 I	3323.02	3414.20	3507.26	2 I
22	2730.83	281 I .40	2893.27	2976.49	306I. I5	3147.32	3235.08	3324.53	3415.74	3508.83	22
23	2732.16	2812.76	2894.64	2977.89	3062 . 58	3148.77	3236.56	3326.03	3417.28	3510.40	23
24	2733.50	28I4. 11	2896.02	2979.29	3064.00	3150.22	3238.04	3327.54	3418.8I	3511.97	24
25		2815.46	2897.40	2980.69	3065.42	3151.67	3239.52	3329.04	3420.35	3513.54	25
26	2736.16	2816.82	2898.77	2982.09	3066.85	3153.12	3240.99	3330.55	342 I. 89	3515.11	26
27	2737.50	2818.17	2900. 15	2983.49	3068.27	3154.57	3242.47	3332.06	3423.43	3516.68	27
28	2738.83		2901.53	2984.89	3069.70	3156.03	3243.95	3333.56	3424.96	3518.25	28
29	2740.17	12820.88	2902.91	2986.29	307 I. 13	3157.48	3245.43	3335.07	3426.50	3519.82	29
30	2741.50	2822.24	2904. 28	2987.70	3072.55			3336.58	3428.04	352I. 39	30
31	2742.84	2823.60	2905.66	2989 . 10	3073.98	3160.38	3248.39	3338.09	3429.58	3522.96	3 I
32	2744. 17	2824.95	2907.04	2990.50	3075.41	3161.84	3249.87	3339.60	3431.12	3524.54	32
33	$2745 \cdot 5 \mathrm{I}$	2826.3 I	2908.42	2991.90	3076.84	3163.29	325 . 35	3341. II	3432.66	3526. II	33
34		2827.67	2909.80	2993.31	3078.26	3164.74	3252.84	3342.62	3434.20	3527.68	34
35		2829.03	2911. 18	2994.71	3079.69		$3254 \cdot 32$	3344. 14	3435.75	3529.26	35
36		2830.39	2912.56	2996. 12	3081. 12	3167.65	3255.80	3345.65	3437.29	3530.83	36
37	2750.85	2831.74	2913.94	2997.52	3082.55	3169.11	3257.28	3347. 16	3438.83	$3532.4 \mathrm{I}$	37
38	2752.19	2833.10	2915.32	2998.93	3083.98	3170.57	3258.77	3348.67	3440.38	3533.99	38
39	$2753 \cdot 53$	2834.46	2916.71	3000.33	3085.41	3172.02	3260.25	3350. 19	344 I .92	3535.56	39
40	2754.87	2835.82	2918.09	3001.74	3086.84	3173.48	3261.74	3351.70	3443.47	3537.14	40
4 I	2756.2 I	2837.18	2919.47	3003. I4	3088.27	3174.94	3263.22	3353.21	3445.01	3538.72	41
42	2757.55	2838.54	2920.85	3004.55	3089.70	3176.40	3264.71	3354.73	3446.56	3540.30	42
43	2758.89	2839.90	2922.24	3005.96	3091. I4	3177.85	3266.19	3356.24	3448. Io	3541.88	43
44	2760.23	2841.27	2923.62	3007.36	3092.57	3179.3I	3267.68	3357.76	3449.65	3543.45	44
45	2761.57	2842.63	2925.01	3008.77	3094.00	3180.77	3269.17	3359.28	345I. 20	3545.04	45
46	2762.91	2843.99	2926.39	3010.18	3095.43	3182.23	3270.65	3360.79	3452.75	3546.62	46
47	2764.25	2845.35	2927.78	3011.59	3096.87	3183.69	3272.14		3454.29	3548.20	47
48			2929.16	3013.00	3098.30	3185. 15	3273.63	3363.83	3455.84	3549.78	48
49	2766.93	2848.08	2930.55	3014.41	3099.74	3186.61	3275.12	3365.35	3457.39	355 I . 36	49
5	2768.27	2849.44	2931.93	3015.82	3101.17	3188.07	3276.61	3366.87	3458.94	3552.94	50
51	2769.62	2850.8 I	$2933 \cdot 32$	3017.23	31102.60	3189.54	3278. 10	3368.39	3460.49	$3554 \cdot 53$	51
52	2770.96	2852.17	2934.71	3018.64	3104.04	3191.00	3279.59	3369.91	3462.04	3556. II	52
53	2772.30	$2853 \cdot 53$	2936.09	3020.05	3105.48	3 I 92.46	3281.08	3371.43	3463.60	3557.70	53
54	2773.64	2854.90	2937.48	3021.46	3106.92	3193.92	3282.57	3372.95	3465.15	3559.28	54
55	2774.99	2856.26	2938.87	3022.87	3108.35	3195.39	3284.06	3374.47	3466.70	3560.87	55
56	2776.33	2857.63	2940.26	3024.29	3109.79	3196.85	3285.56	3375.99	3468.26	3562.45	56
57	2777.68	2858.99	2941.65	3025.70	3 III .23	3198.32	3287.05	$3377 \cdot 51$	3469 . 81	3564.04	57
58	2779.02	2860.36	2943.04	3027. II	3 IT 2.67	3199.78	3288.54	3379.04	3471.36	3565.63	58
59	2780.37	2861. 73	2944.42	3028.52	3114.11	3201. 25	3290.04	3380.56	3472.92	3567.22	59
60	2781.71	2863.10	2945.8I	3029.94	3115.55	3202.71	3291. 53	3382.08	3474.47	3568.8 I	60

gd u	5		53°			56	57	58°		60°	
o'	3568'.8	3665	3763.76	3864.64	3967.97	407	4182.62	4294.30	440	4527.37	
		3666.82	3765.42		3969.7 I		4184.46	4296. 19			
2	位	3668.	3767.09	3868.04	3971.46	4077.			4413.03		
3	357	3670.07	3768.75	3869.74	3973.20	4079.27	4188. I3	4299.96			
4	3575. 17	3671.70	3770.4 I	3871.45	3974.95	408 I .06	4189.97	4301.85			
5	3576.76	$3673 \cdot 32$		3873.15	3976.69		4191.8 I	4303.74			
6	357						4193.65	4305.64	4420.8 I		
7	3579.94		3775.41		398		4195.49	4307.53	4422.76	4541.39	
8	358						4197.	4309.42	4424.70	4543.40	
9								4311.32		4545.4 I	
10	358							43			o
	3586	3683	3782.08	3883.39	3987	4093	4202.87	4315.11	. 5		II
12	3587	368	3783.75	3885.10	3988.	4095.	4204.71	4317.01		455	12
13	3589	3686	3785.42	3886.8	3990.	4097	4206.		4434.46	455	I3
14	3591. II	3687.99	3787.09	3888.52	399	409	4208.41	4320.80	4436.42		14
15	3592	368		3890.23	399	41	4210.	4322.70	7		15
16			3790.43						4440.33		16
17	3595.9	3692.90	3792.10		3997.	41	421	4326.51	4442.29		17
18	3597.5	3694.53	379	38	3999.			4328.4 I	4444.24		18
9	3599		379		400	41		4330.3I		4565.55	19
20			379				421	4332.22			20
21			379	39		4			4450.12		1
			380	390					44512.09	4571.61	22
23	360		380					4337		4573.64	23
24	360					41		433	445		24
25											25
26	3610	3707.63	380	390		4120	4230.64	4343.66	4459.94		25
27	3611.92	3709.27		3910	4015.3	4122	4232	4345.57	446 r .91		8
28	3613.52	3710.91	3810.5	3912	4017.07	4124	423	4347.48	446		28
29	3615.13	3712.56	3815		401	412		4349.40			29
30	3616.74	3714.20	3813	39				4351.3I	446	4587.83	30
31				391				4		4589.86	3 I
32		3717		3919				435	447		32
33						1			4473	459	33
				39		413					35
35			382								35
36	3626		3824		4031.2I		4249.26	4362.8I	4479.66	4600.03	36
37	3628.0	3725	3825.69	3928.0	4032	4140	4251.13		448 r .63	4602.07	37
38	362	$3727 \cdot 36$	3827.3	3929.79	403	4142	4252	4366.65	4483.61		38
39	363 I .22	3729.01	3829.0	3931.51	4036		4254.86	4368.57	4485.59		39
40	3632.83		3830.75		4038.		4256.73	4370.50	4487.57	9	40
41			3832		404		4258.	4372.42	4489.55		4 I
42			38		40		4260		449	4612	42
43		37	3835	3938			4262		44		3
44	36		3837.50	394	40	415	42				44
45	3640	373	3839.19	394	404		42	4380.	44	1	45
46	3642	3740.56	3840.88	3943.63	4048.94	4157.00			4499.47		46
47	3644.13	3742.21	3842.58	3945.36	4050.72	4158.	4269.	4383.98	4501.45	4622.50	47
48	3645.75	3743.87	38	3947	4052	4160.	4271.	4385.	4503.44		48
49	364	3745.52	38	3948.83	405	416	4273		4505.43	46	49
50	3648.98	3747.18	3847.66	3950	4056.0	4 I 6		4389.77	4507	46	50
51		3748.83	3849.35	3952.3 I	4057.8	4166.13		4391.70	4509.4 I	4630.71	51
52	365	375	3051.05		4059.	4167.96		4393.6	45 II .40	4632.	52
53	3653		3852.75	3955.78	4061. 41	4169.79	4281.	4395.57	4513.39		53
54		3755.	3854.44	3957.52	4063. 19	4171.62	4282.	4397.5 I	4515.39	4636.87	54
55	3657.08	375	3856.14	3959.2	4064.9	4173.45	4284	4399.	4517.38	4638.93	55
56	3658.70	375		3961	4066.76	4175.28	428	440 I .38	4519.38	4640.98	56
	3660.32	3758	3859.54	396	4068.54	4177.12	4288.6	4403.	4521.37	4643.04	57
58	3661.95		3861. 24	39	4070.33	41	4290.	4405.	4523.37	4645. I0	58
	366	37	3862.94	3966.22	4072.12	4180.78	4292	4407.	4525		59
	3665			3967.97			429	440	4527	4649.23	

The Anti-Gudermannian.

od u	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°	gd u
o^{\prime}	4649'.23	4774.98	4904.94	5039.42	5178.8I	5323.51	5474.01	5630.82	5794.56	5965.92	o
I	4651.29	4777.11	4907.14		5181.18		5476.57	5633.49	5797.35	5968.84	1
2	4653.35	4779.25	4909.35	5043.99	5183.54	5328.43	5479.13	5636.16	5800.14	5971.77	2
3	4655.42	4781.38	491I. 55	5046.27	5185.91	5330.90	5481. 69	5638.84	5802.94	5974.70	3
4	4657.49	4783.51	4913.76	5048.56	5188.29	5333.36	5484.26	5641.51	5805.74	5977.63	4
5	4659.55	4785.65	4915.97	5050.85	5190.66	5335.83	5486.83	5644.19	5808.54	5980.57	5
6	4661.62	4787.79	4918.18	5053.14	5193.03	5338.30	5489.40	5646.87	5811.34	5983.50	6
7	4663.69	4789.92	4920.39	5055.43	5195.4 I	5340.77	5491.97	5649.56	5814.15	5986.44	7
8	4665.76	4792.06	4922.60	5057.72	5197.79	5343.24	$5494 \cdot 5$	5652.24	5816.95	5989.38	8
9	4667.83	4794.20	4924.81	5060.01	5200. 17	5345.7	5497. II	5654.93	5819.76	5992.33	9
Iо	4669.91	4795.34	4927.03	5062.30	5202.55	5348. 18	5499.	5657.61	5822.57	5995.27	0
II	467 I .98	4798.49	4929.24	5064.60	5204.93	5350.66	5502.27	5660.30	5825.39	5998.22	11
12	4674.06	4800.63	493 I. 46	5066.90	5207 -31	5353.14	5504.85	5663.00	5828.20	6001.17	I2
13	4676.13	4802.77	4933.68	5069. 19	5209.70	5355.6I	5507.43	5665.69	5831.02	$6004 \cdot 13$	13
14	4678.2 I	4804.92	4935.90	5071.49	5212.08	5358.09	5510.01	5668.38	5833.84	6007.08	14
15	4680.29	4807.07	4938.12	5073.80	5214.47	5360.58	5512.60	567.1.08	5836.66	6010.04	15
16	4682.37	4809.21	4940.34	5076.10	5216.85	5363.06	5515.18	5673.78	5839.48	6013.00	16
17	4684.45	4811.36	4942.57	5078.40	5219.25	5365.55	5517.77	5676.48	5842.31	6015.96	17
18	4686.53	4813.51	4944.79	5080.71	5221.64	5368.03	5520.36	5679.19	5845.13	6018.93	18
19	4688.6 I	4815.67	4947.02	5083.0I	5224.04	5370.52	5522.95	5681.89	5847.96	6021.90	19
20	4690.70	4817.82	4949.24	5085.32	5226.43	5373	5525.	5684.60	5850.79	6024.87	20
2 I	4692.78	4819.97	4951.47	5087.63	5228.83	5375.50	5528. 14	5687.31	5853.63	6027.84	21
22	4694.87	4822.13	4953.70	5089.94	5231.23	5378.00	5530.74	5690.02	5856.47	6030.8 I	22
23	4696.96	4824.29	4955.94	5092.25	5233.63	5380.49	5533.34	5692.73	5859.31	6033.79	23
24	4699.05	4826.44	4958.17	5094.57	5236.03	5382.99	5535.94	5695.45	5862.15	6036.77	24
25	4701. 14	4828.60	4960.40	5096.88	5238.43	5385.49	5538.55	5698.17	5864.99	6039.75	25
26	4703.23	4830.76	4962.64	5099.20	5240.84	5387.99	5541.15	5700.89	5867.84	6042.74	26
27	4705.32	4832.93	4964.87	5101.52	5243.24	5390.49	5543.76	5703.61	5870.69	6045.73	27
28	4707.4 I	4835.09	4967.11	5103.84	5245.65	5392.99	5546.37	5706.33	5873.54	6048.72	28
29	4709.51	4837.25	4969.35	5106. 16	5248.06	5395.50	5548.98	5709.06	5877.39	6051.71	29
30		4839.42	4971. 59	5108.48	5250.47		5551.5	574 I.	5879.24	6054.70	30
31	4	484 I .58	4973.83	5110.80	5252.88	5400.52	5554.20	5714.51	5882.10	6057.70	31
32	4715.7	4843.75	4976.08	5113.13	5255.30	5403.03	5556.82	5717.25	5884.96	6060.70	32
33	4717.89	4845.92	4978.32	5115.45	5257.71	5405.54	5559.44	5719.98	5887.82 5800.68	6063.7 I	33
34	4719.99	4848.09	4980.57	${ }_{\text {5117. }}^{5117}$	5260.13 5262.55	5408.05	5562.06 5564.68	5722.71 5725.45	5890.68 5893.55	6066.71 6069.71	34 35
35	4722.09	4850.26	4982.82 18.	5120.11	5262.55	5410.57		5725.45 5728.19	5893.55 5806.41	6069.71 6072.72	35
36	4724. 19	4852.43	4985.06	5122.44	5264.97	5413.08	$\begin{aligned} & 5567.30 \\ & 5569.93 \end{aligned}$	5728.19 5730.93	5896.41 5899.28		36
37	4726.30	4854.61	4987.3 l 4989.56	5124.77 5127.II	$\left\|\begin{array}{l} 5267.39 \\ 5260.8 \mathrm{I} \end{array}\right\|$	5415.60 5418.12	5569.93 5572.55	5730.93 5733.68	5899.28 5902.15	6075.73 6078.75	37 38
39	4730.51	4858.96	4991.82	5129.44	5272.23	5420.64	5575.18	5736.42	5905.03	608 I .76	39
40		4861.13	4994.07	9131.78	5274.66	5423.17	5577.81	5739.17	5907.90	6084.78	40
41		4863.31	4996.32	5134.11	5277.09	5425.69	5580.44	5741.92	5910.78	6087.81	41
42	4736.83	4865.49	4998.58	5136.45	5279.52	5428.22	5583.08	5744.67	5913.67	6090.83	42
43	4738.94	4867.67	5000.84	51138.79	5281.95	5430.75	5585.71	5747.43	5916.55 5919		43
44	4741.05	4869.86	5003.10	5141.14	5284.38	5433.28	5588.35 5590.99	5750.18 5752.94	$\begin{array}{\|l\|} 5919.44 \\ 5922.32 \end{array}$	6096.89 6099.92	44
45	4743.16	4872.04	$5005 \cdot 36$	5143.48	5286.82	5435.8I	5590.99	5752.94	5922.32 5025.22	6099.92 6102.95	45
46	4745.28 4747	4874.22 4876.41	5007.62 5009.88	$\begin{aligned} & 5145.83 \\ & 5148.17 \end{aligned}$	5289.25 5291.69	5438.35 5440.88	5503.64 5596.28		5925.22 5928.11	6102.95 6105.99	46
47 48	4747.39 4749.51	4876.41 l	5009.88 5012.15	5148.17 5150.52	5291.69 5294.13	5440.88 5443.42	5590.28 5598.93	5758.46 576 I .23	5928.11	6105.99 6109.03	48
49	4751.63	4880.79	5014.4 I	5152.87	5296.57	5445.96	5601.57	5763.99	5933.90	6112.07	49
50	4753.74	4882.98	5016.68	5155.22	5299.01	5448.50	5604.22	5766.76	5936.80	6115.12	50
51	4755.86	4885.17	5018.94	5157.57	5301.45	5451.05	5606.87	5769.53	5939.70	6118.16	51
52	4757.98	4887.36	5021.21	5159.93	5303.90	5453.59	5609.53	5772.31	5942.61	6121.21	52
53	4760 . IO	4889.55	5023.48	5162.28	5306.34	5456. I4	5612.18	5775.08	5945.51	6124.26	53
54	4762.23	4891.75	5025.76	5164.64	5308.79	5458.68	5614.84	5777	5948.42	$6127 \cdot 32$ 6130.38	54
55	4764.35	4893.94	5028.03	5167.00	53II. 24	5461 I .23	5617.50	5783.4	5951	6130.38	55
56	4766.47	4896.14	5030.30	5169.36	5313.69	5463.78	5620.16	5783.42	5954.24 5957 59	6133.44 6136.50	56
57	4768.60	4898.34	5032.58	5171.72	5316.15 5318.60	5466.34	5622.82 5625.49	5786.20 5788.08	$\left\|\begin{array}{l} 5957.16 \\ 5050.08 \end{array}\right\|$	6136.50 6139.56	57
	4770.73 4772.86	4900.54 4902.74	5034.86 5037.14	(174.08	5318.60 532 I .06	5468.89 5471.45	5625.49 5628.15	5788.98 5791.77	$\begin{aligned} & 5950.08 \\ & 5963.00 \end{aligned}$	6139.56 6142.63 615	59
60	4774.98	4904.94	5039.42	5178.81	5323.51	5474.0I	5630.82	5794.56	5965.92	6145.7	60

The Anti-Gudermannian.

gd u					75°	\%	77	78	79	80	ad
o'	6145'.70	6334	$\overline{6534 \cdot 42}$	6745.74	$\overline{6970.34}$	721	7467.21	7744.57	8045.71	8375.20	O'
1	6148	6338.08	6537.85				7471.66	7749.38	8050.95		
2	6151	6341.32	6541.27			7218.35	7476. II	7754.20	8056.20	8386.73	2
3						7222.49	7480.57	7759.02		8392.52	3
4								7763.86		8398.31	
5			655 I .57		6989.71	723				8404.11	
6	6164.18	635	6555.0I	6767.58	6993.60			7773.55			6
7	6167.27	6357	6558.45	6771.23	6997.49			7778.40			7
8	6170.36	6360.8	6561. 89	6774.89	7001	724		7783.26	8087.88		
9	6173.45	6364.08	6565.34		7005.28	7247	7507	7788.12	8093 . 19		9
10	6176	6367.35	6568.79		7009.19	7251	751	7793.00			ıo
II		6370	6572.25	6785.88		7255.83	751		8103.83		
12	6182.75	6373	6575.70	6789.55	7017.01	7260.02	7520.		8109.17		12
13		63	6579.16	6793.22		7264.2	7525.47		8IIT4.5I		13
14	6188.96		658	6796		,7268.			8i19.86		14
15	6192.07	63							8125.22		15
16	6195.18	6386.99	6589.57	6804.27		7276.83		7822.38	8130.58	8468.58	16
17	6198.30	6390.28	6593.05	6807.96	7036	7281		7827.30	8135.95	8474.50	17
18	6201.42	6393.57	6596.52	681ı. 65	7040	7285	754	7832.23	8141.33		18
19	6204.5	6396.86	6600.01	6815.35	7044.52	7289	75.52.	7837.16	8146.72	8486.37	19
20	6207.66	6400.15	6603.49	6819.05	7048.47	7293	7557	7842.10	8152.12	8492.32	
21	6210.	6403	6606.98		705	729	7561				21
22	6213.91	6406	6610.47		7056.37	7302.	7566.39			8504.25	22
23	6217	6410.05	6613.96	68	7060.33	7306.	7570.96	7	81	8510.23	23
24	6220	6413	6617	68		7310.	7575.	7861. 94	8173.80	8516.22	24
25	62		6620.97			7314.	7580.13	7866.91	8i7	8522.22	25
26	6226.	64	6624.47	6841.34		7319.21	7584	7871.90	8184.69	8528.23	26
27	6229	6423.29	6627.98	6845.07		732	7589	7876.89	8190.15	8534.26	27
28	6232.74	6426.6I	6631.49	6848.80	7080	732	7593	7881. 89	8195.61	8540.29	28
29	6235.89	6429.93	6635.01	6852.53	7084.19	733	7598.5	7886.89	8201.09		29
30	6239.04	6433.25	6638.53	6856.27	7088.18	733	7603.	7891.91	8206.57	8552.38	30
3 I	6242	6436.58	66	6860	709	734	7607.78	7896.93	8212.06		31
32	6245	6439.91	6645.58	6863.77	7096	7344.8	7612.41	7901.95	8217.56		32
33		6443		6867.52	7100	7349.18	7617.	7906.98	8223.07		33
34				6871.27	7104	7353.48		7912.03	8228.59		
35	62			6875.03		7357.79	7626.33	7017	8234		35
36	6258.0	6453.26	6659.72	6878.80	7112.23			7922.13	8239.66		36
	6261	6456.61	6663.26	6882.56	71	7366	7635	7927.19	8245.20	8595.06	
38	6264	6459.95	6666.8I	6886.34	7120	7370	7640.3	7932.26	8250.75	8601. 20	38
39	6267.5I	6463.3 I	6670.36	6890. 11	7124.31	7375	764	7937.34			39
40	6270.69	6466.66	6673.91	6893.89	7128.35	7379	7649	7942.43	826	86I3.51	40
41	6273.87			6897.68	7132.39		7654.35		8267.46		4
42	6277.05	6473.38	668	6901.4	7136.43	7388.08	7659.04	7952.			42
43	628		6684.59	6905.25	7140.48	7392.43	7663.74	7957			43
44	628	6480. II	6688.16	6909		7396.79	7668.	仡	8284		44
45		6483.	6691. 73	6912.85	71	74	7673.15		8289	8644.47	45
46	6289.82	6486.86	6695.31	6916.65	7152.67		7677.87		8295.49		46
47	6293.01	6490.23	6698.89	6920.46	7156.74	7409.8	7682.59	7978.23	8301.12	8656.94	47
48	6296.21	6493.6I	6702.47	6924.27	7160.81	7414.26	7687.32	7983.37	8306.77	8663.19	48
49	6299.42	6497.00	6706.06	6928.09	7164.89	7418.64	7692.05	7988.52	8312.42	8669.45	49
50	6302	6500.38	6709.65	693	716	7423.03	7696.79	7993.6	831	8675.72	50
51	6305.83	6503	6713.24	6935.7	7173.06	7427	770	7998.85	8323.75		51
52	6309	6507.17	6716.84	6939.56	7177.	7431.8	7706	8004.03	8329.		52
53	6312.26	6510.56	6720.44	6943.40	7181.	7436	771	8009.21	8335.12		5
54	6315.48	6513.96	6724.04	6947.23	7185.35			8014.4	8340.82		54
55	6318.70	6517.36	6727.65	6951.07	7189			8019.60	8346.52	8707.25	55
56	6321.92	6520.77		6954.92	7193.57	7449.4	7725.38	8024.8I	8352.24	8713.59	56
	6325.14	6524. 18	6734.88	6958	7197.69	7453.8	7730.17	8030.02	8357.96	8719.94	57
	632	6527.59	6738.50	6962.62	7201.8 I	7458.33	7734.96	8035.24	8363.70	8726.30	88
	633	6531.	6742.12	6966.48	7205.9	7462.76	7739.76	8040.47	8369.44	8732.68	59
60	6	6534.42	6745	69	7210.07	767		8045.71	8375.20	8739.	

The Anti-Gudermannian.

gd u	81°	82°	83°	84°	85°	86°	87°	88°	89°	gd u
O	8739.06	9145.46	9605.82	TOI36.89	10764.62	11532.52	I2522.11	I3916.43	I6299.56	O^{\prime}
1	8745.46	9152.65	9614.03	10146.46	10776. 11	11546.88	12541.27	13945.20	16357.34	
2	8751.87	9159.86	9622.27	10156.07	10787.65	I1561.3I	12560. 54	I 3974.22	16416.11	2
3	8758.29	9167.08	9630.52	10165.70	10799. 22	11575.80	12579.91	14003.48	16475.90	3
4	8764.73	9174.32	9638.80	IOI75.37	10810.82	II 590.34	I2599.40	I4033.00	16536.76	4
5	8771.17	9181.57	9647.09	IOI85.05	10822.47	11604.95	12619.00	I4062.77	16598.69	5
6	8777.63	9188.84	9655.40	10194.77	10834.16	11619.62	I2638.70	I4092.80	16661.78	6
7	8784.10	9196. 13	9663.74	10204.51	10845.89	11634.36	12658.53	I4123.09	I6726.04	7
8	8790.58	9203.42	9672.09	10214.28	10857.65	11649. 16	12678.46	14153.66	16791. 53	8
10	8797.08	9210.74	9680.47	10224.08	10869.46	11664.02	I2698. 52	14184.49	16858.29	9
10	8803.58	9218.07	9688.86	10233.90	1088ı.3I	11678.94	12718.69	I4215.61	16926.36	Io
II	8810.10	9225.41	9697.28	10243.75	10893.20	11693.93	I2738.98	I4247.01	I6995.81	II
12	8816.63	9232.77	9705.71	10253.64	10905. 13	I1708.99	12759.39	14278.70	17066.70	12
13	8823.17	9240.15	9714.17	10263.54	10917.10	II724.11	12779.92	14310.68	17139.09	I3
14	8829.73	9247.54	9722.64	10273.48	10929	11739	12800.58	14342.97	17213.03	14
15	8836.30	9254.95	9731.14	I0283.45	10941. 17	11754.56	12821. 36	14375.56	I7288.57	15
16	8842.88	9262.37	9739.66	10293.45	10953.26	11769.88	12842.26	14408.46	17365.83	16
17	8849.47	9269.81	9748.20	10303.47	10965.40	11785.27	12863.30	I4441.68	17444.87	17
18	8856.07	9277.27	9756.76	10313.53	10977.59	11800.73	I2884.46	14475.23	I7525.77	18
19	8862.69	9284.74	9765.34	10323.61	10989.81	11816.26	12905.75	14509. 10	17608.63	19
20	8869.32	9292.23	9773.94	10333.72	11002.08	11831.87	12927.18	14543.31	I7693.49	20
2 I	8875	9299.73	9782.57	10343.85		11847.54	12948.74	14577.87	17780.53	21
22	8882.62	9307.25	9791.21	10354.03	11026.75	11863.28	12970.44	14612.78	17869.83	22
23	8889.29	9314.79	9799.88	10364.24	11039.15	11879. 10	12992.27	I4648.04	17961.5I	23
24	8895.97	9322.34	9808.57	10374.47	11051.60	11894.99	13014.25	14683.67	I8055.70	24
25	8902.66	9329.91	9817.28	10384.73	I 1064.09	11910.95	I3036.36	14719.67	18152.55	25
26	8009.37	9337	9826.02	10395.03	1 1076.63	11926.99	I3058.62	14756.05	I8252.20	26
27	8916.09	9345	9834.77	10405.35	11089.21	11943.10	I3081. 02	14792.83	18354.83	27
28	8922.82	9352.72	9843.55	10415.71	IIIII. 84	11959.29	I3103. 58	I4830.00	I8460.62	28
29	8929.57	9360.35	9852.35	10426.09	IIII4.52	11975.55	I3126.27	14867.57	18569.76	29
30	8936.33	93	9861. 17	10436.51*	III27.24	11991.89	I3149.12	I4905.56	18682.49	30
3 I	8943.10	9375.67	9870.02	10446.96	III40.01	12008.3 I	13172.13	I4943.98	18799.03	31
32	8949.88	9383.36	9878.88	$10457 \cdot 44$	11152.82	12024.81	13195.28	14982.83	I8919.67	32
33	8956.68	9391.06	9887.77	10467.95	I 1165.69	12041.39	I 3218.60	15022.12	19044.69	33
34	8963.49	9398.79	9896.69	10478.50	11178.60	12058.05	I3242.07	15061.87	19174.44	34
35	8970.32	9406.53	99	10	III91. 56	12074.79	I3265.70	151	19309.27	35
36	8977.16	9414.28	9914.59	10499.69	II204.57	12091.60	I3289.50	15142.77	I9449.6I	36
37	8884.01	9422.05	9923.57	10510.33	11217.63	12108.51	13313.47	15183.94	19595.92	37
	8990.87	9429.84	9932.57	10521.01	11230.74	12125.49	13337.60	15225.62	19748.73	38
39	8997.75	9437.65	9941.60	10531.71	11243.90	12142.57	13361.90	15267.80	19908.66	39
40	9004	9445.48		10542.45	I 1257. II	12159.72	I3386.37	15310.51	20076.	40
4 I	9011.55	9453.32	9959.73	10553.23	11270.37	12176.96	I3411. 02	15353.76	20252.72	4
42	9018.47	9461.18	9968.83	10564.04	11283.68	12194.29	I3435.85	15397.56	20438.59	42
43	9025.41	9469.06	9977.96	10574.88	II 297.04	12211.71	I 3460.85	15441.92	20635.09	43
44	9032.36	9476.96	9987. II	10585.76	I1310.46	12229.21	13485.05	15486.86	20843.50	44
45	9039.32	9484.87	9996.28	10596.67	II 323.93	12246.8I	I3511.43	15532.40	$21065 \cdot 37$	45
46	9046.29	9492.8 i	10005.48	10607.62	11337.45	12264.49	13537.00	15578.55	21302.55	46
47	9053.28	9500.76	10014.70	10618.60	11351.02	I2282.26	13562.75	15625.32	$21557 \cdot 31$	47
48	9060.29	9508.73	10023.95	10629.61	II 364.65	12300.13	13588.71	15672.75	21832.48	48
49	9067.31	9516.71	10033.22	10640.67	11378.33	12318.09	I3614.85	15720.83	22131.60	49
50	$9074 \cdot 34$	9524.72	10042.52	10651.75	I 1392.06	12336.15	I3641.20	15769.59	22459.26	50
51	908 I .39	9532.74	10051. 84	10662.87	I 1405.85	12354.30	13667.75	15819.06	22821.46	51
52	9088.45	9540.79	10061.19	10674.03	II419.70	12372.54	13694.52	15869.25	$23226.39-$	52
53	9095.52	9548.85	10070. 56	10685.22	II433.60	12390.89	I3721.48	I5920. 19	23685.42	53
54	9102.61	9556.93	10079.96	10696.46	II 447.56	12409.33	13748.67	15971.89	$24215 \cdot 35$	54
55	9109.72	9565.03	10089. 38	10707.72	II461.58	12427.87	13776.07	16024.38	24842.12	55
56	9116.84	9573.15	Io098.83	10719.03	II 1475.65	12446.51	I3803.68	I6077.68	25609.23	56
57	9123.97	958i. 29	10108.30	10730.37	II489.78	12465.26	13831.53	16131.82	26598.21	57
58	9131.12	9589.45	IOII7.81	10741.75	I 1503.97	12484.10	13859.60	16186.83	27992. IO	58
59	9138.28	9597.62	IoI27.33	10753.17	11518.21	12503.05	13887.90	16212.74	30374.96	59
60	9145.46	9605.82	IOI36.89	I0764.62	I 1532.52	12522.11	I3916	I6299.		60

TABLE VIII

CONVERSION OF RADIANS INTO ANGULAR MEASURE AND VICE VERSA

Conversion of Angular Measure into Radians.

n	Radians for n degrees	Radians for n minutes	Radians for \boldsymbol{n} seconds	n	Radians for n degrees
I	0.01745329252	0.0002908882 I	0.000004848 I 4	6I	1.06465084372
2	. 03490658504	. 00058177642	. 00000969627	62	.08210 41362 4
3	.05235987756	.00087266463	.00001 45444 I	63	.09955742876
4	.0698I 3I700 8	.00116 355283	.00001 939255	64	.II7OI 07212 8
5	0.08726646260	0.00145444104	0.00002424068	65	I. 13446401380
6	. 10471 97551 2	.00174 532925	.00002908882	66	.15191 730632
7	.12217 304764	. 00203621746	.00003393696	67	.16937059884
8	. 13962634016	.00232710567	.00003878509	68	. 18682389136
9	. 15707963268	.00261 799388	. 00004363323	69	. 20427718388
10	0.17453292520	0.00290888209	0.00004848137	70	1.22173047640
11	. 19198 62177 2	.00319 977030	. 00005332950	71	. 23918376892
12	. 20943951024	. 00349065850	. 00005 8I776	72	. 25663 706I4 4
13	.22689280276	.0037815467 I	. 00006302578	73	.27409035396
14	. 24434609528	. 00407243492	. 00006787392	74	. 29154364648
15	0.26179938780	0.00436332313	0.00007272205	75	I. 3089969390 o
16	. 27925268032	. 0046542 II 34	.00007757019	76	. 32645 023I5 2
17	. 29670597284	. 00494509955	. 00008241833	77	. 34390352404
18	.3I4I5 926536	. 00523598776	. 00008726646	78	.36135 68165 6
19	-33161 255788	. 00552687596	. 00009211460	79	.3788I Oiogo 8
20	0.34906585040	0.00581776417	0.00009696274	80	1. 39626340160
21	.36651 91429 2	.00610 865238	.00010 181087	8 I	.4I37I 6694I 2
22	. 38397243544	.00639954059	.000I0 66590 I	82	.43116 998664
23	.40142572796	. 00669042880	.00011 I5071 5	83	. 44862327916
24	.41887902048	. 00698 I3I70 I	.000II 635528	84	. 46607657168
25	0.43633231300	0.00727220522	0.000121203	85	I. 48352986420
26	. 45378560552	.00756309343	.00012 605156	86	. 50098 31567 2
27	. 47123889804	.00785 39816 3	.00013 089969	87	.51843 64492 4
28	.48869219056	.008I4 486984	.00013 574783	88	. 53588974176
29	. 50614548308	. 00843575805	.00014 059597	89	. 55334303427
30	0.52359877560	0.00872664626	0.0001454441	90	I. 57079632679
3 I	. 54105 2068I 2	.00901 753447	.00015 02922	9 I	.5882496193 I
32	. 55850536064	. 00930842268	. 00015514038	92	. 60570 29II8 3
33	. 57595865316	. 00959931089	. 0001599885 I	93	.62315620435
34	.5934I 19456 8	.00989 01990 9	.00016 48366 5	94	.64060946687
35	0.61086523820	0.0101810873 .0	0.00016968479	,	1.65806278939
36	. 62831853072	. 0104719755 I	.00017 453293	96	.67551 60819 I
37	. 64577182324	. 01076286372	.00017 93810	97	. 69296937443
38	.66322511576	. 01105375193	. 00018422920	98	. 71042266695
39	.68067840828	.OII34 46401 4	.00018 907734	99	. 72787595947
40	0.69813 I7008 0	O.OII63 552835	0.00019392547	100	1.7453292519 9
4 I	. 71558499332	.OI192 641656	.0001987736 I	110	.91986 21771 9
42	. 73303828584	.0122I 730476	.00020362175	120	2.09439510239
43	.75049 I5783 6	. OI250 8ig29 7	. 00020846988	130	. 26892802759
44	. 76794487088	. 01279 908ıI 8	.00021 33I80 2	140	. 44346095279
45	0.78539 81634 0	0.01308996939	0.00021816616	150	2.61799387799
46	. 80285145592	. O1338 085760	. 00022301429	160	. 79252680319
47	. 82030474844	. OI367 I7458 I	. 00022786243	170	. 96705972839
48	.83775804096	. O1396 263402	.00023 271057	180	3.14159 265359
49	. 8552 I I 33348	. OI425 35222	.00023755870	190	-31612 557879
50	0.87266462000	0.01454441043	0.00024240684	200	$3 \cdot 49065850399$
5 I	.89011 791852	.OI483 529864	.00024725498	210	. 66519 I4291 9
52	.90757 I2IIO 4	. 01512618685	. 0002521031 I	220	.83972435439
53	.92502450356	.OI541 707506	. 00025695125	230	4.01425727959
5	. 94247779608	. 01570796327	. 00026 17993 9	240	. 18879020479
55	0.95993 I0886 0	0.01599885148	0.00026664752	250	4.36332312999
56	. 97738438112	. 01628973969	.00027149566	260	. 53785605519
57	.99483767364	.01658062789	.0002763438 o	270	. 71238898038
58	I. 01229096616	. 01687 I5161 0	. 00028 II919 4	300	$5 \cdot 23598775598$
59	.02974425868	.01716 24043 I	.00028604007	330	. 75958653158
60	1.04719 75512 0	0.01745329252	0.0002908882	360	6.28318530718

Conversion of Radians into Angular Measure.

Padians		Angle	Radians	Angle	
	-			-	"
O.I	0543	46.4806247	0.006	O 20	37.5888375
0.2	II 27	32.9612494	. 007	24	03.8536437
0.3	17 II	19.4418741	. 008	27	30. II84500
0.4	2255	05.9224988	. 009	30	56.3832562
0.5	$28 \quad 38$	52.4031235	0.0100	O 34	22.6480625
0.6	$34 \quad 22$	38.8837483	. 0001	00	20.6264806
0.7	$40 \quad 06$	25.3643730	. 0002	00	41.2529612
0.8	4550	II. 8449977	. 0003	OI	OI. 87944 I9
0.9	5133	58.3256224	. 0004	OI	22.5059225
1.00	57 I7	44.8062471	0.0005	O OI	43.1324031
0.01	0034	22.6480625	. 0006	02	03.7588837
0.02	OI 08	45.2961249	. 0007	02	24.3853644
0.03	OI 43	07.9441874	. 0008	02	45.0118450
0.04	02 I7	30.5922499	. 0009	03	05.6383256
0.05	0251	53.2403124	0.00100	$0 \quad 03$	26.26480625
0.06	0326	I5.88837 48	.0000I	00	02.05264806
0.07	0400	38.5364373	. 00002	00	04.125 .29612
0.08	0435	OI. I8449 58	. 00003	00	06.18794419
0.09	0509	23.8325622	. 00004	00	08.25059225
0.100	0543	46.4806247	0.00005	- 00	10.31324031
0.001	0003	26.2648062	. 00006	00	12.37588837
0.002	0006	52.52961 25	. 00007	00	14.43853644
0.003	00 IO	18.79441 87	. 00008	00	16.50118 450
0.004	00 I3	45.0592250	. 00009	00	18.56383256
0.005	0017	II.32403 I2	0.00010	$0 \quad 00$	20.62548052

SMITHSONIAN TABLES

Numerical Constants.
$\log _{10} 2=0.301029995663981$
$\log _{e} 2=0.693147180559945$
$\log _{\mathrm{e}} \mathrm{IO}=2.302585092994046$
$e=2.71828 \times 828459045$
$\log _{10} \mathrm{e}=0.43429448 \mathrm{I} 903252$
$\log _{10} \log _{10} \mathrm{e}=9.637784311300537$
$\pi=3.141592653589793$
$\log _{10} \pi=0.497149872694134$
$\log _{\mathrm{e}} \pi=\mathrm{I} .144729885849400$
$\frac{I}{\pi}=0.31830$ 98861 83791
$\pi^{2}=9.869604401089359$
$\frac{\mathrm{I}}{\pi^{2}}=0$. IOI 32 II836 42338
$\sqrt{\boldsymbol{\pi}}=1.772453850905516$
$\frac{\mathrm{I}}{\sqrt{\pi}}=0.564189583547756$
$\log _{10} \frac{\mathrm{I}}{\sqrt{\pi}}=9.751425063652933$
$\sqrt{\frac{\pi}{2}}=$ I.2533I 4I373 15500
$\sqrt{\frac{2}{\pi}}=0.797884560802865$
$\log _{10} \sqrt{\frac{2}{\pi}}=9.901940061484924$
I radian $=206264.8062470964$ seconds
$=3437.7467707849$ minutes
$=57.29577$ 95I3I degrees
$\log _{10} 206264.80625=5.3144251332$

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book jis DUE on the last date stamped below. MAR-3 1948

[^0]: ${ }^{1}$ More compendious and convenient, but less usual, is the notation employed by B. de Saint-Venant, $\operatorname{sih} u$, $\operatorname{coh} u$, tah u.
 ${ }^{2}$ Comptes Rendus. Paris, vol. 83, 1876, p. 594.

[^1]: ${ }^{1}$ H. P. Manning's Non-Euclidean Geometry, p. 60.

[^2]: ${ }^{1}$ Taken with additions from Prof. B. O. Peirce s Short Table of Integrals, and Prof. McMahon's Hyperbolic Functions.

[^3]: ${ }^{1}$ See Bull. Geol. Soc. Am., vol. 2, 1891, p. 49, and Am. Jour. Sci., vol. 46, 1893, p. 337 .

[^4]: ${ }^{1}$ The isocyclic diameter used in this illustration of hyperbolic functions lies in the circular section of a shear ellipsoid, or an ellipsoid in which the mean axis is mean proportional between the greatest and least axes. The position of the circular section of the general ellipsoid is also readily expressed in terms of hyperbolic functions. Let the equation of the ellipsoid be

 $$
 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=\mathrm{I} ; a>b>c
 $$

 If $\frac{b}{c}=\cosh u_{1}$, and $\frac{a}{b}=\cosh u_{2}$,
 the angle ν which the circular section makes with the greatest axis is given by

 $$
 \tan \nu=\frac{\mathrm{I}}{i} \tanh i \nu=\frac{b-{ }^{2}-a-^{2}}{c^{-2}-b-2}=\frac{\tanh u_{1}}{\sinh u_{2}}
 $$

 If $u_{1}=u_{2}$ and $\frac{a}{b}=a$ this expression reduces to $\tan \nu=a^{-1}$, or to the case of the shear ellipsoid.

[^5]: ${ }^{1}$ The notation and general outline of treatment here presented closely follow Mr. Herbert L. Rice's treatise, Theory and Practice of Interpolation, I899. The Nichols Press, Lynn, Massachusetts.

[^6]: ${ }^{1}$ Rice's Theory and Practice of Interpolation, section 83 .
 ${ }^{2}$ Prof. James McMahon : "On the General Term in the Reversion of Series." Bull. Am. Math. Soc., April, 1894.

[^7]: ${ }^{1}$ See, also, " Inverse Interpolation by Means of a Reversed Series," Phil. Mag., May, 1908.

[^8]: ${ }^{1}$ James McMahon, Hyperbolic Functions, p. 71.
 ${ }^{2}$ Crelle's Journal, vols. $6,7,8$, and 9 . These memoirs were afterwards reprinted in a separate volume. xlviii

[^9]: ${ }^{1}$ Phil. Mag., vol. 24, p. 19.
 ${ }^{2}$ Thus spelled in Cayley's paper.
 ${ }^{3}$ Exercises de Cal. Int., vol. 2, I8ı6.
 ${ }^{4}$ Neueste Schriften der Naturforscher-Gesellschaft in Danzig, vol. 6, 1862.

[^10]: ${ }^{1}$ Cambridge Phil. Soc., Trans., vol. I3, IS83.

[^11]: Washington, D. C., January, rgo8.

[^12]: Smithsonian Tables

[^13]: Smithsonian Tables

